Punjab Chief Minister Bhagwant Mann met with experts from the International Maize and Wheat Improvement Center (CIMMYT) to promote crop diversification and use of Direct Sowing Rice (DSR) Basmati as part of the Borlaug Institute for South Asia (BISA) project.
In a meeting with CIMMYT Director General Bram Govaerts, water shortages were an integral part of the discussion. Mann encouraged use of BISA models across the state that require less water consumption than other methods, without impacting farmers’ income.
Mann also highlighted the potential of crops like maize, pulses, oilseeds, vegetables, bamboo, popular, and fruit such as guava and kinoo.
South Asia was the epicenter of the Green Revolution, a historic era of agricultural innovation that fed billions of people on the brink of famine.
Yet despite the indisputably positive nutritional and developmental impacts of the Green Revolution of the 1960s, the era of innovation also led to the widespread use of farming practices—like intensive tilling, monoculture, removal and burning of crop residues, and over-use of synthetic fertilizer—that have a deleterious effect on the soil and cause off-site ecological harm. Excess pumping of irrigation water over decades has dried out the region’s chief aquifer.
South Asia’s woes illustrate the environmental costs of intensive food production to feed our densely-populated planet. Currently, one billion hectares of land worldwide suffers from degraded soils.
The International Maize and Wheat Improvement Center (CIMMYT) works with two of the world’s most widely cultivated and consumed cereal crops. To grow enough of these staple foods to feed the world, a second Green Revolution is needed: one that avoids the mistakes of the past, regenerates degraded land and reboots biodiversity in farm areas.
M.L. Jat, a CIMMYT Principal Scientist, has spent 20 years studying and promoting sustainable agricultural practices for maize- and wheat-based farming systems. In the following Q&A, Jat tells us about regenerative agriculture: integrated farming and grazing practices intended to rebuild soil organic matter and restore degraded soil biodiversity.
Q: What major components or practices are part of regenerative agriculture?
A: Regenerative agriculture is a comprehensive system of farming that harnesses the power of soil biology to rebuild soil organic matter, diversify crop systems, and improve water retention and nutrient uptake. The depletion of biodiversity, degradation of soil health, warming, and drier weather in farm areas have necessitated a reversal in agriculture from “degeneration to regeneration.”
The practices address food and nutritional security challenges while protecting natural resources and lowering agriculture’s environmental footprint, in line with the United Nations Sustainable Development Goals. CIMMYT has worked for years to research and promote conservation agriculture, which contributes to the aims of regenerative agriculture, and is already practiced on more than 200 million hectares globally — 15% of all cropland — and is expanding at a rate of 10.5 million hectares per year.
Q: What are the potential roles of major food crops — maize, rice, and wheat — in regenerative agriculture systems?
A: Regenerative agriculture is “crop neutral;” that is, it is applicable to almost all crops and farming systems. The world’s rice, wheat, and maize crops have an enormous physical and ecological footprint on land and natural resources, but play a critical role in food and nutrition security. Considering that anthropogenic climate change has reduced the global agricultural total factor productivity by about 21% in the past six decades, applying regenerative agriculture approaches to these systems represents a momentous contribution toward sustainable farming under increasing climatic risks.
Q: What elements or approaches of regenerative agriculture are applicable in India and how can they be applied?
A: Regenerative practices for maize and wheat systems in India include no-tillage, crop residue recycling, legume inter-cropping and cover crops, crop diversification, integrated nutrient management, and precision water management.
The potential area of adoption for regenerative agriculture in India covers at least 50 million hectares across a diversity of cropping systems and agroecologies — including irrigated, rainfed, and arid farmlands — and can be approached through appropriate targeting, investments, knowledge and capacity enhancement, and enabling policies.
In the breadbasket region of the Indo-Gangetic Plains, regenerative agriculture can help address the aforementioned second-generation problems of the Green Revolution, as well as contributing to the Indian government’s Soil Health Mission and its COP26 commitments.
Q: In order to get regenerative agriculture off the ground in South Asia, who will be involved?
A: Adapting and applying regenerative agriculture’s portfolio of practices will require the participation of all stakeholders associated with farming. Application of these principles is location- and situation-specific, so researchers, extension functionaries, value chain actors, philanthropists, environmentalists, NGOs, farmers, and policy planners all have a role to play in the impact pathway.
CIMMYT, the Borlaug Institute for South Asia (BISA), public and private programs and agencies, and farmers themselves have been developing, refining, and scaling out conservation agriculture-based regenerative agriculture practices for some three decades in South Asia. CIMMYT and BISA will continue to play a key role in mainstreaming regenerative agriculture in local, national, and regional development plans through science-based policy and capacity development.
Q: Farmers constitute a strong economic and political force in India. How can they be brought on board to practice regenerative agriculture, which could be more costly and knowledge-intensive than their current practices?
A: We need to pursue business “unusual” and harness the potential opportunities of regenerative agriculture to sequester soil carbon and reduce greenhouse gas emissions. Regenerative agriculture practices can offer farmers additional income and certainly create a “pull factor” for their adoption, something that has already started and will constitute a strong business case. For example, innovative business models give farmers an opportunity to trade ecosystem services and carbon credits through repurposing subsidies and developing carbon markets for private sectors. CIMMYT, along with the Indian Council of Agricultural Research and private partners such as Grow Indigo, are already helping to put in place a framework to acquire carbon credits through regenerative agriculture in India.
In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the country‘s agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.
Digital groundwater monitoring system and assessment of water use options
Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.
Toward a systemic framework for sustainable scaling of irrigation in Nepal
Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.
Irrigated fields under conservation agriculture practices at CIMMYT’s experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) announced a new three-year public–private partnership with the German development agency GIZ and the beverage company Grupo Modelo (AB InBev) to recharge aquifers and encourage water-conserving farming practices in key Mexican states.
The partnership, launched today, aims to contribute to a more sustainable use of water in agriculture. The project will promote sustainable farming and financing for efficient irrigation systems in the states of Hidalgo and Zacatecas, where Grupo Modelo operates. CIMMYT’s goal is to facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years, to reduce the water footprint of participant farmers.
Mexico is at a high risk of facing a water crisis in the next few years, according to the World Resources Institute. The country needs to urgently begin reducing its use of available surface and ground water supplies if it is to avert the looming crisis.
Farming accounts for nearly 76% of Mexico’s annual water consumption, as estimated by Mexico’s Water Commission (CONAGUA). Farmers, therefore, have a key role to play in a more sustainable use of this valuable natural resource.
“We need to take care of the ecosystem and mitigate agriculture’s impact on the environment to address climate change by achieving more sustainable agri-food systems,” said Bram Govaerts, chief operating officer, deputy director general of research a.i. and director of the Integrated Development program at CIMMYT.
The project, called Aguas Firmes (Spanish for “Firm Waters”), also seeks to recharge two of Mexico’s most exploited aquifers, by restoring forests and building green infrastructure.
“Our priority is water, which is the basis of our business but, above all, the substance of life,” said Cassiano De Stefano, chair of Grupo Modelo, one of the Mexico’s leading beer companies. “We’ve decided to lead by example by investing considerably in restoring two aquifers that are essential to Zacatecas and Hidalgo’s development.”
The German development agency GIZ, one of CIMMYT’s top funders, is also investing in this alliance that will benefit 46,000 farmers in Hidalgo and 700,000 farmers in Zacatecas.
“We are very proud of this alliance for sustainable development that addresses a substantial problem in the region and strengthens our work on biodiversity conservation and sustainable use of natural resources in Mexico,” said Paulina Campos, Biodiversity director at GIZ Mexico.
CIMMYT undertakes participatory agricultural research activities with local farmers to collaboratively develop and implement sustainable farming practices and technologies that help reduce water consumption in grain production by up to 30%.
INTERVIEW OPPORTUNITIES:
Bram Govaerts – Chief Operating Officer, Deputy Director General of Research a.i. and Director of the Integrated Development program, CIMMYT
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
The critical global challenge of significantly increasing food production by 2050 is exacerbated by water limitations. Droughts and water scarcity affect crop production across the world and global climate warming is aggravating this effect. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production in drier environments.
The Interdrought 2020 congress presents the latest developments to address this global challenge.
Interdrought 2020 was scheduled to be held in Mexico City in March 2020. As it was not possible to proceed with the congress as a face-to-face meeting due to the travel restrictions associated with the COVID-19 pandemic, the organizing committee has delivered the scientific program of the congress online. Congress proceedings are available at interdrought2020.cimmyt.org.
Today the organizing committee extended the reach of the congress proceedings to the global community by providing free online access to 43 presentations, 75 abstracts and 35 posters. The complete book of abstracts can also be downloaded. To date over 10,000 members of the scientific community have been invited to watch presentations and read the proceedings online.
Internationally recognized keynote speakers participated in the seven main sessions, supported by nine symposia convened by global experts, on topics ranging from breeding and management approaches to the basic science of plant–water relations.
State-of-the-art research and technology
Interdrought 2020 is an opportunity for scientific leaders from across the world to share the latest research and technology developments to advance plant production in water-limited situations. Interdrought 2020 embraces the philosophy of presenting and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.
Interdrought 2020, also known as Interdrought VI (IDVI) is the sixth congress in the series. It builds on the success of previous congresses held in Montpellier in 1995, Rome in 2005, Shanghai in 2009, Perth in 2013, and Hyderabad in 2017.
The congress was organized by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Queensland. The organizers share a strong history of collaboration in crop research and agronomy that seeks to increase wheat’s tolerance to drought and its yield potential in hot conditions, such as those seen in Queensland, Australia, and Sonora, Mexico.
The organizers and the congress committee would like to thank major sponsors Corteva, the Grains Research and Development Corporation (GRDC), the University of Queensland, and supporting sponsors in silico Plants, the Journal of Experimental Botany, Illumina, Analitek, and LI-COR. Our sponsors’ belief in the value of the scientific content enabled us to deliver congress proceedings to not only delegates but the broader scientific community.
For more information, please contact
Professor Graeme Hammer
Chair of the Interdrought 2020 congress committee g.hammer@uq.edu.au
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
QAAFI at the University of Queensland
The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of the University of Queensland supported by the Queensland Government via the Department of Agriculture and Fisheries. QAAFI is comprised of four inter-related research centres working across crops, horticulture, animals, and nutrition and food sciences, with a focus on addressing challenges in the tropical and subtropical systems. For more information visit www.qaafi.uq.edu.au/about.
An international team of scientists is working with farmers in the Yaqui Valley, in Mexico’s Sonora state, to develop and test a new mobile technology that aims to improve wheat and sugarcane productivity by helping farmers manage factors that cause the yield gap between crop potential and actual field performance.
Scientists have been developing and testing a smartphone app where farmers can record their farming activities — including sowing date, crop type and irrigation — and receive local, precise crop management advice in return.
This project is a private-public partnership known as Mexican COMPASS, or Mexican Crop Observation, Management & Production Analysis Services System.
Research has shown that proper timing of irrigation is more important to yields than total water amounts. Earlier planting times have also been shown to improve wheat yields. Having optimum dates for both activities could help farmers improve yields and stabilize their incomes.
The COMPASS smartphone app uses earth observation satellite data and in-situ field data captured by farmers to provide information such as optimum sowing date and irrigation scheduling.
“Sowing and irrigation timing are well known drivers of yield potential in that region — these are two features of the app we’re about to validate during this next season,” explained Francelino Rodrigues, Precision Agriculture Scientist at the International Maize and Wheat Improvement Center (CIMMYT).
Sound data
Technological innovation for crop productivity is needed now more than ever with threats to food security increasing and natural resources becoming scarcer. Farmers are under increasing pressure to produce more with less, which means greater precision is needed in their agricultural practices.
The Yaqui Valley, Mexico’s biggest wheat producing area, is located in the semi-arid Sonoran Desert in the northern part of Mexico. Water security is a serious challenge and farmers must be very precise in their irrigation management.
The Mexican COMPASS consortium, which is made up of the geospatial data analytics company Rezatec, the University of Nottingham, Booker Tate, CIMMYT and the Colegio de Postgraduados (COLPOS) in Mexico, evolved as a way to help Mexican farmers improve their water use efficiency.
“Yaqui Valley farmers are very experienced farmers, however they can also benefit by using an app that is designed locally to inform and record their decisions,” Rodrigues explained.
The smartphone app will also allow farmers to record and schedule their crop management practices and will give them access to weekly time-series Normalized Difference Vegetation Index (NDVI) maps, that will allow farmers to view their fields at any time from any location.
“All of this information is provided for free! That’s the exciting part of the project. The business model was designed so that farmers will not need to pay for access to the app and its features, in exchange for providing their crop field data. It’s a win-win situation,” said Rodrigues.
CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)
Farmer-centered design
The app is now in the validation stage and COMPASS partners are inviting farmers to test the technology on their own farms. A workshop on October 21 in Ciudad Obregon provided farmers with hands-on training for the app and allowed them to give their feedback.
Over 100 farmers attended the workshop, which featured presentations from Saravana Gurusamy, project manager at Rezatec, Iván Ortíz-Monasterio, principal scientist at CIMMYT, and representatives from local farmer groups Asociación de Organismos de Agricultores del Sur de Sonora (AOASS) and Distrito de Riego del Río Yaqui (DRRYAQUI). The workshop featured a step-by-step demonstration of the app and practical exercises for farmers to test it out for themselves.
“We need technology nowadays because we have to deal with many factors. The profit we get for wheat is getting smaller and smaller each year, so we have to be very productive. I hope that this app can help me to produce a better crop,” said one local wheat farmer who attended the workshop.
User feedback has played a key role in the development of the app. COMPASS interviewed dozens of farmers to see what design worked for them.
“Initially we came up with a really complicated design. However, when we gave it to farmers, they didn’t know how to use it,” explained Rezatec project manager, Saravana Gurusamy. The team went back to the drawing board and with the feedback they received from farmers, came up with a simple design that any farmer, regardless of their experience with technology or digital literacy, could use.
A farmer who attended the workshop talks about his experience and the potential benefits of the app. See full video on YouTube.
Sitting down with Gurusamy after the workshop, he outlined his vision for the future of the app.
“My vision is to see all the farmers in Sonora, working in wheat using the app. The first step is to prove the technology here, then roll it out to all of Mexico and eventually internationally.”
Mexican COMPASS is a four year project funded by the UK Space Agency’s International Partnership Programme (IPP-UKSA) and the CGIAR Research Program on Wheat (WHEAT). It is a collaboration between Rezatec, the University of Nottingham and Booker Tatein the UK,and the International Maize and Wheat Improvement Center (CIMMYT) and the Colegio de Postgraduados (COLPOS) in Mexico.
Domestic rice and wheat production in Bangladesh has more than doubled in the last 30 years, despite declining per capita arable land. The fact that the country is now almost self-sufficient in staple food production is due in large part to successful and rapid adoption of modern, high-yielding crop varieties. This has been widely documented, but less attention has been paid to the contribution of small-scale irrigation systems, whose proliferation has enabled double rice cropping and a competitive market system in which farmers can purchase irrigation services from private pump owners at affordable rates.
However, excess groundwater abstraction in areas of high shallow tube-well density and increased fuel costs for pumping have called into question the sustainability of Bangladesh’s groundwater irrigation economy. Cost-saving agronomic methods are called for, alongside aligned policies, markets, and farmers’ incentives.
A recent study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) examines the different institutions and water-pricing methods for irrigation services that have emerged in Bangladesh, each of which varies in their incentive structure for water conservation, and the level of economic risk involved for farmers and service providers.
Using primary data collected from 139 irrigation service providers and 556 client-farmers, the authors assessed the structure of irrigation service types as well as the associated market and institutional dimensions. They found that competition between pump owners, social capital, and social relationship between of pump owners and client farmers, significantly influence the structure of irrigation services and irrigation water pricing methods. Greater competition between pump owners, for instance, increases the likelihood of pay-per-hour services while reducing that of crop sharing arrangements.
Based on these and other findings, authors made policy recommendations for enhancing irrigation services and sustainability in Bangladesh. As Bangladesh is already highly successful in terms of the conventional irrigation system, the authors urge taking it to the next level for sustainability and efficiency.
Currently Bangladesh’s irrigation system is based on centrifugal pumps and diesel engines. The authors suggest scaling out the energy efficient axial flow pump, and the alternate wetting and drying system for water conservation and irrigation efficiency. They also recommend further investment in rural electrification to facilitate the use of electric motors, which can reduce air pollution by curbing dependency on diesel engines.
This study was made possible through the support provided by the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation to the Cereal Systems Initiative for South Asia (CSISA). Additional support was provided by the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).
Local irrigation service providers in southern Bangladesh demonstrate the use of a two-wheeled tractor to power an axial flow pump to provide fuel-efficient surface water irrigation. (Photo: Tim Krupnik/CIMMYT)
Read more recent publications by CIMMYT researchers:
A spatial framework for ex-ante impact assessment of agricultural technologies. 2019. Andrade, J.F., Rattalino Edreira, J.I., Farrow, A., Loon, M.P. van., Craufurd, P., Rurinda, J., Shamie Zingore, Chamberlin, J., Claessens, L., Adewopo, J., Ittersum, M.K. van, Cassman, K.G., Grassini, P. In: Global Food Security v. 20, p. 72-81.
A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)
On World Water day, researchers show how India’s farmers can beat water shortages and grow rice and wheat with 40 percent less water
India’s northwest region is the most important production area for two staple cereals: rice and wheat. But a growing population and demand for food, inefficient flood-based irrigation, and climate change are putting enormous stress on the region’s groundwater supplies. Science has now confronted this challenge: a “breakthrough” study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. The study’s authors, from the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Punjab Agricultural University and Thapar University, claim farmers can grow similar or better yields than conventional growing methods, and still make a profit.
The researchers tested a range of existing solutions to determine the optimal mix of approaches that will help farmers save water and money. They found that rice and wheat grown using a “sub-surface drip fertigation system” combined with conservation agriculture approaches used at least 40 percent less water and needed 20 percent less Nitrogen-based fertilizer, for the same amount of yields under flood irrigation, and still be cost-effective for farmers. Sub-surface drip fertigation systems involve belowground pipes that deliver precise doses of water and fertilizer directly to the plant’s root zone, avoiding evaporation from the soil. The proposed system can work for both rice and wheat crops without the need to adjust pipes between rotations, saving money and labor. But a transition to more efficient approaches will require new policies and incentives, say the authors.
During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)
Sidhu HS, Jat ML, Singh Y, Sidhu RK, Gupta N, Singh P, Singh P, Jat HS, Gerard B. 2019. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management. 216:1 (273-283). https://doi.org/10.1016/j.agwat.2019.02.019
The study received funding from the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Government of Punjab. The authors acknowledge the contributions of the field staff at BISA and CIMMYT based at Ludhiana, Punjab state.
NEW DELHI (CIMMYT) — India could reduce its greenhouse gas emissions from agriculture by almost 18 percent through the adoption of mitigation measures, according to a new study. Three improved farming practices would account for more than half of these emission reductions, researchers say: efficient use of fertilizer, zero tillage and better water management in rice farming.
In an article published in Science in the Total Environment, scientists estimate that, by 2030, “business-as-usual” greenhouse gas emissions from the agricultural sector in India would be 515 MtCO2e per year. The study indicates that Indian agriculture has the potential to mitigate 85.5 Megatonne CO2 equivalent (MtCO2e) per year without compromising food production and nutrition. Considering the 2012 estimates of 481 MtCO2e, that would represent a reduction of almost 18 percent. Researchers suggest mitigation options that are technically feasible but will require government efforts to be implemented at scale.
The study was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the University of Aberdeen and the Indian Council of Agricultural Research (ICAR), with support from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). They followed a “bottom-up” approach to estimate and analyze greenhouse gas emissions from agriculture, using large datasets related to crops (around 45,000 data points) and livestock production (around 1,600 data points) along with soil, climate and management information. To evaluate mitigation measures, associated costs and benefits of adoption, researchers used a variety of sources, including literature, stakeholder meetings and consultations with experts in crops, livestock and natural resource management.
The authors also identify “hotspots” where mitigation practices would have the highest potential for reduction of greenhouse gas emissions. For example, reduced fertilizer consumption through precision nutrient management shows the highest potential in the state of Uttar Pradesh, followed by Andhra Pradesh, Maharashtra and Punjab. Water management in rice farming has the highest mitigation potential in Andhra Pradesh, followed by Tamil Nadu, Orissa and West Bengal.
India is the world’s third largest emitter of greenhouse gases. Contributing almost one-fifth to the national total, agriculture has been identified as a priority in the country’s efforts to reduce emissions. The results from this study can help the country make great strides towards its goals. However, these climate change mitigation benefits can only work if farmers take up the new practices, some of which require an initial investment. Government policies and incentives will be crucial to help farmers take the first steps, ensure wide-scale adoption of these mitigation options, and help India meet its food security and greenhouse gas emission reduction goals.
Marginal abatement cost curve of Indian agriculture.
Three feasible mitigation measures
Efficient use of fertilizer not only lowers emissions at the field, but also reduces the need for fertilizer and the emissions associated with production and transportation. It also represents savings for the farmer. Mitigation options would include applying fertilizer at the right time and the right place for plant uptake, or using slow-release fertilizer forms or nitrification inhibitors. “Efficient fertilizer use in the agriculture sector in India has potential to reduce around 17.5 MtCO2e per year,” said Tek Sapkota, CIMMYT scientist and lead author of the study.
Adoption of zero tillage farming and residue management — maintaining crop residues on the soil surface to protect the ground from erosion — in rice, wheat, maize, cotton and sugarcane was shown to reduce emissions by about 17 MtCO2e per year. “CIMMYT has successfully worked to develop and promote these practices in India,” said M.L. Jat, CIMMYT principal scientist and co-author of the study.
Better water management in rice farming — such as adopting alternate wetting and drying in rice fields that are currently continuously flooded — can offer mitigation of about 12 MtCo2e per year. Other water management techniques in major cereals, such as laser-levelling of fields, or using sprinkler or micro-sprinkler irrigation and fertigation together, also provide important greenhouse gas emissions savings, with a reduction of around 4 MtCO2e per year for laser levelling alone.
This work was jointly carried out by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Aberdeen. Research was funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements.