Kate Dreher, Data Manager at CIMMYT, presents to scientists, technicians, data management and support teams during the training on the Enterprise Breeding System (EBS) in Nairobi, Kenya. (Photo: Susan Umazi Otieno/CIMMYT)
Scientists overseeing breeding, principal technicians and data management and support staff from the International Maize and Wheat Improvement Center (CIMMYT) learned about the Enterprise Breeding System (EBS) at a training in Nairobi, Kenya, on May 4–6, 2022. This was the first in-person training on this advanced tool held in Eastern Africa.
Kate Dreher, Data Manager at CIMMYT, was the primary trainer. Dreher sought to ensure that scientists and their teams are well equipped to confidently use the EBS for their programs, including the creation and management of trials and nurseries. During the training, participants had the opportunity to test, review and give feedback on the system.
“The EBS is an online comprehensive system that brings together different types of data, including field observations and genotypic data, to harmonize processes across all teams and enable optimized decision-making in the short term and continuous learning for the long term,” Dreher said.
She explained that the EBS is more efficient than the former approach of using the Excel-based Maize Fieldbook software, even though it managed several useful processes.
The EBS is currently available to registered breeding and support team members and data managers from CIMMYT, IITA, IRRI and AfricaRice, across all geographies where related programs are implemented. Currently, the EBS is used by programs in maize, rice and wheat crops.
A more streamlined approach
“Although teams sent germplasm and phenotypic data for centralized storage in two databases (IMIS-GMS and MaizeFinder) managed by the data management team in Mexico in the past, this required curation after the data had already been generated,” Dreher said. “The EBS will enable teams to manage their germplasm and trial nursery data directly within one system.”
The EBS stores information on germplasm and linked seed inventory items. It is also designed to house and perform analyses using phenotypic and genotypic data. Users can also capture metadata about their trials and nurseries, such as basic agronomic management information and the GPS coordinates of sites where experiments are conducted.
Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at CIMMYT, observed that the training gave him firsthand information on the current capabilities and use of the live version to search germplasm and seed, and the capabilities to create nurseries and trials.
“In the AGG project, we have one primary objective which focuses on implementing improved data management, experimental designs and breeding methods to accelerate genetic gain and improved breeding efficiency. Therefore, implementing EBS is one of the top priorities for AGG project,” said Yoseph, who leads the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods Project (AGG).
Lourine Bii, an Assistant Research Associate who recently joined CIMMYT and the only female research technician on the Global Maize program based in Kenya, also found the training useful. “The EBS is a fantastic system that enables an individual to create experiments. The system links a team, for instance a product development team, to get live updates on the various stages of creating an experiment, reducing back and forth by email.”
The system’s software development is ongoing. The development team continues to add and enhance features based on feedback from users.
Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)
On April 26–29, 2022, researchers from Nepal participated in a workshop on the use of MARPLE Diagnostics, the most advanced genetic testing methodology for strain-level diagnostics of the deadly wheat yellow rust fungus. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre trained 21 researchers from the Nepal Agricultural Research Council (NARC) and one from iDE. The workshop took place at NARC’s National Plant Pathology Research Centre in Khumaltar, outside the capital Kathmandu.
“The need for new diagnostic technologies like MARPLE and the critical timing of the workshop was highlighted by the severe yellow rust outbreak observed this season in the western areas of Nepal,” commented Dave Hodson, Senior Scientist at CIMMYT and project co-lead. “Having national capacity to detect the increasing threats from yellow rust using MARPLE will be an important tool to help combat wheat rusts in Nepal”.
The yellow rust fungus can cause grain yield losses of 30–80 % to wheat, Nepal’s third most important food crop.
Current diagnostic methods for wheat rust used in Nepal are slow, typically taking months between collecting the sample and final strain identification. They are also costly and reliant on sending samples overseas to highly specialized labs for analysis.
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is the first method to place strain-level genetic diagnostics capability directly into the hands of Nepali researchers, generating data in-country in near-real time, for immediate integration into early warning systems and disease management decisions.
“This is a fantastic opportunity to bring the latest innovations in plant disease diagnostics for the wheat rust pathogens to where they are needed most, in the hands of researchers in the field working tirelessly to combat these devastating diseases,” commented Diane Saunders, Group Leader at the John Innes Centre and project co-lead.
Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)
Suraj Baidya senior scientist and chief of the National Plant Pathology Research Centre at NARC noted the worrying recent geographical expansion of yellow rust in Nepal. “Due to global warming, yellow rust has now moved into the plain and river basin area likely due to evolution of heat tolerant pathotypes. MARPLE Diagnostics now gives us the rapid diagnostics needed to help identify and manage these changes in the rust pathogen population diversity,” he said.
The highly innovative MARPLE Diagnostics approach uses the hand-held MinION nanopore sequencer, built by Oxford Nanopore, to generate genetic data to type strains of the yellow rust fungus directly from field samples.
Beyond MARPLE Diagnostics, Saunders noted that “the workshop has also opened up exciting new possibilities for researchers in Nepal, by providing local genome-sequencing capacity that is currently absent.”
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)
What’s next for MARPLE Diagnostics in Nepal?
Following the successful workshop, Nepali researchers will be supported by CIMMYT and the John Innes Centre to undertake MARPLE Diagnostics on field samples collected by NARC. “The current plan includes monitoring of yellow rust on the summer wheat crop planted at high hill areas and then early sampling in the 2022/23 wheat season,” Hodson noted.
“We were struck by the enthusiasm and dedication of our colleagues to embrace the potential offered by MARPLE Diagnostics. Looking forward, we are excited to continue working with our Nepali colleagues towards our united goal of embedding this methodology in their national surveillance program for wheat rusts,” Saunders remarked.
MARPLE Diagnostics is supported by the Feed the Future Innovation Lab for Current and Emerging Threats to Crops, funded by the United States Agency for International Development (USAID), the UK Biotechnology and Biological Sciences Research Council (BBSRC) Innovator of the Year Award, the CGIAR Big Data Platform Inspire Challenge, the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth and Development Office.
AbduRahman Beshir, CIMMYT seed systems lead, explains the stages of hybrid seed production to postgraduate students at a field trip in Rupandehi, Nepal. (Photo: Bandana Pradhan/CIMMYT)
Recently, a group of 40 postgraduate students from Nepal’s Agriculture and Forestry University (AFU) were able to learn first-hand about hybrid maize seed production in a field site managed by a partner seed company of the International Maize and Wheat Improvement Center (CIMMYT). Bringing in a whole new and rare experience altogether, the students got a glimpse of the progress and challenges of the seed industry as of today.
The field trip followed the development of a revised curriculum for AFU’s Seed Science and Technology program, initiated in November 2019, which stresses the importance of creating linkages between university students and private seed companies. Through the USAID-supported Nepal Seed and Fertilizer (NSAF) project, CIMMYT is working towards enhancing partnerships between agricultural universities and the seed industry, and revisiting the curriculum has been the first stepping stone.
In collaboration with AFU and Lumbini Seed Company, CIMMYT organized an off-campus participatory learning experience to enrich students’ understanding of hybrid seed production initiatives by the private sector and the opportunities that lie in the various business models of Nepalese seed companies. The initiative is part of a concerted effort by CIMMYT and its partners to alleviate the critical limitations of skilled manpower in the industry.
Subash Raj Upadhyaya, managing director of Lumbini Seed Company, shares his experience in hybrid seed production during the field visit. (Photo: Bandana Pradhan/CIMMYT)
A deep dive into hybrid seed
The program began with an on-site briefing on the recent developments of hybrid seed production by the private sector.
“Nowadays, farmers are increasingly demanding hybrid seeds over open-pollinated varieties due to their higher yields,” explained Subash Raj Upadhyaya, Managing Director of Lumbini Seed Company. This seed demand is almost entirely met via imports.
Since 2018, the company has been successful in producing and marketing hybrid maize seed such as Rampur Hybrid-10, a variety originally sourced from CIMMYT and released in Nepal by the National Maize Research Program with technical and financial support from the NSAF project. Going from one hectare to 25 hectares of hybrid maize seed production in the course of three years, Lumbini Seed Company has demonstrated the capability of local private seed companies building up the country’s capacity in this area.
“The collaboration between public and private seed stakeholders is helping Nepal to realize hybrid seed self-reliance in the foreseeable future,” explained AbduRahman Beshir, seed systems lead for the NSAF project at CIMMYT. “What is needed is competitive products augmented by quality seed production and effective marketing strategies.”
Beshir described the important stages of seed production and the components of robust seed systems, while Hari Kumar Shrestha, a seed systems officer at CIMMYT, detailed the requirements for quality seed production and certification of hybrid seeds as per government guidelines in Nepal. Participating students were then able to practice detasseling and roughing off-type plants from a single row in a hybrid maize production field, under the guidance and supervision of the team from CIMMYT and the seed company.
This was followed by an interactive discussion with representatives from Lumbini about their activities, developments and limitations, and a tour of the company’s seed processing, laboratory and storage for the group to observe the techniques used to produce, maintain and market quality seeds.
Postgraduate students observe the tassels of maize plants in Rupandehi, Nepal. (Photo: Bandana Pradhan/CIMMYT)
A nourishing experience
Applying the theoretical learnings of plant breeding and agronomy courses in a practical setting was an eye-opener for the postgraduates.
Student Sadhana Poudyal shared how the event had boosted her confidence in performing critical activities such as identifying the key features of pollen and seed parents. Now majoring in Seed Science and Technology, Poudyal previously worked with the Nepal Agriculture Research Council (NARC) and was granted a scholarship by CIMMYT, through the NSAF project, to begin a postgraduate program in 2019. “I was fascinated to learn about the remarkable progress made in hybrid seed production and I feel motivated to work in this sector in the future,” she said. Poudyal plans to use these learnings during her research into baby corn at NARC after completing her studies.
“I have always been keen on learning plant genetics and breeding as I foresee a good scope in this area,” said Lokendra Singh, another student at AFU. “This trip was definitely insightful, and I thoroughly enjoyed receiving a practical lesson on the advantages and limitations of the various types of hybrids including single and three-way cross hybrids. Today’s experience has doubled my enthusiasm to work as a plant breeder after my graduation.”
It is critical to engage students on the recent advances in seed science so that they are encouraged to pursue a career in agricultural research in Nepal. “One of the major challenges is recruiting a workforce with critical skills and knowledge in the local seed industry since many students go abroad after they graduate,” said Upadhyaya. “We look forward to partnering with agricultural universities for many similar on-site learnings.”
Educational experiences in the field, such as this, provide a better picture of the recent advancements and limitations in the seed sector which are usually not reflected in the textbooks. Creating a larger pool of skillful human resources, particularly in hybrid product development, improved seed production technologies and quality seed production, will not only help strengthen the local seed industry but also reduce the country’s dependency on imports in the coming years.
It was clear to Fatima Camarillo Castillo from a young age that her future was in agriculture. She grew up on a farm in a small village in Zacatecas, Mexico, and recalls working in the fields alongside her father and siblings, helping with the harvests and milking the cows. And every year, her family ran into the same issue with their crops: droughts.
“Sometimes the harvest was okay, but sometimes we didn’t have any harvest at all,” says Camarillo. “For us that meant that, if we didn’t have enough harvest, then for the whole year my mother and father struggled to send us to school.”
But they did send her to school, and instead of escaping the persistent challenges that agriculture had presented her family in her young life, she was determined to solve them. “After elementary school we had to leave the farm to continue our education,” she explains. “I knew about all the challenges that small farmers face and I wanted to have an impact on them.”
To this day, Camarillo believes in the power of education. Her schooling took her all the way to the International Maize and Wheat Improvement Center (CIMMYT), where she is now not only a researcher, but an educator herself. After her extensive study of plant breeding, genetics and wheat physiology, Camarillo gained a master’s degree from the University of Massachusetts, Amherst, and a PhD from Texas A+M University.
She was a part of CIMMYT’s fellowship program while pursuing her doctorate, and she joined the organization’s wheat breeding team shortly afterward. Camarillo now splits her time between wheat research and organizing the training activities for CIMMYT’s Global Wheat Program (GWP) wheat improvement course.
Fatima Camarillo analyzes durum wheat in the field at CIMMYT’s experimental research station in Ciudad Obregón, Mexico. (Photo: CIMMYT)
A special legacy
CIMMYT’s wheat improvement course is an internationally recognized program where scientists from national agricultural research programs (NARS) from around the world travel to CIMMYT Headquarters in Texcoco, Mexico, and then to Ciudad Obregón, for a 16-week training. Participants observe an entire breeding cycle and learn about the latest technologies and systems for breeding.
“A crucial component of having an impact on farmers is establishing good relationships with national programs, where all the germplasm that CIMMYT develops is going to go,” says Camarillo. “But at the same time, these partners need training. They need to know what is behind these varieties and the process for developing them, and we try to keep them updated with the vision, the current technologies and the breeding pipeline.”
The organization’s university-focused training programs are also special to Camarillo for many reasons, having participated in one of them herself. In fact, her first ever exposure to CIMMYT was through the annual Open Doors day which she attended during her first year of university, watching the breeders and scientists that would eventually become her colleagues give talks on germplasm development and distribution.
The courses also give students a chance to see all how their theoretical education can be applied in the real world. “When you are in graduate school you care a lot about data analysis and the most recent molecular tools,” says Camarillo. “But there is something else out there, the real problems outside. By taking the breeding program course you understand these challenges and situations.”
Camarillo remembers being struck by the thought that something that happens in a research station in Mexico can have an impact on the whole world. “CIMMYT cares about how other countries will adopt new varieties, it’s not just about developing germplasm for the sake of it,” she explains. “We’re interested in how new varieties are going to reach the farmers who need them, and for that, training is essential.”
“At the end of the day, these researchers are the ones who will help us evaluate germplasm. If they’re well trained, the efficiency of the whole process will increase.”
Fatima Camarillo (standing, third from the right) in Ciudad Obregón, Mexico, with participants on the GWP’s 2019 training program. (Photo: CIMMYT)
Keeping an eye on the breeding pipeline
With one foot in education and the other in research, Camarillo has a unique perspective on CIMMYT’s strategy for bringing tools and findings out of the lab, and towards the next step in the impact pathway. A key part of her work involves helping to research physiological traits by developing new tools to increase phenotyping efficiency in the breeding pipeline.
In particular, she is working on a project to develop high-throughput phenotyping tools, which use hyperspectral sensors and cameras to measure several traits in plants. This can help reflect how the plant is responding to different stresses internally, and helps physiologists and breeders understand how the plant behaves within a specific environment, and then quickly integrate these traits into the breeding process.
“Overall it increases the efficiency of selection, so farmers will have better materials, better germplasm, and more reliable yield across environments in a shorter period of time,” says Camarillo.
Sharing the recipe for success
Camarillo’s role in both breeding and training speaks to CIMMYT’s historic and proven strategy of working with national programs to effectively deliver improved seeds to the farmers who need them. In addition to developing friendships with trainees from around the world, she is helping CIMMYT to expand its global network of research and agriculture professionals.
As a product and purveyor of a great agricultural education, Camarillo is dedicated to it passing on. “I think we have to invest in education,” she says. “It is the only path to solve the current problems we face, not only in agriculture, but in every single discipline.”
“If we don’t invest and take the time for education, our future is very uncertain.”
Wheat training activities at Toluca station circa 1980. (Photo: CIMMYT)
In 1966, the International Maize and Wheat Improvement Center (CIMMYT) hosted a training event that was unlike any class the students had attended before. The students came from all over the world, the classroom moved between different environments in Mexico, and their teacher was Norman Borlaug. Over the course of 6 months, national agricultural partners, graduate students, and future research leaders from all over the world studied under Borlaug, one of the most famous and impactful agronomists in history.
Since its inception in 1966, the CIMMYT Global Wheat Program (GWP) annual training has hosted more than 1700 scientists from 99 countries. The aim of this program is to improve the breeding skills and research capacity of national partners, research staff and graduate students from countries where wheat is a major staple food crop. Along the way, the researchers expand their professional networks and share experiences in agronomy from around the world.
The CIMMYT GWP training program staff recently caught up with some graduates from the course to find out what their biggest takeaways were from the experience.
Countries of origin of the participants of the CIMMYT Wheat training program from 2013 to 2021 supported by the CGIAR Research Program on Wheat. In this period, 107 female and 224 male scientists have attended this program in Mexico. (Graphic: CIMMYT)
Meet the students
Muhammad Ishaq, a senior research officer working in wheat breeding at the Barani Agricultural Research Station (BARS) in Pakistan participated in the training program in 2019. The most important lesson he brought home was that the success of a wheat breeding program depends on problem-based breeding for target environments. He will always remember the interactions with CIMMYT scientists during his stay in Mexico. “This is a clear example of working together in partnership for global impact,” said Ishaq.
Lezaan Hess, a young academic and plant breeder at Stellenbosch University in South Africa participated in the program in 2019. Lezaan emphasizes the importance of this training in starting her professional career and says she will always remember the hard work and dedication of the CIMMYT wheat breeding teams. “It will keep inspiring me to work hard, stay committed and dedicated, and to collaborate to achieve greater success in the fight against world hunger,” said Hess.
Leezan Hess (left) and Muhammad Ishaq (right) with wheat breeder Julio Huerta Espino during plant selection at the CIMMYT experimental station in Obregon. (Photo: CIMMYT)
Vijay Dalvi, a young professional at DCM Shriram LtD in India, attended the training program in 2013. His biggest takeaway from the training period was improving his knowledge on selecting individual plants in early generations, rust scoring and selecting grains. “The training not only helped us understand wheat breeding, but also showed us how to work in a team,” he said. “I am still replicating CIMMYT’s way of work at my current organization, and am sharing data from CIMMYT trials to discuss ideas.”
Saima Mir, a 2017 participant, currently works as a senior scientist with the Nuclear Institute of Agriculture (NIA) in Pakistan, where two new CIMMYT-derived wheat varieties with tolerance to water-stressed environments were released in 2020. Mir was very enthusiastic about her experience in the training program.
“I wish I would have received this training at the beginning of my research career,” she explained. “[It] was a combo of conventional and highly advanced breeding techniques, lectures and hands-on practice in the laboratories, green houses and in the field.”
Saima Mir poses next to a statue of Norman Borlaug at CIMMYT HQ in Mexico. (Photo: Saima Mir)
Dario Novoselovic, who is now a senior researcher at the Agricultural Institute Osijek in Croatia, attended the wheat training course in 2000. Novoselovic said he particularly enjoyed the immersive nature of the training, saying that it paved the way for his future professional career. “We were among the lucky generations [with] the opportunity to interact with and enjoy the lectures from Dr. Borlaug, you can imagine the kind of feeling and spirit [we had] after his lectures,” he said.
Sundas Waqar, who works as a scientific officer for the National Agriculture Research Centre in Islamabad, Pakistan, recalls the technical training in the CIMMYT program. “The training provided me the opportunity to connect with the world. I got promoted to my current position after completing training at CIMMYT.”
Naresh Kumar, a senior wheat breeding scientist in the Genetics Division at the Indian Agricultural Research Institute (ICAR) in New Delhi, India, took the course in 2019. “I am utilizing all the skills in my research and management activities. Collaboration with CIMMYT scientists is now quite direct and friendly,” he explained. “A key lesson was sharing knowledge and experience with partners across the world.”
A different experience for 2021
This year, CIMMYT’s signature training program looks quite different as both students and trainers navigate challenging travel and safety restrictions due to the pandemic. Since on-site training this year was not possible, GWP decided to continue these capacity building activities as many other schools have: virtually. The 2021 Basic Wheat Improvement Course went online on January 18, and — echoing the spirit of its far-reaching legacy — 68 participants from 21 different countries will still receive training this year.
Esther Wangari Mwangi, a research officer working with the Kenya Agricultural and Livestock Research Organization (KALRO), participates in the the 2021 virtual training. (Photo: CIMMYT)
A new small-mechanization pilot initiative launched in July is equipping farmers with the business and technical skills they need to provide mechanization services to communities in six wards of Masvingo district, Zimbabwe.
With funding from the Swiss Agency for Development and Cooperation (SDC) managed by the United Nations World Food Program (WFP), the International Maize and Wheat Improvement Center (CIMMYT) is leading implementation of the pilot in collaboration with Kurima Machinery and the Zimbabwe Agriculture Development Trust (ZADT), who are supporting the technical training and financial management, respectively.
Anchored on a strong business model, 15 farmers have signed up to become service providers and invested an initial deposit of $500 to access the mechanization package comprising a two-wheel tractor and trailer, a direct planter and a maize cob sheller. Through a “lease-to-own” credit facility, eligible service providers will have 24 months to pay the remaining balance for the set of equipment.
“This approach addresses re-payment challenges in past interventions, where equipment was distributed without a firm commitment from the service providers and without putting in enough effort to establish a viable business,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “An advantage of this new form of financial commitment by the service providers is that it guarantees full participation and a change in their perception towards farming as a business.”
Since 2013, smallholder farmers in Zimbabwe have been exposed to the benefits of combining small-mechanization with conservation farming systems to improve productivity — land preparation, planting and harvesting to achieve higher yields while reducing production costs. Besides making farming tasks more efficient for individuals, this set of equipment can be used to provide critical services to other farmers in their wards.
The two-wheel tractor can have various implements attached to it for services such as planting, transportation and shelling. It can also be used to run other important implements such as water pumps, mills or threshers.
This mechanization pilot therefore presents an additional pathway out of poverty and into sustainable production and income generation at household level, while boosting the local economy and rural employment in Masvingo district.
Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Training for local service provision
Eligible service providers were recently invited to attend a one-week specialized business and technical training course at Gwebi Agricultural College, just outside of Harare. The training package consisted of two main components: business management; and two-wheel tractor operation, maintenance and repair.
Elliot Zvovovo, a participating service provider, explains how the balanced training approach equipped him fully with all the knowledge and skills he needs to run his business. “I learned different ways of record keeping, managing income and treating my clients professionally,” he says.
“On the machinery side, I learned about of all the parts of a two-wheel tractor and practiced assembling the engine so that maintenance and repair will be easy for me.”
Julius Shava, another participating service provider, agrees, adding that knowing how to maintain the two-wheel tractor and troubleshooting will also minimize costs of hiring external mechanics to attend to faults. “I realized the importance of routine checks for oil and water levels, how to crank-start the tractor and hitch the planter all by myself.”
Supporting agricultural extension in line with service providers is critical to mainstreaming transformational change in rural areas. As such, seven local extension officers — key partners in the implementation of small-mechanization activities — were also invited to participate in the training.
“The training proved to be very effective, particularly the emphasis on mastering business principles and on the technical side, integrating service providers’ existing knowledge of conservation farming with small-mechanization,” says Canaan Zhakata, an extension officer for Ward 15.
Through the practical sessions, all service providers have now learned how to operate a two-wheel tractor, calibrate the direct planter for seed and fertilizer rates and use the sheller — giving them full technical skills and knowledge,” explains Dorcas Matangi, a research associate at CIMMYT.
The certification they have received will increase farmers’ confidence as they return to Masvingo to commence service delivery, with continued on-site support from their local extension officers. “Once we return to Masvingo, we can assist the new service providers by monitoring their service delivery to ensure full compliance with the technical requirements for operating the machinery,” says Tsvakai Dumbu, an extension officer for Ward 17.
A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A profitable business for the local economy
This mechanization pilot is poised for success as it draws on existing positive results gained by the women and youth service providers in western Zimbabwe, who are running successful mechanized enterprises following the recently completed Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.
“During a recent seed fair, we heard of a youth group in Makonde that is making up to $7,000 just from maize shelling services,” says Zvovovo. “Knowing that it takes just one day to shell up to three tons of maize with the sheller, I now know that reaching such an income is achievable.”
This pilot will prove that there is scope for small-mechanization to expand on productivity through the two-wheel tractor, trailer and sheller, as shown in other parts of eastern and southern Africa. It will explore leverages on the opportunities and demand for services in Masvingo.
Cover image: An extension officer from Masvingo district drives a two-wheel tractor during a training for service providers and extension officers at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Agriculture is largely feminized in Nepal, where over 80% of women are employed in the sector. As a result of the skills gap caused by male out-migration, many women farmers are now making conscious efforts to learn techniques that can help improve yields and generate greater income — such as balanced fertilizer application — with support from the International Maize and Wheat Improvement Center (CIMMYT).
Studies have shown that many farmers lack knowledge of fertilizer management, but balanced fertilizer application using the right ratio of nutrients is key to helping crops thrive Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT researchers are working towards promoting precision nutrient management through multiple trials and demonstrations in farmers’ fields.
Through this initiative, Dharma Devi Chaudhary, a smallholder farmer from Kailali district, has been able to increase her annual earnings by adopting balanced fertilizer application in cauliflower cultivation — a key cash crop for the winter season in Nepal’s Terai region.
Her inspiration to use micronutrients such as boron came from the results she witnessed during a CIMMYT-supported demonstration conducted on her land in 2018. During the demonstration, Chaudhary learned the principles of the four ‘Rs’ of nutrient stewardship: the right rate, the right time, the right source and the right placement of fertilizers. She became familiar with different types of fertilizer and the amount to be used, as well as the appropriate time and place to apply urea top-dressing, diammonium phosphate (DAP) and muriate of potash (MoP) for optimal utilization by the plant.
Chaudhary also learned how boron application can increase crop yields while helping prevent plant diseases, especially in cauliflower, where boron deficiency can lead to a disorder known as ‘dead heart’ and cause significant yield loss. This is particularly useful knowledge for farmers in Nepal, where the boron content in soil is generally low.
A digital soil map developed by researchers on the NSAF project shows medium-to-high boron deficiency in Kailali district. (Map: CIMMYT)
Benefitting from best practices
Cauliflower is cultivated on 615 hectares of land across Kailali and produces a yield of 15 tons per hectare — far less than the potential yield of 35-40 tons. As a standard practice, farmers in the area have been applying nitrogen, phosphorous and potassium (NPK) at a ratio of 27: 27.6: 9 kilograms per hectare and three tons of farmyard manure per hectare. During a CIMMYT-led demonstration on a small parcel of land, Chaudhary observed that balanced fertilizer application yielded about 64% more than when using her traditional practices, fetching her an income of $180 that season compared to her usual $109.
Following this demonstration, Chaudhary decided to independently cultivate cauliflower on a plot of 500 square meters, where she applied farmyard manure two weeks before transplantation and then used DAP, MOP, boron and zinc as a basal application during transplanting. She also applied urea in split doses, first at 25 days and then 50 days after transplantation. Using this technique, Chaudhary was able to yield 46 tons of cauliflower per hectare, nearly twice as much as was yielded by farmers using traditional practices. As a result, she was able to generate an income increase of $800 for her household, compared to the previous season’s earnings.
“I was able to buy education resources, clothing and more food supplies for my children with the additional income I earned from selling cauliflower last year,” said Chaudhary. “Learning about the benefits of using micronutrients is essential for smallholder farmers like me who are looking for ways to improve their farming business.”
Smallholder farmers tend to be risk averse, which can make technology adoption difficult. However, on-farm demonstrations help reduce the risks farmers perceive and facilitate new technology adoption easily by exhibiting encouraging results.
Chaudhary now serves as a lead farmer at Janasewa Krishak Multi-purpose Cooperative and supports the organization by disseminating knowledge on balanced fertilizer management practices to hundreds of farmers in her community. After seeing the impact of adopting the recommended techniques, the use of balanced fertilizer is reaping benefits for other farmers in her district, helping them achieve better income from higher crop yields and maintain soil fertility in their area.
Dharma Devi Chaudhary (right) stands next to her flourishing cauliflower crop in Kailali, Nepal. (Photo: Uttam Kunwar/CIMMYT)
Post-harvest losses — which can range between 10-20% in major cereals — cause not only the loss of economic value of the food produced, but also the waste of scarce resources such as labor, land, and water, as well as non-renewable resources such as fertilizer and energy.
“High postharvest losses imply reduced grain yield, but with the same total greenhouse gas emission,” says Rabé Yahaya, a CIM/GIZ Integrated Expert working at the International Maize and Wheat Improvement Center (CIMMYT). “Reducing these losses reduces the yield-scaled global warming potential — total greenhouse gas emission per kilogram of grain — and contributes to climate change mitigation, as well as food security.”
A significant proportion of these losses are caused by late harvest due to labor shortages, with crops languishing in the field before farmers can retrieve them. Small and medium-sized machinery may seem like the answer, but many one or two-axe machines are often unable to reach the inner sections of rice and wheat fields because of limited road access, or the fact that they are simply too heavy to carry.
“As mechanized land preparation works outwards, inner fields get ready for harvest first, but without any applicated technical solution,” he explains.
Could motorized scythes be the answer? Yahaya thinks so.
The other scythe
Motorized scythes are hand-operated tools used for mowing grass or reaping crops. Though largely replaced by horse-drawn and tractor-mounted implements, they are still commonly used in some areas of Asia and Europe.
Models specifically adapted for harvesting rice and wheat have been commercially available in Africa for over two decades and currently sell for $150-350, presenting the lowest initial investment cost of all engine-driven solutions on the market. The motor scythe also boasts the lowest harvest cost per hectare and is portable enough to reach inner fields.
Despite its relative affordability, uptake in much of West Africa has been slow, as many farmers have found the 10kg machinery too heavy for sustained use.
“Studies carried out in Benin, Burkina Faso, Cote d’Ivoire and Mali show that this rapid fatigue is caused by incorrect handling of the machinery, including flawed posture,” Yahaya explains. “This is simply because most operators have never undertaken official training for operating the tool.”
In a bid to address this challenge, Yahaya has been collaborating with Elliott Dossou, Sali Atanga Ndindeng and Ernst Zippel — all scientists at AfricaRice — to design and test potential solutions. Their proposal for the development of a Service Provider Harvest (SPH) model has been shortlisted for the GIZ Innovation Fund 2020 award, from a GIZ/BMZ-supported Innovation Fund.
Ernst Zippel, CIM/GIZ Integrated Expert at AfricaRice, presents on the reduction of postharvest losses through correct usage of motor scythes. (Video: AfricaRice)
Cut for service
The approach focuses heavily on capacity development, with an initial nucleus group of trainers taking the lead on activities such as recruiting and contracting service providers, providing training on harvesting and threshing, supporting aftersales services such as machine maintenance and repair, and helping to determine the optimum harvest time.
Under the proposed model, each trainer will be responsible for a group of around 50 service providers, who will receive guidance on understanding their role, finance, creating a network of client farmers, machine maintenance and use.
In addition to the financial rewards and aftersales services, the training opportunities will make this technology accessible to young entrepreneurs in rural areas. Earning up to $18 a day for harvesting and weeding services, those using the tool can expect to see a return on their initial investment in one to two months.
“Young people are the main prospective clients for this initiative,” says Yahaya. “With the motor scythe and related training, they can start earning serious money.” He stresses, however, that all farmers – regardless of age or gender – will be able to benefit from the job creation opportunities this initiative provides.
The initiative has been shortlisted for the GIZ Innovation Fund 2020. If selected, funding from the accelerator program would support testing, the integration of GPS sensors into the tools, creation of a platform for bank security and Carbon Credit earning, other technical activities.
When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.
But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.
Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.
“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.
At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
Back to school
A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.
The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”
In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.
The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.
After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.
“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”
CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”
Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
Learning by doing
A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.
But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”
Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”
Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.
Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”
Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.
“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”
Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the government’s Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.
“I wasn’t able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,” said Pavitra, a farmer from Sindhupalchowk district, Nepal.
The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production — estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.
This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.
Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.
The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.
Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)
Gearing up to fight the very hungry caterpillar
In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.
In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.
In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.
“Before, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,” said Urmila Banjgayu, a lead farmer who participated in one of the trainings. “I am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.”
Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.
Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)
Fall armyworm awareness campaign
Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.
CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.
Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.
“Seamless collaboration is required among the major stakeholders in the country to collectively fight the pest,” said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. “The potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.”
Hundreds of agricultural professionals in Bangladesh were trained in the latest fall armyworm management strategies as part of a new project that will strengthen efforts against this threat to farmers’ income, food security, and health. The new project, Fighting Back Against Fall Armyworm, is supported by USAID and the University of Michigan.
As part of the project, last November over 450 representatives from government, nonprofits and the private sector participated in three-day training to learn how to identify, monitor and apply integrated pest management approaches.
Fall armyworm presents an important threat to farmers’ income, food security and livelihoods as it continues to spread across the country, in addition to health risks if toxic insecticides are indiscriminately used, said Tim Krupnik, senior scientist and agronomist at the International Maize and Wheat Improvement Center (CIMMYT). It is anticipated the course participants will pass on knowledge about the pest and appropriate control practices to around 30,000 farmers in their respective localities.
“Participants were selected for their ability to reliably extend the strategies that can be sustainably implemented by maize farmers across the country,” explained Krupnik. “The immersive training saw participants on their hands and knees learning how to scout, monitor and collect data on fall armyworm,” he said. “They were also trained in alternatives to toxic chemical pesticides, and how and when to make decisions on biological control with parasitoids, bio-pesticides, and low-toxicity chemical pesticide use.”
Following its ferocious spread across Africa from the Americas, fall armyworm first attacked farms in Bangladesh during the winter 2018-2019 season. Combined with highly apparent damage to leaves, its resilience to most chemical control methods has panicked farmers and led researchers to promote integrated pest management strategies.
In this context, the 22-month Fighting Back Against Fall Armyworm project will build the capacity of the public and private sector for effective fall armyworm mitigation.
The hungry caterpillar feeds on more than 80 plant species, but its preferred host is maize — a crop whose acreage is expanding faster than any other cereal in Bangladesh. The pest presents a peculiar challenge as it can disperse over 200 kilometers during its adult stage, laying thousands of eggs along its way.
Once settled on a plant, larvae burrow inside maize whorls or hide under leaves, where they are partially protected from pesticides. In a bid to limit fall armyworm damage, farmers’ indiscriminate application of highly toxic and inappropriate insecticides can encourage the pest to develop resistance, while also presenting important risks to beneficial insects, farmers, and the environment.
Reaching every corner of the country
Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)
As part of the project, CIMMYT researchers supported Bangladesh’s national Fall Armyworm Task Force to develop an online resource to map the spread of fall armyworm. Scientists are working with the Ministry of Agriculture to digitally collect real-time incidents of its spread to build evidence and gain further insight into the pest.
“Working with farmers and agricultural agencies to collect information on pest population and incidence will assist agricultural development planners, extension agents, and farmers to make informed management decisions,” said Krupnik, who is leading the project.
A key objective is to support national partners to develop educational strategies to facilitate sustainable pest control while also addressing institutional issues needed for efficient response.
“In particular, the Government of Bangladesh has been extremely responsive about the fall armyworm infestation and outbreak. It developed and distributed two fact sheets — the first of which was done before fall armyworm arrived — in addition to arranging workshops throughout the country. Initiatives have been taken for quick registration of microbial pesticides and seed treatments,” commented Syed Nurul Alam, Entomologist and Senior Consultant with CIMMYT.
“It is imperative that governmental extension agents are educated on sustainable ways to control the pest. In general, it is important to advise against the indiscriminate use of pesticides without first implementing alternative control measures, as this pest can build a resistance rendering many chemicals poorly effective,” Krupnik pointed out.
To this end, the project also consciously engages members of the private sector — including pesticide and seed companies as well as agricultural dealers — to ensure they are able to best advise farmers on the nature of the pest and suggest sustainable and long-term solutions. To date, the project has advised over 755 agricultural dealers operating in impacted areas of Bangladesh, with another 1,000 being trained in January 2020.
Project researchers are also working alongside the private sector to trial seed treatment and biologically-based methods of pest control. Biocontrol sees researchers identify, release, and manage natural predators and parasitoids to the fall armyworm, while targeted and biologically-based pesticides are significantly less of a health risk for farmers, while also being effective.
The 22-month project, funded by USAID, has 6 key objectives:
Develop educational materials to aid in reaching audiences with information to improve understanding and management of fall armyworm.
Assist the Department of Agricultural Extension in deploying awareness raising and training campaigns.
Prepare the private sector for appropriate fall armyworm response.
Standing task force supported.
Generate data and evidence to guide integrated fall armyworm management.
The Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.
To achieve synergies and scale, the project will also be supported in part by in-kind staff time and activities, through linkages to the third phase of the USAID-supported Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Centre (CIMMYT). CSISA and CIMMYT staff work very closely with Bangladesh’s Department of Agricultural Extension and the Bangladesh Maize and Wheat Research Institute (BWMRI) in addition to other partners under the Ministry of Agriculture.
Training attendees outside the Rift Valley Hotel in Adama, Ethiopia. (Photo: CIMMYT)
From July 22–26, the Stress Tolerant Maize for Africa (STMA) project organized a training in Adama, Ethiopia to update maize technicians on recent developments in maize research, data collection and seed production. The training was designed to stimulate good breeding programs, good data collection in trial and nurseries, production of better quality seed and development of improved varieties. Around 25 trainees attended, mainly from maize breeding research centers. Similar trainings were conducted in all STMA project countries over the last three and a half years.
CIMMYT staff from Ethiopia, Kenya and Zimbabwe and staff from the Ethiopian Institute of Agricultural Research (EIAR) Bako Research Center delivered training on methodologies and gave practical demonstrations on tablets. Presentations focused on the origin and botany of the maize plant, constraints to maize production in Ethiopia, data collection, breeding for abiotic stresses, new tools for phenotyping, maize lethal necrosis (MLN), and seed quality control.
Mandefro Nigussie, Director General of EIAR, said that the training was important because it addressed data collection. “If we are missing the data, we are missing the investment of the country,” he noted. He recognized CIMMYT’s culture in empowering research centers through trainings. The role of EIAR is to generate, test, disseminate and scale technologies. Therefore, having technicians who are aware of the recent developments in their areas is crucial.
Cosmos Magorokosho, maize breeder and STMA project leader, said that the core components of the training were to give technicians a strong understanding of the basics of maize and the physiology of maize plant. The knowledge they gained from this training will support them during data collection and when breeding for resistance to diseases and pests and improved seed production.
Upon completing five days training, all trainees received certificates along with the presentations and other relevant documents for future reference. CIMMYT maize breeder Dagne Wegary said he appreciated the active participation and dedication of the trainees and the interest they showed to improve their knowledge and skills. He reminded them that this is the start of a long journey and they will have to use the knowledge and skills gained to help farmers produce more and ensure food security. Trainees reflected that the training increased their existing knowledge in maize breeding and helped them to understand the current developments in the area. They said they would directly apply what they have learned and transfer the knowledge to other colleagues working in maize breeding.
NJORO, Kenya (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Kenya Agricultural & Livestock Research Organization (KALRO) and Cornell University, recently trained 29 scientists from 13 countries on wheat rust disease diagnosis and management techniques, as well as innovative wheat breeding practices. The training, part of the Delivering Genetic Gains in Wheat (DGGW) project, took place on October 1-9, 2018, at the KALRO research station in Njoro, Kenya, where CIMMYT’s wheat breeding and rust screening facility is located.
More than 200 scientists have increased their capacity at these annual trainings since CIMMYT started organizing them ten years ago. The trainings focus particularly on studying resistance to black (stem) rust, yellow (stripe) rust and brown (leaf) rust. Future wheat champions in national agricultural research systems (NARS) get new skills on innovative and cost-effective wheat breeding. These trainings are also a chance for CIMMYT’s Global Wheat Program to establish new partnerships and to collaborate on emerging challenges related to wheat breeding in different farming regions.
“The focus of this year’s event was to train the scientists on how to identify and record notes for stem rust occurrences and how to evaluate wheat material in the field, to better understand how wheat rust pathogens keep evolving,” said Mandeep Randhawa, wheat breeder and wheat rust pathologist at CIMMYT.
Robert McIntosh from University of Sydney’s Plant Breeding Institute demonstrates stem rust inoculation using a syringe. (Photo: KALRO)
CIMMYT scientist Mandeep Randhawa indicates exact wheat plant stage for stem rust inoculation during the wheat stem rust training. (Photo: KALRO)
CIMMYT scientist Mandeep Randhawa explains trainees early booting stage for stem rust inoculation. (Photo: KALRO)
Participants of the wheat stem rust training pose for a group photograph. (Photo: KALRO)
Participants of CIMMYT’s annual wheat improvement training in Njoro, Kenya, attend a class session. (Photo: KALRO)
Despite its importance for global food security and nutrition, wheat remains susceptible to endemic and highly destructive rust diseases which can lead to 60-100 percent yield losses. Developing and distributing rust resistant wheat varieties is regarded as the most cost-effective and eco-friendly control measure, especially in developing countries, where the majority are resource-poor smallholder farmers with no access to fungicides to control the disease.
As a global leader in wheat and maize breeding systems, CIMMYT has sustained efforts to develop high-yielding, disease-resistant and stress-tolerant varieties. In partnership with KALRO, CIMMYT identified and released over 15 commercial wheat varieties since the establishment of the stem rust screening facility in Njoro in 2008. Despite the appearance of new devastating strains of stem rust over the period, most of these released wheat varieties are high-yielding with stem rust resistance, according to Randhawa.
“Adequate management practices, including timely planting and application of right fungicides, have kept some of the high-yielding varieties such as Kenya Korongo and Eagle10 in production,” Randhawa explained.
Several high-yielding rust resistant wheat lines are in pipeline for national evaluation to release as wheat varieties in Kenya, he said.
The development of a portable, real-time diagnostics tool for wheat yellow rust, namely the Mobile and Real-time Plant DisEase Diagnostics (MARPLE) was another breakthrough in identifying and combating wheat rust. This mobile plant health diagnosis tool helps identify rust strains in three days instead of months. This is a game changer for the wheat sector, as rust control measures could be deployed before new rust becomes a large-scale epidemic. Led by senior scientist David Hodson, MARPLE is the result of the collaboration between CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and the John Innes Centre. There are plans to scale up this innovation in Ethiopia, where it is expected to provide five million wheat farmers a lifeline to control wheat yellow rust.
At the training, participants such as Zafar Ziyaev from Uzbekistan, were glad to gain deeper understanding on how to use modern tools for rust surveillance and the control measures. Others acknowledged the importance of sensitizing and supporting farmers to grow rust-resistant wheat varieties.
Emeritus Professor Robert McIntosh, one of the trainers from the Plant Breeding Institute at the University of Sydney, acknowledged the need for wheat scientists to remain vigilant on rust outbreaks globally and the evolving nature of the pathogens.
“As rust pathogens spread from country to country and region to region, such trainings allow national scientists to learn about the need for constant awareness, the basic principles of epidemiology and genetics that provide the basis of breeding for durable resistance, and what the Njoro rust testing platform can offer to the NARS,” McIntosh said.
Researchers take part in Wheat Blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)
Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.
Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.
Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.
Workshop participants learned how to use the latest in technology to identify and keep track of the deadly Wheat Blast disease. Photo: CIMMYT archives.
“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”
Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).
“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.
The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).
Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”
With backing from leading international donors and scientists, nine South Asia wheat researchers recently visited the Americas for training on measures to control a deadly and mysterious South American wheat disease that appeared suddenly on their doorstep in 2016.
Trainees at the CAICO farm in Okinawa, Bolivia. Photo: CIMMYT archives
Known as “wheat blast,” the disease results from a fungus that infects the wheat spikes in the field, turning the grain to inedible chaff. First sighted in Brazil in the mid-1980s, blast has affected up to 3 million hectares in South America and held back the region’s wheat crop expansion for decades.
In 2016, a surprise outbreak in seven districts of Bangladesh blighted wheat harvests on some 15,000 hectares and announced blast’s likely spread throughout South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and nearly a billion inhabitants eat wheat.
“Most commercially grown wheat in South Asia is susceptible to blast,” said Pawan Singh, head of wheat pathology at the International Maize and Wheat Improvement Center (CIMMYT), an organization whose breeding lines are used by public research programs and seed companies in over 100 countries. “The disease poses a grave threat to food and income security in the region and yet is new and unknown to most breeders, pathologists and agronomists there.”
As part of an urgent global response to blast and to acquaint South Asian scientists with techniques to identify and describe the pathogen and help develop resistant varieties, Singh organized a two-week workshop in July. The event drew wheat scientists from Bangladesh, India, Nepal and Mexico, taking them from U.S. greenhouses and labs to fields in Bolivia, where experimental wheat lines are grown under actual blast infections to test for resistance.
The training began at the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Foreign Disease-Weed Science Research facility at Fort Detrick, Maryland, where participants learned about molecular marker diagnosis of the causal fungus Magnaporthe oryzae pathotype triticum (MoT). Sessions also covered greenhouse screening for blast resistance and blast research conducted at Kansas State University. Inside Level-3 Biosafety Containment greenhouses from which no spore can escape, participants observed specialized plant inoculation and disease evaluation practices.
The group then traveled to Bolivia, where researchers have been fighting wheat blast for decades and had valuable experience to share with the colleagues from South Asia.
“In Bolivia, workshop participants performed hands-on disease evaluation and selection in the field—an experience quite distinct from the precise lab and greenhouse practicums,” said Singh, describing the group’s time at the Cooperativa Agropecuaria Integral Colonias Okinawa (CAICO), Bolivia, experiment station.
Other stops in Bolivia included the stations of the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), Asociación de Productores de Oleaginosas y Trigo (ANAPO), Centro de Investigación Agrícola Tropical (CIAT), and a blast-screening nursery in Quirusillas operated by INIAF-CIMMYT.
“Scientists in South Asia have little or no experience with blast disease, which mainly attacks the wheat spike and is completely different from the leaf diseases we normally encounter,” said Prem Lal Kashyap, a scientist at the Indian Institute of Wheat and Barley Research (IIWBR) of the Indian Council of Agricultural Research (ICAR), who took part in the training. “To score a disease like blast in the field, you need to evaluate each spike and check individual spikelets, which is painstaking and labor-intensive, but only thus can you assess the intensity of disease pressure and identify any plants that potentially carry genes for resistance.”
After the U.S.A. and Bolivia, the South Asia scientists took part in a two-week pathology module of an ongoing advanced wheat improvement course at CIMMYT’s headquarters and research stations in Mexico, covering topics such as the epidemiology and characterization of fungal pathogens and screening for resistance to common wheat diseases.
Gary Peterson (center), explaining wheat blast screening to trainees inside the USDA-ARS Level-3 Biosafety Containment facility. Photo: CIMMYT archives
The knowledge gained will allow participants to refine screening methods in South Asia and maintain communication with the blast experts they met in the Americas, according to Carolina St. Pierre who co-ordinates the precision field-based phenotyping platforms of the CGIAR Research Program on Wheat.
“They can now also raise awareness back home concerning the threat of blast and alert farmers, who may then take preventative and remedial actions,” Singh added. “The Bangladesh Ministry of Agriculture has already formed a task force through the Bangladesh Agricultural Research Council (BARC) to help develop and distribute blast resistant cultivars and pursue integrated agronomic control measures.”
The latest course follows on from a hands-on training course in February 2017 at the Wheat Research Center (WRC) of the Bangladesh Agricultural Research Institute (BARI), Dinajpur, in collaboration with CIMMYT, Cornell University, and Kansas State University.
Participants in the July course received training from a truly international array of instructors, including Kerry Pedley and Gary Peterson, of USDA-ARS, and Christian Cruz, of Kansas State University; Felix Marza, of Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF); Pawan Singh and Carolina St. Pierre, of CIMMYT; Diego Baldelomar, of ANAPO; and Edgar Guzmán, of CIAT-Bolivia.
Funding for the July event came from the Bangladesh Agricultural Research Institute (BARI), the Indian Council of Agricultural Research (ICAR), CIMMYT, the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation (through the Cereal Systems Initiative for South Asia), the Australian Centre for International Agricultural Research (ACIAR), and the CGIAR Research Program on Wheat.