Skip to main content

Tag: Sustainable Development Goals (SDG)

The Sustainable Development Goals or Global Goals are a collection of 17 interlinked goals designed to be a “blueprint to achieve a better and more sustainable future for all”. The SDGs were set in 2015 by the United Nations General Assembly and are intended to be achieved by the year 2030.
https://sdgs.un.org/goals

CIMMYT and WorldVeg strengthen collaboration in the midst of the climate crisis to increase their impact

On December 9, 2023, CIMMYT and the World Vegetable Center (WorldVeg) signed a memorandum of understanding (MoU) to further promote research and development, capacity strengthening activities and facilitate joint learning and the exchange of information and technology between the two organizations.

Sustainable diversification of food systems, good agricultural practices and safe and sustainable development of cereal and vegetable production systems and agrifood value chains sits at the core of this partnership.

The ultimate objective of the MoU is to further contribute to the achievement of the Sustainable Development Goals (SDGs), in particular SDG1 and SDG2, enhancing food and nutrition security, reducing rural and urban poverty and increasing employment opportunities in particular for women and youth.

CIMMYT and the World Vegetable Center are already partners in the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I).  Through this program, it is distributing seed kits directly to vulnerable populations such as pregnant and lactating mothers and children under five, as well as improving soil health, promoting the production of traditional African vegetables, and increasing employment opportunities through building vegetable businesses. Recent impacts in Zanzibar are a good example.

Bram Govaerts, director general of CIMMYT, and Marco Wopereis, director general of the World Vegetable Center, sign the MoU. (Photo: CIMMYT and WorldVeg)

“This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being. We are building on the foundation already established by our collaborations within the Accelerated Innovation Delivery (AID-I) project in southern and eastern Africa,” said CIMMYT Director General, Bram Govaerts. “CIMMYT is excited to expand our connection with WorldVeg to bring innovations to even more people as crop diversification encourages improved nutrition.”

“The World Vegetable Center is proud to deepen our work with CIMMYT. Reaching the Sustainable Development Goals will require not only advanced technologies but also systems to deliver those innovations to the people that need them most and this partnership will enable both priorities,” said Director General of the World Vegetable Center, Marco Wopereis. “Promoting and enhancing the availability of nutritious vegetables and cereals are vital to achieving these aims.”

By providing farmers with more options, CIMMYT and WorldVeg will promote the cultivation of diverse crops that are essential for a balanced and nutritious diet particularly among vulnerable communities around the world. By raising awareness about the significant benefits of incorporating different vegetables and cereals into daily diets, the partnership will inspire and encourage millions of people to fully embrace diversification and improved nutrition.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources. For more information, visit cimmyt.org.

About the World Vegetable Center

The World Vegetable Center (WorldVeg) is an international non-profit institute for vegetable research and development. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods.

WorldVeg’s globally important genebank, improved varieties, production and postharvest methods help farmers to increase their vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities. With headquarters in Taiwan, field operations are led from regional centers in Benin, India, Mali, Tanzania and Thailand, and through offices in other key countries.

Research local: co-creation generates novel options to tackle global problems

The United Nations Sustainable Development Goals (SDG) are broad mandates for transitioning to fair and sustainable agrifood systems. However, because of their global view, they often operate at a scale not clearly seen or understood by local stakeholders.

New research led by the International Maize and Wheat Improvement Center (CIMMYT) scientists offers participatory action research (PAR) as a potential bridge between the macro scope of the SDGs and the needs and desires of local communities.

The article, Participatory action research generates knowledge for Sustainable Development Goals, published in the June 2023 issue of Frontiers in Ecology and the Environment, examines two decades of participatory action research activities in Malawi, a highly rural society dependent on rainfed agriculture.

Trying out conservation agriculture wheat rotation alongside conventionally grown maize, farmer’s field, Mexico. (Photo: E. Phipps/CIMMYT)

“Participatory research is known for giving voice to farmers, for accelerating adaptation and for impact,” said lead author Sieglinde Snapp, director of the Sustainable Agrifood Systems program at CIMMYT. “What is novel in this study is that new discoveries were documented, showing the scientific contributions possible through PAR.”

Co-creation

Participatory action research is a knowledge generation process, characterized by a series of steps to facilitate improved understanding and development of innovations, within a local context. The PAR approach involves engaging stakeholders, to co-create solutions with researchers.

Because knowledge is often local, access to natural resources is highly heterogeneous, climate variability is unpredictable and socioeconomic circumstances are context-dependent, any intervention must be flexible and locally specific to ensure sustainability.

PAR prioritizes empowerment of marginalized communities to build long-term partnerships which support transformational changes at local, regional and national levels.

Yet the evidence base for PAR methodology remains fragmented and is often inaccessible.

“This is the first paper that shows how action research produces new knowledge through a systematic, iterative process that derived ‘middle ways’, such as shrubby food crops as a farmers preferred form of agroforestry,” said Snapp.

Solving wicked problems

Participatory research is well-suited to address conflicts and trade-offs that are key aspects of so-called wicked problems. For instance, annual crops—maize and soybean—are excellent producers of food but feature limited aboveground vegetation and belowground activity to regenerate soil nutrients, while perennials provide soil regeneration services but no food products.

By engaging closely with local stakeholders, PAR identifies “goldilocks options,” or middle ways, such as semi-perennial shrubs and vines that produce food while also promoting soil health.

Genetic and agronomic improvement efforts have almost entirely overlooked semi-perennial plant types to address food–soil trade-offs.

Challenges

Building relationships between researchers and stakeholders; the investment required in selecting representative sites, action learning activities, synthesis of findings, communication and documentation; and the inherent variability of research conducted under real-world conditions are barriers to establishing PAR systems. Living laboratories and education on PAR approaches need investment. Reward structures may need to shift, with greater attention to considering research impact on SDGs and awareness that time lags may occur in publishing scientific findings through PAR.

Demonstrating conservation agriculture to other farmers in Malawi. (Photo: T. Samson/CIMMYT)

“Our findings detailing the efficacy of PAR shows that the potentially high upfront costs to invest in relationship building and learning across disciplines, this is a worthwhile trade-off,” said Snapp.

Through PAR, human condition and social-science questions can be addressed, along with biological and environmental science questions, as illustrated in this Malawian case study.

The findings generated by PAR have relevance beyond the sub-Saharan Africa context because they provide new insights into the development of nature-based solutions that meet local needs, a critical requirement for rural communities in many parts of the globe.

Science and partnerships are critical to reach G7 food security goals

Miguel Ezequiel May Ic, San Felipe Orient, Quintana Roo (Photo: Peter Lowe/CIMMYT)

In a world where more than 800 million women, men, and children still go hungry, the International Maize and Wheat Improvement Center (CIMMYT) offers proven science and formidable partnerships to help achieve the recently stated ambitions of prosperous nations for global food security and nutrition.

Meeting in Hiroshima, Japan, the weekend of 19 May 2023, the grouping of seven wealthy nations known as the G7 released a public statement recognizing that the world faces the highest risk of famine in a generation and the need of working together to build more resilient, sustainable, and inclusive agriculture and food systems.

“Realizing resilient global food security and nutrition for all is our shared goal for a better future for each human being,” reaffirmed the leaders of Japan, Australia, Brazil, Canada, Comoros, the Cook Islands, France, Germany, India, Indonesia, Italy, the Republic of Korea, the United Kingdom, the United States of America, Vietnam, and the European Union, in a joint statement.

The six-page statement lays out detailed actions, policy goals, and partnerships to respond to the immediate food security crisis, in which more than 250 million persons in 58 countries need emergency food assistance, as well as preparing for and preventing future crises.

Research with impacts for marginalized, small-scale farmers

Recognizing the key role of applied research to boost food production while addressing climate shocks, the leaders advocated promoting climate-smart agriculture, including “…agro-ecological, nature-based solutions and ecosystem based approaches and other innovative approaches as appropriate, drawing on the knowledge and evidence base developed by the FAO, IFAD and CGIAR.”

Established in 1971, CGIAR is a global partnership dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources. A founding member and leader in CGIAR, CIMMYT is responsible for major impacts in the productivity of two key food crops, according to Bram Govaerts, director general of CIMMYT.

Celia Agustina Magaña Magaña in her milpa field (Photo: Peter Lowe/CIMMYT)

“Maize and wheat together sustain billions of people worldwide, providing around a fifth of humanity’s nutritional protein and carbohydrates, generating nearly $50 billion in trade each year, and covering 400 million hectares of land — that’s approximately one quarter of the world’s farmland,” said Govaerts. “We stand ready to support G7 efforts.”

“Fully half of the maize and wheat varieties grown in low- and middle-income countries carry CIMMYT breeding contributions,” Govaerts explained. “This and our research on more productive and efficient farming methods for those crops generate approximately $3.5-4 billion each year in enhanced benefits to farmers and consumers.”

As part of its decades-long cropping systems research, CIMMYT has studied and promoted conservation agriculture, a soil- and water-saving approach involving reduced tillage, keeping a cover of crop residues, and growing multiple crops together or in rotations. This approach has become highly relevant for farmers in places such as South Asia, where rising temperatures and fresh water scarcities threaten more than 13 million hectares of crop production. As part of its “cropping systems” approach, CIMMYT has diversified its expertise to groundnut, pigeon pea, chickpea, pearl millet and sorghum, with a strong focus on nutrition and resilience, while maintaining the Center’s foundational work in seed production and seed marketing systems.

The G7 statement cites the importance of dryland cereal and legume crops in settings such as sub-Saharan Africa and South Asia, and CIMMYT has undertaken initiatives to improve the livelihoods of small-scale producers and consumers of sorghum, groundnut, cowpea, common beans, and millets. Among other things, the work generates and shares data on the performance and the availability of seed of improved varieties of those crops.

CIMMYT is co-leading the CGIAR initiative Digital Innovation, which is working across 13 countries in Africa, Asia, and Latin America to improve the quality of information systems and strengthen local capacities to realize the potential of digital technologies, thereby boosting small-scale farmers’ adoption of better practices, their incomes, and their resilience to climate shocks, while reducing the gender gap and managing food system risks.

Partner connections and funding power success

These impacts would not have been possible without CIMMYT’s longstanding, effective relationships with hundreds of public and private partners worldwide, a number of which are mentioned in the G7 statement, as well as the global reach of the jointly-generated, freely-shared knowledge from those collaborations, according to Govaerts.

Isaiah Nyagumbo inspects a maize ear at the Chimbadzwa plot (Photo: Shiela Chikulo/CIMMYT)

“A 2022 study in Nature Scientific Reports showed that the Center’s climate science, associated with some 90% of its research, appears on academic and research platforms as well as in social media and government and international organization websites across the Global North and South, contributing to the decolonization of science and the democratization of scientific debates,” he said.

CIMMYT partnerships with and support for private seed producers and dealers have helped fuel the adoption and spread of drought tolerant maize varieties in Africa. A 2021 study shows that, during 1995-2015, nearly 60% of all maize varieties released in 18 African countries came from research by CIMMYT or the International Institute of Tropical Agriculture (IITA), bringing yearly benefits as high as $1.05 billion and gaining mention in a blog by Bill Gates.

Regarding support for CIMMYT’s work from prosperous nations, including several G7 members, the Center receives generous investments on the order of $170 million each year from diverse funders including the Bill & Melinda Gates Foundation, the US Agency for International Development (USAID), Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, the government of Mexico, and CGIAR.

The UN Food Systems Summit has arrived

On September 23, 2021, the United Nations is convening a Food Systems Summit (UNFSS) as part of the Decade of Action to achieve the Sustainable Development Goals (SDGs) by 2030. The Summit will launch bold new actions to deliver progress on all 17 SDGs, each of which relies in part on healthier, more sustainable and equitable food systems.

According to the UN, the term “food system” encompasses every person and every process involved in growing, raising or making food, and getting it into your stomach. The health of our food systems profoundly affects the health of our bodies, as well as the health of our environment, our economies and our cultures. When they function well, food systems have the power to bring us together as families, communities and nations.

As the world’s largest public agricultural research network, CGIAR has made invaluable contributions to global efforts to reach these 17 goals.  CIMMYT plays an important role in these efforts.

Throughout September, in recognition of the historic UN Summit, we are highlighting the impact of CIMMYT research to attain the SDGs, in collaboration with the broader CGIAR and development community.

From conservation agriculture to reaching women and marginalized communities, we hope these social media snapshots help you discover the vast experience, capacity and impact of our research.

Take action

Help us share CIMMYT’s social media messages for the Food Systems Summit.

CIMMYT’s social media toolkit for the Food Systems SummitRegister for the Food Systems Summit and join the conversation online using #FoodSystems4SDGs.

Follow CIMMYT on social media: Facebook, Twitter, LinkedIn, Instagram, YouTube, Flickr, SlideShare.

Cover photo: Across the globe, maize and wheat make up a large part of human diets and are an integral element of a healthy and sustainable food system. (Photo: A. Cortés/CIMMYT)

Protecting plants will protect people and the planet

This story was originally published on the Inter Press Service (IPS) website.

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Back-to-back droughts followed by plagues of locusts have pushed over a million people in southern Madagascar to the brink of starvation in recent months. In the worst famine in half a century, villagers have sold their possessions and are eating the locusts, raw cactus fruits, and wild leaves to survive.

Instead of bringing relief, this year’s rains were accompanied by warm temperatures that created the ideal conditions for infestations of fall armyworm, which destroys mainly maize, one of the main food crops of sub-Saharan Africa.

Drought and famine are not strangers to southern Madagascar, and other areas of eastern Africa, but climate change bringing warmer temperatures is believed to be exacerbating this latest tragedy, according to The Deep South, a new report by the World Bank.

Up to 40% of global food output is lost each year through pests and diseases, according to FAO estimates, while up to 811 million people suffer from hunger. Climate change is one of several factors driving this threat, while trade and travel transport plant pests and pathogens around the world, and environmental degradation facilitates their establishment.

Crop pests and pathogens have threatened food supplies since agriculture began. The Irish potato famine of the late 1840s, caused by late blight disease, killed about one million people. The ancient Greeks and Romans were well familiar with wheat stem rust, which continues to destroy harvests in developing countries.

But recent research on the impact of temperature increases in the tropics caused by climate change has documented an expansion of some crop pests and diseases into more northern and southern latitudes at an average of about 2.7 km a year.

Prevention is critical to confronting such threats, as brutally demonstrated by the impact of the COVID-19 pandemic on humankind. It is far more cost-effective to protect plants from pests and diseases rather than tackling full-blown emergencies.

One way to protect food production is with pest- and disease-resistant crop varieties, meaning that the conservation, sharing, and use of crop biodiversity to breed resistant varieties is a key component of the global battle for food security.

CGIAR manages a network of publicly-held gene banks around the world that safeguard and share crop biodiversity and facilitate its use in breeding more resistant, climate-resilient and productive varieties. It is essential that this exchange doesn’t exacerbate the problem, so CGIAR works with international and national plant health authorities to ensure that material distributed is free of pests and pathogens, following the highest standards and protocols for sharing plant germplasm. The distribution and use of that germplasm for crop improvement is essential for cutting the estimated 540 billion US dollars of losses due to plant diseases annually.

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations. Human-driven climate change is the challenge of our time. It poses grave threats to agriculture and is already affecting the food security and incomes of small-scale farming households across the developing world.

We need to improve the tools and innovations available to farmers. Rice production is both a driver and victim of climate change. Extreme weather events menace the livelihoods of 144 million smallholder rice farmers. Yet traditional cultivation methods such as flooded paddies contribute approximately 10% of global man-made methane, a potent greenhouse gas. By leveraging rice genetic diversity and improving cultivation techniques we can reduce greenhouse gas emissions, enhance efficiency, and help farmers adapt to future climates.

A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)

We also need to be cognizant that gender relationships matter in crop management. A lack of gender perspectives has hindered wider adoption of resistant varieties and practices such as integrated pest management. Collaboration between social and crop scientists to co-design inclusive innovations is essential.

Men and women often value different aspects of crops and technologies. Men may value high yielding disease-resistant varieties, whereas women prioritize traits related to food security, such as early maturity. Incorporating women’s preferences into a new variety is a question of gender equity and economic necessity. Women produce a significant proportion of the food grown globally. If they had the same access to productive resources as men, such as improved varieties, women could increase yields by 20-30%, which would generate up to a 4% increase in the total agricultural output of developing countries.

Practices to grow healthy crops also need to include environmental considerations. What is known as a One Health Approach starts from the recognition that life is not segmented. All is connected. Rooted in concerns over threats of zoonotic diseases spreading from animals, especially livestock, to humans, the concept has been broadened to encompass agriculture and the environment.

This ecosystem approach combines different strategies and practices, such as minimizing pesticide use. This helps protect pollinators, animals that eat crop pests, and other beneficial organisms.

The challenge is to produce enough food to feed a growing population without increasing agriculture’s negative impacts on the environment, particularly through greenhouse gas emissions and unsustainable farming practices that degrade vital soil and water resources, and threaten biodiversity.

Behavioral and policy change on the part of farmers, consumers, and governments will be just as important as technological innovation to achieve this.

The goal of zero hunger is unattainable without the vibrancy of healthy plants, the source of the food we eat and the air we breathe. The quest for a food secure future, enshrined in the UN Sustainable Development Goals, requires us to combine research and development with local and international cooperation so that efforts led by CGIAR to protect plant health, and increase agriculture’s benefits, reach the communities most in need.

Barbara H. Wells MSc, PhD is the Global Director of Genetic Innovation at the CGIAR and Director General of the International Potato Center. She has worked in senior-executive level in the agricultural and forestry sectors for over 30 years.

An example of best practice

A MasAgro-supported farmer in Mexico holds up a selection of maize varieties. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) is contributing to make Mexico’s agriculture more productive, sustainable and resilient, according to a new report by The Economist Intelligence Unit and Barilla Foundation.

The study focuses on food loss and waste, sustainable agriculture, and nutritional challenges to assess how sustainable and resilient are the food systems of the 20 largest and most advanced economies of the world, which could lead the way to achieve the United Nation’s Sustainable Development Goals (SDGs) by 2030.

Fixing Food 2021: An opportunity for G20 countries to lead the way” argues that global food systems are instrumental to meet all SDGs, and seeks to answer if and how G20 countries are making food sustainability a priority.

The authors discuss the intricacies between national food systems and progress towards SDGs as a cross-cutting issue: “The challenge for the agricultural sectors in the G20 countries is to make their production processes more efficient so that they are growing sufficient food for their populations and their exporters, but doing so in a way that is decoupled from resource use, repairs the damage that has already been done to the planet, helps to raise nutritional standards, and in the wake of the pandemic, rebuilds our resilience to the emergence of diseases.”

Against this backdrop, the data systems of CIMMYT’s MasAgro project are identified as an innovation or best practice that helps cut agriculture’s carbon footprint in Mexico. Under Masagro, CIMMYT monitors over 150,000 farmers and more than 500 variables of the growing cycle per farming plot.

“Farmers can then access data analysis via an app which provides them with a range of information to help them improve productivity, use more sustainable practices and access markets,” the report states.

Women farmers in Mexico attend a MasAgro field day. (Photo: CIMMYT)

The authors conclude that G20 leaders still have a narrow opportunity to adopt a systems approach to reducing food loss and waste, mitigating the impact of food production on the environment, and increasing the nutritional content of global diets to achieve the SDGs by 2030.

However, the policy responses needed to trigger a transformational change in global food systems require political will and leadership. “Involving different stakeholders in improving the sustainability of agriculture is key, according to Bram Govaerts of the International Maize and Wheat Improvement Center (CIMMYT),” reads the report.

From science to impact: a chat with women scientists at CIMMYT

At the International Maize and Wheat Improvement Center (CIMMYT), staff are one of our most important assets. We anchor our commitment to diversity and inclusion through our vision, mission and organizational strategy. We interpret workplace diversity as understanding, accepting and valuing all aspects of one’s identity, including gender.

Scientists such as Itria Ibba, head of the Wheat Chemistry and Quality Laboratory, Thokozile (Thoko) Ndhlela, maize line development breeder, and Huihui Li, quantitative geneticist, empower the rest of the maize and wheat research community to do more for those who need sustainable food systems the most.

It wasn’t easy to find a convenient time for the four of us to have a conversation — me, because of COVID-19 travel restrictions, from the Netherlands, Itria in Mexico, Thoko in Zimbabwe and Huihui in China – but we managed. I enjoyed hearing about their work, what sparked — and continues to spark — their passion for maize and wheat research and had the chance to share some thoughts about where the CGIAR transition is taking us.

Martin Kropff, Itria Ibba, Thoko Ndhlela and Huihui Li share a discussion over Zoom. (Photo: CIMMYT)

Martin Kropff: Hello Itria, Huihui and Thoko, great to see you! I’d love to hear more about what you do. Why do you think your work is important in this day and age?

Itria Ibba: Hello Martin! I lead the [CIMMYT] Wheat Chemistry and Quality Laboratory. I am very passionate about my work, which I believe is very important.

In the lab we work both on the improvement of wheat technological and nutritional quality. Both of these aspects are fundamental for the successful adoption of a wheat variety and, of course, to promote a healthy and nutritious diet. Development of nutritious varieties is especially important because — especially in developing countries — the basic diet doesn’t provide all the micro and macronutrients necessary to live a healthy life. Since my focus is wheat, a staple crop that is mainly used for human consumption, I think the work that I am doing can actually have a direct and real impact on the lives of many people.

Kropff: It is important that you — on the quality side of the work — can give feedback to the breeders, and they listen to you. Is it happening?

Ibba: I believe that yes. Of course, quality cannot be the only target in the selection process where several other traits such as yield potential, disease resistance and tolerance to abiotic stresses have to be considered. However, especially for wheat, quality needs to be considered because it is strictly associated with the economic value of a specific variety and plays a fundamental role throughout the whole wheat value chain. The feedback we are giving is being taken positively. Of course, it could be ‘heard’ more.

Kropff: If I may ask, do you think you’re being treated as a scientist regardless of your gender? Or does it matter?

Ibba: Personally, I have always felt that I was respected, in my lab and in my team, especially at CIMMYT. At the beginning, I had some concerns because I am a bit young… Mainly because of that, yes, but not because I am a woman. I cannot say anything bad from that perspective.

Kropff: I think that young people must have the future in our organization. Sometimes when people get older — I try not to be like that, but I am also getting older — they think that they know everything and then you have to be very careful, because the innovations are mostly coming from young people. But young minds come up with new ideas. What about your work, Huihui? You are contributing in a completely different way than Itria and Thoko, and you are coming from a mathematical point of view. When I see you, I always think about math.

Li: Yes, due to my major, sometimes I feel like I am a stranger working in an agricultural research organization. Because I can’t breed new varieties, for example. So, what’s my position? I ask myself: how can I have a successful career in agriculture? But I think that in this new era, this new digital era, I can do more.

Kropff: Data, data, data!

Li: Yes! We can do smart agriculture based on big data. We can do a lot of things with prediction, so that breeders can save time and effort. Maybe we cannot breed the varieties directly or we cannot publish our new findings in high impact journals, but we can play an essential role for this work to be successful. I think that’s my added value: to be useful to breeders.

Kropff: And you are! Thoko, what about you?

Ndhlela: I’m a maize breeder. I’m responsible for two product profiles in southern Africa and these are extra early, early and nutritious maize. I feel like my work is very important, given that I am focusing on developing and deploying nutritious and stress-tolerant maize varieties to people who rely on maize as a staple food crop. White maize is the one that is mainly consumed and yet it doesn’t contain any of the micronutrients such as vitamin A, zinc, iron. We are working towards closing that gap where people have limited or no access to other foods that contain those micronutrients. If we provide them with maize that is nutritious, then we close that gap and addressing the issue of malnutrition. It is especially critical, for young children. According to UNICEF, 53% of the mortalities in children globally are due to micronutrient deficiencies. My work aims to address to a greater extent the problems that farmers face.

Thoko Ndhlela presents on provitamin A maize at a CIMMYT demonstration plot in Zimbabwe. (Photo: CIMMYT)

Kropff: Are you working on provitamin A maize?

Ndhlela: Yes!

Kropff: It’s orange right? How are consumers adopting it? Does that require extra marketing activities?

Ndhlela: Yes, because in most countries where maize is a popular staple food, people use yellow maize mostly for livestock feeds. But when it comes to the main food, they mainly use white maize. So there has to be that extra effort. We have been working with HarvestPlus on that front, and so far in southern Africa we’ve made good strides in terms of getting people to accept the maize.

Back in the day, when they were first introduced to the idea of eating yellow maize as main food, that maize came from food relief and not in a good state, so there was that negative attitude, which they remembered when we came in with vitamin A maize [which has a yellow color]. We told them, “This is different” and the fact that we did demos, they grew the maize, they harvested and consumed it, led to their acceptance of it. Right now, we have so much demand for seed, especially across southern Africa. Seed companies that we work with say that the seed is sold out and people are still looking for it.

Kropff: I’m very happy to hear this. We have to make sure that what we do is demand-driven, right? And on your role as a woman in research in Zimbabwe. Do you feel like you are taken seriously as a scientist?

Ndhlela: I really do, yes. I am really given space to be myself, to do my work and have that impact on the ground.

Ibba: Martin, I have a question regarding One CGIAR. Will there be any changes within CIMMYT regarding redistribution of research areas? Will some of the research areas change the research focus or implement new research groups and strategies?

Kropff: I could talk for five hours about this. CGIAR has big plans to change the structure, to change the initiatives, to change everything this year.
I believe that CIMMYT is strong, we have a lot of impact. The quality of our work is really high, and I want to make sure that CIMMYT’s work — your work — finds a solid landing in the new CGIAR.

They’re envisioning a restructuring in three large science groups. Several Directors General suggest that we shouldn’t start breaking everything up but that we take whole programs as we have them now and bring them into the new science groups. It’s complicated but everyone wants the CGIAR to be successful.

In terms of research, what we do as CIMMYT already provides solutions, for example, the Integrated Development Programs, such as CSISA, MasAgro, SIMLESA. This has now been taken over by the whole CGIAR. These are programs where you work with national systems and you look at what is important to them, and where innovation is needed. Not focusing on single solutions but integrated solutions from different disciplines. When the research needs come directly from the stakeholders, we become more demand-driven. And that makes life even more exciting.

I think that when we listen to our stakeholders, there will always be a maize and wheat component [in agricultural research]. When we interviewed them in 2020, they stated that things [that are on top of their wish list for agricultural research and development are] breeding, agronomy, big data, and wheat, maize and rice.

I always say: what we need is food systems that deliver affordable — you said it already, Thoko — sufficient and healthy diets produced within planetary boundaries. And for all those criteria, wheat and maize are key because they are efficient, they are produced very well, they provide a good basis of nutrition, and you can produce them within planetary boundaries.

But, back to you. Could you share a story or anecdote about a turning point or defining moment in your work?

Ibba: Personally, I’ve had different turning points that led me to this career but I believe that one of the most important moments for me was when I started my PhD in Crop Science at Washington State University. There for the first time in my scientific career I understood the importance of working together with breeders, molecular scientists, cereal chemists and even with food companies in order to deliver a successful product from farmers all the way to consumers. The research done there had a real impact that you could see and I loved it. Also for this reason, I am happy to now work at CIMMYT because this happens here, as well, but at a bigger scale. You can clearly see that the work and research you do are directly used and go into new wheat lines and new varieties which are grown by different farmers across the world. It’s amazing. That’s what I think had a bigger impact for me.

Itria Ibba presenting on wheat quality in her lab at CIMMYT HQ, Mexico. (Photo: CIMMYT)

Ndhlela: I think the biggest moment in my work was when I was first employed as a scientist at CIMMYT. I always looked at CIMMYT scientists as role models. I remember many times that CIMMYT jobs were being advertised for technicians, and people would say, “Oh, this is yours now!” and I told them, “No, no, no, I will only join CIMMYT as a scientist.” And I waited for that moment. And it came and was a turning point in my career and I really thought that now I can express myself, do my work without limitations. And to reach impact!

Another great moment in my work is when I hear that hundreds of farmers are growing and consuming the varieties that I am involved in developing and deploying. I really want to hear people talking of impact: how many tons of certified seed is being channeled from seed companies to the growers, and how many peoples’ lives are we improving. I think that really defines my work. If the varieties don’t get to the farmer, then it is just work going to waste.

Li: Sometimes I feel inferior because I can’t breed a variety, or have big papers in agriculture-related journals, but one day I looked up my citation of my publications and I felt self-satisfied. I could feel my impact. Actually, several of my papers are highly cited; my total citation is more than 3,000 right now.

Kropff: Oh good!

Li: Yes! That means that my work has impact and many people are using the algorithm I developed to have even more impact. Papers that cite my work are published in Science and Nature, Nature Genetics, etc. I feel useful and like my work plays an essential role in research.

Kropff: That’s the thing: there’s impact in science and impact in farmers’ fields and at CIMMYT it comes together. Colleagues at CIMMYT are taking your results and using them to make a difference through crop variety improvement and other things.

Ndhlela: How do you think that One CGIAR will help strengthen our research towards the Sustainable Development Goals across the geographies where we work?

Kropff: I have always promoted the idea of ‘One CGIAR’. Even before joining CIMMYT. But it is complicated because we’re bringing 13 CGIAR Centers together. I saw it at Wageningen University: when you have one organization, you can be so much stronger and more visible, globally.

Because together we [One CGIAR] are the global international organization for agricultural research. We add something [to our global partners such as] the Food and Agriculture Organization of the UN (FAO) which works on agricultural policy, and IFAD that has international development programs and World Food Programme which delivers food — most of it staple crops — to those who need it the most. But supplying food is not a sustainable approach, we want to have sustainable food systems in those countries, so that people can produce their own food. That’s where research is necessary, and knowledge is necessary.

I am super proud that the wheat and maize and agronomy work we do is so well adopted. Farmers are adopting our varieties across the globe. These are new varieties I’m talking about — this is key — which are on average 10 years old and they respond to current challenges happening on the ground. Regarding your work, Thoko, with maize, I just got data from Prasanna [CIMMYT’s Maize Program and CGIAR Research Program on Maize Leader, Prasanna Boddupalli] that farmers are growing drought-tolerant maize and other maize varieties from CIMMYT on 5 million hectares in eastern and southern Africa! All of this is because of a good seed systems approach with the private sector: small seed companies delivering our varieties scaling our great breeding work. Taking it to the farmers!

I think that the work that we do is super important to reach the Sustainable Development Goals. Number one —– well, it’s number two, but for me it is the first —– is ending hunger. Because when you’re hungry, you cannot think or live normally. Poverty is also an incredibly important challenge. But I would put hunger as number one. I don’t think any of us here have had real hunger. My parents did, in the Second World War and let me tell you, when I heard those stories, I realized that that’s something that nobody should go through.

Climate change as well. We have to keep innovating because the climate keeps changing. I was just reading today in a Dutch newspaper that 2 degrees won’t be reached, it will be more. And in the Netherlands the land is so low, so that even with dykes, we will not be able to manage in the next 50 years. People will have to start moving. In the Indo-Gangetic Plains, they’ll have to plant short duration rice, use smart machinery such as the Happy Seeder, then plant short duration wheat — all just to stay ahead of the looming 50 ˚C weather.

Do you agree?

Ibba: Well, yes, but I hope that in the end there will be good coordination between the CGIAR Centers and everything. But if it works well, then I definitely think that it will be more impactful. That’s for sure.

Kropff: What can supervisors and mentors do to encourage women in science careers?

Li: I think this is a good question Martin. I am sure that Itria and Thoko will agree with me: women need more than just our salary. I think that women are more emotional, so, most of the time, when my supervisor is more considerate and careful in regard to my emotions, I feel touched and actually, more motivated. I simply need more consideration, emotionally. I have some experience in this with students [who work for me]. When I want to stimulate their motivation, I compare the two effects. Say, I increase their salary. I feel that the male student is happier than the female. [Laughs] On the other hand, I try to be more considerate with all of my students and ask them about their families or express concern about something. When I do this, I don’t get much of a reaction from the males but the females are grateful. I think the same works for me.

Huihui Li at work in her lab in China. (Photo: CIMMYT)

Kropff: I always intend to treat everyone equally and I think I do. But then some people need to be treated differently. That is situational management based on the capabilities and also the personality of people. Do we have to be more mindful of how one works with women?

Li: Well, people are diverse.

Kropff: Right. On the one hand, people should be treated as they want to be treated based on their individual personality, and then on the other hand you want to make sure that women are taken as seriously as men in, say, science.

Ndhlela: I agree with Huihui. Supervisors should give maximum support to women because they already have full plates. The field of science is challenging, so if they feel that they’re not being given enough support, they tend to get discouraged and demoralized. So, supervisors and colleagues need to take that into account. Like Huihui said, women are more emotional than our counterparts. And they need that support. When dealing with women in a professional setting, supervisors could take a visionary style where they give us space to work and do our assigned duties without a lot of interference. Micromanagement is frustrating. From my experience, women in science are serious and they can work with minimum supervision and they are really out there to achieve objectives.

Ibba: I agree with both of you. Space and trust, and constructive criticism. Apart from the strength and support from one’s supervisor, it would be good to implement a mentorship program for young scientists. Sometimes you need a non-supervisor voice or someone that can guide you [who you do not report to]. Human Resources also need to play a key role in supporting women and men, and ensuring zero discrimination. But I’m sure that all we really want is to be treated as humans [laughs]. We all have emotions.

Kropff: Thank you very much colleagues for this open discussion. This has been very interesting and given me a lot of food for thought. Our conversation makes me miss pre-COVID-19 informal moments at work and at conferences, social moments where people open up. But here we show, we can do that during Zoom meetings as well with videos on to read each other’s body language and with groups that are small. Thank you for the inspiration!

Too much or never enough

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)
A young man uses a precision spreader to distribute fertilizer in a field in India. (Photo: Mahesh Maske/CIMMYT)

Although nitrogen has helped in contributing to human dietary needs, there are still large areas of the world  namely sub-Saharan Africa and parts of Asia  that remain short of the amounts they need to achieve food and nutritional security.  

Conversely, synthetic nitrogen has become increasingly crucial in today’s intensive agricultural systems, but nearly half of the fertilizer nitrogen applied on farms leaks into the surrounding environment. It is possible that we have now transgressed the sustainable planetary boundary for nitrogen, and this could have devasting consequences.  

Given this conflicting dual role this compound plays in agricultural systems and the environment  both positive and negative  the nitrogen challenge is highly relevant across most of the 17 Sustainable Development Goals (SDGs) established by the United Nations. 

Facing a global challenge 

The challenge of nitrogen management globally is to provide enough nitrogen to meet global food security while minimizing the flow of unused nitrogen to the environment. One of the key approaches to addressing this is to improve nitrogen use efficiency – which not only enhances crop productivity but also minimizes environmental losses through careful agronomic management – and measures to improve soil quality over time. 

Globally, average nitrogen use efficiency does not exceed 50%. Estimates show that a nitrogen use efficiency will need to reach 67% by 2050 if we are to meet global food demand while keeping surplus nitrogen within the limits for maintaining acceptable air and water qualities to meet the SDGs. 

This target may seem ambitious  especially given the biological limits to achieving a very high nitrogen use efficiency  but it is achievable.  

Earlier this year, J.K. Ladha and I co-authored a paper outlining the links between nitrogen fertilizer use in agricultural production systems and various SDGs. For instance, agricultural systems with suboptimal nitrogen application are characterized with low crop productivity, spiraling into the vicious cycle of poverty, malnutrition and poor economy, a case most common in the sub-Saharan Africa. These essentially relate to SDG 1 (no-poverty), 2 (zero-hunger), 3 (good health and well-being), 8 (decent work and economic growth) and 15 (life on land).  

On the other hand, excess or imbalanced fertilizer nitrogen in parts of China and India have led to serious environmental hazards, degradation of land and economic loss. Balancing the amount of N input in these regions will contribute in achieving the SDG 13 (climate action). Equally, meeting some of the additional SDGs (5, gender equality; 6, clean water and sanitation; 10: reduced inequalities; etc.) requires optimum nitrogen application, which will also ensure “responsible consumption and production” (SDG 12). 

A diagram shows the impact of fertilizer nitrogen use on the achievement of the Sustainable Development Goals. (Graphic: CIMMYT/Adapted from CCAFS)
A diagram shows the impact of fertilizer nitrogen use on the achievement of the Sustainable Development Goals. (Graphic: CIMMYT/Adapted from CCAFS)

So, how can we achieve this?  

Increased research quantifying the linkages between nitrogen management and the SDGs will be important, but the key to success lies with raising awareness among policy makers, stakeholders and farmers. 

Most agricultural soils have considerably depleted levels of soil organic matter. This is a central problem that results in agroecosystems losing their ability to retain and regulate the supply of nitrogen to crops. However, poor knowledge and heavy price subsidies are equally to blame for the excess or misuse of nitrogen.  

While numerous technologies for efficient nitrogen management have been developed, delivery mechanisms need to be strengthened, as does encouragement for spontaneous adaptation and adoption by farmers. Equally  or perhaps more importantly  there is a need to create awareness and educate senior officials, policy makers, extension personnel and farmers on the impact of appropriate soil management and intelligent use of nitrogen fertilizer, in conjunction with biologically integrated strategies for soil fertility maintenance.  

An effective and aggressive campaign against the misuse of nitrogen will be effective in areas where the compound is overused, while greater accessibility of nitrogen fertilizer and policies to move farmers towards soil quality improvement will be essential in regions where nitrogen use is currently sub-optimal. 

It is only through this combination of approaches to improved system management, agricultural policies and awareness raising campaigns that we can sufficiently improve nitrogen use efficiency  and meet the SDGs before it’s too late. 

Read the full study “Achieving the sustainable development goals in agriculture: the crucial role of nitrogen in cereal-based systems” in Advances in Agronomy. 

What can the last 30 years of research tell us?

A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)

Global climate change represents an existential threat to many of the world’s most vulnerable farmers, introducing new stresses and amplifying the unpredictability and risk inherent in farming. In low- and middle-income countries that are heavily reliant on domestic production, this increased risk and unpredictability threatens disastrous consequences for the food security and wellbeing of rural and urban populations alike.

Given the stakes, substantial investments have been made towards developing climate-resilient crops. But what happens when the innovations widely considered to be beneficial don’t gain traction on the ground, among those who stand to lose the most from inaction? What can researchers, policymakers and funders do to ensure that the most vulnerable rural populations don’t lose out on the benefits?

These are the questions posed by a new scoping review co-authored by Kevin Pixley, interim deputy director general for research and partnerships and director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

The paper relies on a descriptive analysis of 202 studies from the past 30 years which assess the determinants of climate-resilient crop adoption by small-scale producers in low- and middle-income countries. These were identified through an extensive search and screening process of multiple academic databases and grey literature sources, and selected from an initial pool of over 6,000 articles.

Taking stock

The authors identified interventions determining adoption across the literature surveyed. A key theme which emerged was the need for context-sensitive technical and financial support for climate-resilient crop adoption. Nearly 16% of the studies found that adoption depended on access to relevant extension programs. Around 12% identified access to credit and other financial instruments as key, while a further 12% identified the implementation of community programs supporting climate-resilient crops as a determining factor.

However, the study stresses that there are no one-size-fits-all solutions. Increased adoption of climate-resilient agricultural innovations will depend on interventions being highly context informed. For example, the review shows that while some studies identified older farmers as more reluctant to adopt new technologies, an equal number of studies found the opposite.

Moreover, the review identified important opportunities for further research. Gender-based approaches, for example, remain a blind spot in the literature. The majority of studies reviewed only included women if they were household heads, thus overlooking the role they may play in influencing the adoption of new agricultural technologies in male-headed households.

A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)
A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)

Driving evidence-based policymaking

The review was published as part of a collection of 10 research papers produced as part of Ceres2030: Sustainable Solutions to End Hunger. The project, a partnership between Cornell University, the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD), distills decades of scientific and development research into a clear menu of policy options for funders committed to achieving the UN’s Sustainable Development Goal 2: Ending world hunger by 2030.

The full collection of papers was published on October 12 across various Nature Research journals.

Speaking at a German government event on achieving Sustainable Development Goal 2, Bill Gates praised the Ceres2030 initiative, noting that “nothing on this scale has ever been done because we lacked the tools to analyze this complex information. But with the new research, solid evidence will drive better policymaking.”

He went on to highlight the CGIAR’s leadership role in these efforts, saying: “The CGIAR system is a key global institution that is investing in these approaches. It’s a critical example of how innovation can lead the way.”

CIMMYT for Mexico in times of a global pandemic

Mexico has always been there for CIMMYT.

Not only is it the origin of maize – one of CIMMYT’s focus crops – it also inspired the birth of its headquarters, which has served as the institute’s mothership since its establishment in 1966.

CIMMYT’s crop-breeding research begins with its genebank, a remarkable living catalog of genetic diversity comprising over 28,000 unique seed collections of maize and over 150,000 of wheat. The genebank was established at CIMMYT’s headquarters in 1986 and to date is the world’s largest and most diverse collection of maize and wheat. Like clockwork, every year, more than 1,500 maize and wheat seed shipments leave Mexico to reach as many as 800 recipients in over 100 countries.

In one way or another, the world’s maize and wheat have a link back to Mexico: be it through pest-resistance trials in the Agua Fria or Tlaltizapan hub or heat-resilient wheat trials in the scorching fields of Obregon. The country’s diverse ecosystems which allowed for Norman Borlaug’s shuttle breeding in the 1940s remain instrumental for today’s researchers’ work to develop innovative crops and sustainable farming systems worldwide.

Field worker bagging maize ears at CIMMYT’s Agua Fría experimental station. (Photo: CIMMYT/Alfonso Cortés)
Field worker bagging maize ears at CIMMYT’s Agua Fría experimental station. (Photo: CIMMYT/Alfonso Cortés)

CIMMYT has been working hand in hand with Mexico’s Secretariat of Agriculture and Rural Development (SADER) on MasAgro, a project that promotes the sustainable production of maize and wheat in Mexico.

In the conversation below, Martin Kropff, Director General of CIMMYT, and Bram Govaerts, CIMMYT Representative for the Americas and Director of the Integrated Development Program, explore topics such as Mexico’s food security and agriculture while COVID-19 disrupts the nation’s status quo.

Has the COVID-19 pandemic exposed any vulnerabilities in Mexican food security?

Kropff: Albeit Mexico produces a lot of food – in fact, I believe that it currently ranks 11th in food production globally – it still imports food from other countries, particularly staples such as maize, wheat and rice from the U.S. The current pandemic poses a threat to open trade, and Mexico could also be affected by trade restrictions that other countries impose to protect their people and internal markets from food shortages.

Govaerts: At the same time, the pandemic is reducing economic activities everywhere to minimum levels. This poses a threat to food production given that farmers and agricultural workers in Mexico, and most of the northern hemisphere, are just about to begin the growing spring/summer season. Mexico’s fields need to be prepared for sowing and farmers need certainty as they take risks by investing today for a harvest that will come within several months.

How is CIMMYT helping to reduce these vulnerabilities?

Govaerts: CIMMYT is working with Mexico’s Agriculture Department (SADER) and the private and social sector to address these threats.

Kropff: In fact, we see that Mexico is already answering to a CIMMYT-endorsed Call to Action For World Leaders, which was published on the Food and Land Use Coalition website. This call to action urges countries to implement three key measures to avert a global food crisis that could increase the number of people suffering from chronic hunger by millions: keep the supply of food flowing across the world; scale support to the most vulnerable; and invest in sustainable, resilient food systems.

Seed collection during the harvest at CIMMYT’s experimental station located in Cuidad Obregón, Sonora. (Photo: CIMMYT/Peter Lowe)
Seed collection during the harvest at CIMMYT’s experimental station located in Cuidad Obregón, Sonora. (Photo: CIMMYT/Peter Lowe)

What is the role of CIMMYT’s collaboration with Mexican government bodies in this process?

Govaerts: In the fields there is potential to respond and avoid that today’s health crisis becomes tomorrow’s food crisis. CIMMYT is working with SADER and Mexico’s National Research System (INIFAP) to contribute to a stable supply of basic grains grown sustainably in Mexico by offering technical advice to the more than 300,000 farmers that participate in MasAgro, CIMMYT’s bilateral collaboration project with Mexico for sustainable maize and wheat production.

Currently, MasAgro technicians and extension agents are working with smallholder farmers in the center and south of the country to prepare soils for sowing, advising on optimal sowing densities and use of high-yielding improved varieties, agro-ecological pest management, fertilization, irrigation, among other activities that are essential to begin the crop production cycle in time.

Mexico and CIMMYT are also working with the agri-food sector to build farmers’ capacities to increase grain production sustainably and to sell the surplus to local and multi-national agri-food companies in Mexico. This is part of wider country plans which are called Maize for Mexico and Wheat for Mexico.

Kropff: These plans are very much in line with the call for governments to work with the philanthropic and private sectors to strengthen and scale out targeted food programs by linking them to foods that promote health and sustainable production. Currently we work with Nestlé, The Kellogg Company, Grupo Bimbo, and Walmart Foundation, among others, to create a pull from the market for sustainable agriculture for smallholder farmers. We call this sustainable sourcing.

How can we strengthen Mexico as a country of agricultural crops research and design activities?

Kropff: CIMMYT has been instrumental to public policy formulation in Mexico and has been positioned as one of Mexico’s most trusted partners over the past 10 years.

Govaerts: Exactly, and the numbers speak for themselves. As a result of the collaboration with more than 150 collaborators from the public, private and social sector, MasAgro has had a positive impact in the lives of more than 300 thousand farmers who have adopted conservation agriculture, improved seeds and sustainable farming technologies on more than 1 million hectares across Mexico.

Kropff: It would be great if Mexico continued investing in integrated development projects like MasAgro, and scaled out sustainable farming practices and technologies with innovative approaches like responsible local sourcing, which I mentioned just before while it promotes the replication of the MasAgro model in other countries.

The Rodríguez family, milpa farmers, in Cristóbal Colón, Campeche. (Photo: CIMMYT/Peter Lowe)
The Rodríguez family, milpa farmers, in Cristóbal Colón, Campeche. (Photo: CIMMYT/Peter Lowe)

How can we strengthen farmer’s access to better crops and better farming techniques?

Kropff: It is imperative to CIMMYT to improve farmers’ economic opportunity. This cannot be done without essential ingredients such as access to markets, capacity development, technology, and inputs like seeds and fertilizer. And most importantly, better crops and farming technologies are worthless without the national agricultural research systems’ buy in and trust.

Govaerts: This is very much at the heart of what we do together with maize farmers in Mexico in MasAgro. CIMMYT breeds maize hybrids with conventional technologies and improves native maize seed in collaborative projects with farmers. Then this improved maize seed is tested in collaboration with the local seed sector that, in turn, commercializes the best adapted materials in Mexico’s growing regions. These seed companies are small and medium enterprises that generate economic development in the center and south of the country.

Kropff: Similarly, in a project that started in 2019 in eastern and southern Africa, we reach farmers in Malawi, and soon in Rwanda and Tanzania, with our improved seeds through small seed companies which play the key role of ‘connector’ in intricate and complicated markets which often are ignored by large seed companies. Then, CIMMYT researchers undertake varietal trials and track genetic gains in farmers’ fields and share the findings with the broader agricultural community.

What changes can we expect in the nation’s food supply chain management after COVID-19?

Kropff: All crises bring challenges and opportunities. I believe that Mexico could take this opportunity to make its supply and value chains more integrated, resilient and flexible.

Govaerts: Mexico can become the leader of innovation that integrates traditional and scientific knowledge.

What role does CIMMYT want to play in the future?

Kropff: I see CIMMYT working even closer to the farming communities but especially along the whole value chain with science and data towards improved decision-making.

Govaerts: CIMMYT can be a catalyst of integrated programs. We want to keep discovering and helping to implement new solutions for the world’s poor and food insecure and work toward achieving the Sustainable Development Goals.

Kropff: We have a lot of work to do.

Conservation agriculture key to better income, environment protection: Study

Resorting to conservation agriculture would not only increase crop yield, income and reduce the use of natural resources, but would also confer climate change benefits, according to a study by Indian agricultural scientists and others published in an international journal on Thursday.

The study, published in the journal Nature Sustainability, also showed that conservation agriculture was key to meeting many of the UN’s Sustainable Development Goals (SDGs) such as no poverty, zero hunger, good health and well-being, climate action and clean water. Conservation agriculture can offer positive contributions to several SDGs, said M. L. Jat, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study.

Read more here: https://www.thehindubusinessline.com/economy/agri-business/conservation-agriculture-key-to-better-income-environment-protection-study/article31364196.ece#

New publications: Shifting the mindset from “reaching many” to sustainable change

Over the last few years, the research and development communities have deemed “scaling” a priority in order to help contribute to and achieve the Sustainable Development Goals (SDGs). On smaller scales, there has been great success in reducing hunger and poverty, but it has rarely expanded to regional or national levels.

The International Maize and Wheat Improvement Center (CIMMYT) scaling head Lennart Woltering, in collaboration with colleagues Kate Fehlenberg and Bruno Gerard, as well as with international development experts Jan Ubels of SNV and Larry Cooley of Management Systems International, have been studying the process of scaling to understand why successful pilot projects are no guarantee for success at scale.

In a new paper published in Agricultural Systems, they argue that pilot projects are usually set up and managed in heavily controlled environments that do not reflect the reality at scale. Furthermore, confusion of what scaling is and how it can be executed often results in a narrow focus on solely reaching numbers.

“Counting household adoption of a practice at the end of a project is a poor metric of whether these people can and will sustain adoption after the project ends, let alone if adoption will reach others and actually contributes to improved livelihoods,” Woltering states.

According to Woltering, “This paper is a call for a new scaling narrative, from one that is short-term and piecemeal, to one that recognizes the systemic nature of problems and solutions to achieve sustainable change at scale.”

This requires a change in mindset, skills and ways of collaborating than what we currently consider normal. “Meaningful impact at scale hardly occurs within a project context, but when new ways of working are becoming ‘the new normal’ by a critical mass of actors ‘in the real world’,” Woltering explained.

The authors present a number of frameworks that help to assess the scalability of innovations and the design of scaling strategies from the onset of projects and how to systematically think through key elements needed for scaling success. This includes CIMMYT’s very own Scaling Scan. Reaching the SDGs requires scaling interventions to be seen as building blocks within a system of other initiatives with the same goals.

Read the full study:
Scaling – from “reaching many” to sustainable systems change at scale: A critical shift in mindset

Lennart Woltering discusses scaling strategies. (Photo: Maria Boa Alvarado /CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. 2019. Hassan, M.A., Mengjiao Yang, Rasheed, A., Guijun Yang, Reynolds, M.P., Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Plant Science v. 282, p. 95-103.
  2. Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker. 2019. Luping Fu, Yonggui Xiao, Yan Jun, Jindong Liu, Weie Wen, Yong Zhang, Xia Xian-Chun, He Zhonghu. In: Journal of Intregative Agriculture v. 18, no. 5, p. 939-947.
  3. Dissecting conserved cis-regulatory modules of Glu-1 promoters which confer the highly active endosperm-specific expression via stable wheat transformation. 2019. Jihu Li, Ke Wang, Genying Li, Yulian Li, Yong Zhang, Zhiyong Liu, Xingguo Ye, Xianchun Xia, He Zhonghu, Shuanghe Cao. In: The Crop Journal v. 2, no.1, p. 8-18.
  4. Effects of bran hydration and autoclaving on processing quality of Chinese steamed bread and noodles produced from whole grain wheat flour. 2019. Zhang Yan, Fengmei Gao, He Zhonghu. In: Cereal Chemistry v. 96, no. 1, p. 104-114.
  5. Occurrence and seasonal variation of the root lesion nematode Pratylenchus neglectus on cereals in Bolu, Turkey. 2019. Dababat, A.A., Senol Yildiz, Duman, N., Ciftci, V., Imren, M. In: Turkish Journal of Agriculture and Forestry v. 43, p. 21-27.

New report calls for urgent diet and food system changes to sustainably feed world

smallerEAT-LancetCoverA new report by more than 30 world-leading experts in health and environmental sustainability offers a roadmap for a global food system that provides a healthy, sustainable diet for the world’s 10 billion people by 2050.

The report, Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems, represents the first comprehensive review of what constitutes a healthy diet from a sustainable food system.

Published jointly by EAT, a global non-profit foundation founded to catalyze a food system transformation, and The Lancet, the world’s leading medical journal, the report links diets with human health and environmental sustainability. It lays out five global scientific strategies to achieve healthy diets and sustainable food production by the year 2050: shifting diets, producing healthy food, sustainably intensifying food production, improving land and water governance, and reducing food loss and waste.

The report urges substantial dietary shifts and specific courses of action from consumers, policymakers, businesses and government agencies alike to transform the world’s food system. As the report states, “Without action, the world risks failing to meet the UN Sustainable Development Goals (SDGs) and the Paris Agreement, and today’s children will inherit a planet that has been severely degraded and where much of the population will increasingly suffer from malnutrition and preventable disease.”

The report emphasizes eating diets heavy in fruits, nuts, vegetables and whole grains and light on meat, as current Western-style diets are already straining the global food system’s environmental impact and pushing planetary limits. According to CIMMYT consultant and leading nutritionist Julie Miller Jones of St. Catherine University, USA, eating whole grain foods reduces obesity and the risk of almost all chronic diseases.

Given that the food system drives nearly 30 percent of greenhouse gas emissions, occupies 40 percent of land and causes 80 percent of biodiversity loss, increasing healthy, resource-saving foods and reducing unhealthy and unsustainably produced foods is an essential step in securing future environmental sustainability.

The founder and executive chair of EAT, Gunhild Stordalen, commented at the report’s launch event January 17 in Olso, Norway: “No single sector, technology or entity can fix it alone but, for the first time, we have a clear direction and initial targets to align and guide our actions.”

Read the full report here: http://www.thelancet-press.com/embargo/EATComm.pdf.

Read the summary here: https://eatforum.org/content/uploads/2019/01/EAT-Lancet_Commission_Summary_Report.pdf

New Soil Intelligence System for India provides high-quality data using modern analytics

NEW DELHI (CIMMYT) — The new Soil Intelligence System (SIS) for India will help the states of Andhra Pradesh, Bihar and Odisha rationalize the costs of generating high-quality soil data and build accessible geospatial information systems based on advanced geostatistics. The SIS initiative will rely on prediction rather than direct measurements to develop comprehensive soil information at scale. The resulting data systems will embrace FAIR access principles — findable, accessible, interoperable, and reproducible — to support better decision-making in agriculture.

SIS is a $2.5 million investment funded by the Bill & Melinda Gates Foundation. This initiative is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with numerous partners including the International Food Policy Research Institute (IFPRI), World Soil Information (ISRIC), the Andhra Pradesh Space Applications Center (APSAC), and the state governments and state agriculture universities of Andhra Pradesh and Bihar. The initiative runs from September 2018 through February 2021.

“SIS will make important contributions towards leveraging soil information for decision-making in Indian agriculture by devising new soil health management recommendations,” explained Andrew McDonald, CIMMYT’s Regional Team Leader for Sustainable Intensification and Project Leader for the Cereal Systems Initiative for South Asia (CSISA). Researchers and scientists will combine mapping outputs with crop response and landscape reconnaissance data through machine-learning analytics to derive precise agronomy decisions at scale.

Farmers will be the primary beneficiaries of this initiative, as they will get more reliable soil health management recommendations to increase yields and profits. SIS will also be useful to state partners, extension and agricultural development institutions, the private sector and other stakeholders who rely on high-quality soil information. Through SIS, scientists and researchers will have an opportunity to receive training in modern soil analytics.

The SIS initiative aims to facilitate multi-institutional alliances for soil health management and the application of big data analytics to real-world problems. These alliances will be instrumental for initiating broader discussions at the state and national levels about the importance of robust data systems, data integration and the types of progressive access policies related to ‘agronomy at scale’ that can bring India closer to the Sustainable Development Goals.

CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.
CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.

Better soil analysis

Spectroscopy enables precise soil analysis and can help scientists identify appropriate preventive and rehabilitative soil management interventions. The technology is also significantly faster and more cost-effective than wide-scale wet chemistry-based soil analysis.

As part of the CSISA project, led by CIMMYT and funded by the Bill & Melinda Gates Foundation, two new soil spectroscopy labs were recently set up in Andhra Pradesh and Bihar, in collaboration with the state departments of agriculture. One lab is now operating at the Regional Agricultural Research Station (RARS) in Tirupati, Andhra Pradesh; and the other one at Bihar Agricultural University (BAU Sabour), in Bhagalpur, Bihar.

“The support from CIMMYT through the Gates Foundation will contribute directly to bringing down the cost of providing quality soil health data and agronomic advisory services to farmers in the long run,” said K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University. “We will also be able to generate precise digital soil maps for land use planning. The greatest advantage is to enable future applications like drones to use multi-spectral imagery and analyze rapidly large areas and discern changes in soil characteristics in a fast and reliable manner.”

Under the SIS initiative, soil spectroscopy results will be validated with existing gold standard wet chemistry methods. They will also be integrated with production practice data collected from the ground level, through new statistical tools.

K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.
K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.

Precise predictive models

Drawing information from a limited number of soil observations from a sample dataset, digital soil mapping (DSM) uses (geo)statistical models to predict the soil type or property for locations where no samples have been taken.

“These ‘unsampled locations’ are typically arranged on a regular grid,” explained Balwinder Singh, CIMMYT scientist and Simulation Modeler, “so DSM produces gridded — raster — soil maps at a specific spatial resolution — grid cell or pixel size — with a spatial prediction made for each individual grid cell.”

“Adopting DSM methods, combined with intelligent sampling design, could reduce the strain on the soil testing system in terms of logistics, quality control and costs,” noted Amit Srivastava, a geospatial scientist at CIMMYT. “Improving digital soil mapping practices can also help create the infrastructure for a soil intelligence system that can drive decision-making at scale.”

In partnership with state government agencies and the Bill & Melinda Gates Foundation, CIMMYT will continue to support the expansion of digital soil mapping and soil analysis capacity in India. The CSISA project and the SIS initiative are helping to deliver soil fertility recommendations to farmers, an important step towards the sustainable intensification of agriculture in South Asia.

For more details, contact Balwinder Singh, Cropping System Simulation Modeler, CIMMYT at Balwinder.SINGH@cgiar.org.

An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)
An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)

Unleashing innovation at CIMMYT

CIMMYT staff share lessons learned at UNLEASH innovation labs with colleagues

Jennifer Johnson (first from right) and her team at UNLEASH 2018 work on solutions to improve nutrition for adolescent girls in Nepal. (Photo: Jennifer Johnson)
Jennifer Johnson (first from right) and her team at UNLEASH 2018 work on solutions to improve nutrition for adolescent girls in Nepal. (Photo: Jennifer Johnson)

Four young staff members from the International Maize and Wheat Improvement Center (CIMMYT) are working to bring home lessons learned at UNLEASH to foster innovation across CIMMYT programs. UNLEASH is a global innovation lab that brings together people from all over the world to transform personal insights into hundreds of ideas and build lasting global networks around the Sustainable Development Goals (SDGs). The annual event, which began in 2017 and is scheduled to occur each year until 2030, brings together 1,000 selected young talents for 10 immersive days of co-creation and problem solving.

Innovation is key to finding solutions to major global challenges such as hunger, climate change and sustainability. However, innovation cannot occur in a vacuum – the strongest and most inclusive solutions are often interdisciplinary approaches developed by a wide range of people from diverse backgrounds and perspectives. What sets UNLEASH apart from other innovation labs and processes is this commitment to diversity, as well as its focus on the Sustainable Development Goals.

While at UNLEASH 2017 in Denmark, CIMMYT staff Aziz Karimov, Daniela Vega and David Guerena were part of 200 teams that were split across 10 ‘folk high schools’ in the Danish countryside. There, they worked through an innovation process with facilitators and experts, refined their ideas to contribute to the SDGs and finally reconvened in the city of Aarhus to pitch the solutions they had developed.

Jennifer Johnson, Maize Communications Officer at CIMMYT, attended the UNLEASH Innovation Lab 2018 in Singapore last June. She worked alongside a diverse team of young people to develop solutions to improve nutrition for adolescent girls in Nepal.

The UNLEASH innovation process has five main phases: problem framing, ideation, prototyping, testing and implementing. “UNLEASH is really about finding and framing the problem,” said Vega, a projects coordinator and liaison officer for the Americas at CIMMYT and UNLEASH 2017 alumna. “Innovation is 90 percent about understanding the problem. Once you get that right, everything that follows becomes easier,” she explained.

Daniela Vega (third from left), UNLEASH 2017 alumna, leads CIMMYT colleagues in a breakout session on innovation during Science Week. (Photo: Alfonso Arredondo/CIMMYT)
Daniela Vega (third from left), UNLEASH 2017 alumna, leads CIMMYT colleagues in a breakout session on innovation during Science Week. (Photo: Alfonso Arredondo/CIMMYT)

Johnson, Guerena and Vega held a session on innovation and lessons learned at UNLEASH at CIMMYT’s Science Week 2018. Participants were walked through an abridged version of the UNLEASH innovation process to develop creative solutions to real-world problems relating to agriculture. The session emphasized diversity, respect and creativity, which are central tenets of both CIMMYT and UNLEASH.

“One of the key takeaways I got from UNLEASH was the power of diversity and collaboration,” said Guerena, a soil scientist and systems agronomist at CIMMYT who participated in UNLEASH 2017. “The diversity of the participants and collaboration lead to better solutions.”

Vega agreed. “People come from different backgrounds, geographically and professionally, and the level of cooperation and openness with no judgement is essential. We all share a similar value set, we are here because we want to make the world a better place by solving problems on a very hands-on level.”

In just one hour, participants of the CIMMYT session formed diverse teams, developed problem framings, brainstormed potential solutions and gave a three-minute pitch presenting their solution to the audience. Participants expressed extreme satisfaction with what they had learned and the innovation process they had been guided through, as well as interest in participating in similar programs in the future.

“This is a great idea, a very good experience. Often creativity doesn’t get enough attention,” said Lennart Woltering, CIMMYT scaling expert.

“This is fantastic and I’m going to adopt it. This is a great way to introduce concepts such as gender,” said Rahma Adam, CIMMYT gender and development specialist.

In the future, CIMMYT’s UNLEASH alumna hope to continue sharing their experience with colleagues and implementing lessons learned within their work.

“Unleash helps young people to think freely and differently,” said Karimov, a CIMMYT development economist whose team won second place in UNLEASH 2017’s ‘Sustainable Consumption & Production’ category which targeted Goal 12 of the SDGs. “We think innovation is something very complicated but by attending UNLEASH I realized that very simple moves can make a big change. You start believing that what is not possible is actually very possible. You just have to have will and strong desire.”

Agricultural and development economist Aziz Karimov (left photo, fifth from left) and soil scientist and systems agronomist David Guerena (right photo, fifth from left) represented CIMMYT at UNLEASH Innovation Lab 2017. (Photos: UNLEASH)
Agricultural and development economist Aziz Karimov (left photo, fifth from left) and soil scientist and systems agronomist David Guerena (right photo, fifth from left) represented CIMMYT at UNLEASH Innovation Lab 2017. (Photos: UNLEASH)