Skip to main content

Tag: South Asia

Seeds to beat the heat in lowland tropics

South Asia, a region heavily impacted by climate change, faces rising temperatures, erratic monsoon rains causing intermittent drought and excessive moisture within the season, and frequent episodes of heat waves. These extreme weather events are challenging agrarian practices and affecting millions, especially smallholder farmers dependent upon rainfed cultivations. The halcyon days of consistent environmental conditions are gone, and adaptation and mitigation strategies have become essential in South Asia.

In May 2024, over 20 districts in the Terai region of Nepal and many parts of northern India recorded maximum temperatures between 40°C and 45°C, with several districts also experiencing heat waves during the same period. The temperature rise is not limited to the lowland plains; the effects are also being felt in the mountains, where rapid snowmelt is becoming increasingly common. In the Hindu Kush Himalayas region of Pakistan, farmers have had to shift their cropping cycles by a month to cope with drought stress caused by rising temperatures, which are leading to the early melting of snow in the region.

Partners in South Asia visiting heat stress tolerant hybrids demonstration in Nepal (Photo: CIMMYT-Nepal)

Collaborating to rise above the challenge

Amid the growing climate crisis, the Heat Stress Tolerant Maize for Asia (HTMA) project was launched by CIMMYT in 2012, with support from the United States Agency for International Development (USAID) under the Feed the Future initiative of the U.S. Government. The overarching goal of the HTMA project was to help farm families, particularly maize growers, to adapt to the impacts of soaring heat on maize productivity in South Asia. The project was implemented in partnership with 28 public and private sector stakeholders across the region and beyond to develop a multipronged approach to overcoming these challenges.

“Our aim is to develop and deploy maize hybrids with high yield potential and possess traits resilient to heat and drought stresses,” said P.H. Zaidi, Principal Scientist, and HTMA project lead at CIMMYT. Zaidi noted that during heat stress “high temperatures alone are not the only limiting factor- it is the combination of high temperature with low atmospheric humidity (high vapor pressure deficit), that creates a “killer combination” for maize production in the Asian tropics.”

This was also emphasized in a recently published article that he co-authored.

The development of heat stress-tolerant maize involves the use of cutting-edge breeding tools and methods, including genomics-assisted breeding, double haploidy, field-based precision phenotyping, and trait-based selection. Over 20 such hybrids have been officially released in India, Nepal, Bangladesh, Pakistan, and Bhutan. Between 2023 and 2024, over 2,500 metric tons of seed from these hybrids were distributed to farmers, helping them beat the heat.

Agile partnerships-from discovery to scaling

The first phase of the project (2012-2017) focused on discovering heat-tolerant maize varieties. During this time, pipeline products underwent field evaluations in stress-prone environments, leveraging the project’s product evaluation network of public and private partners, who contributed by managing trials and generating performance data. In the second phase (2018-2023), the focus shifted toward the deployment and scaling of heat-tolerant hybrids and strengthening seed systems in target countries to enable large-scale delivery, benefiting millions of farm families, particularly in South Asia’s rainfed ecologies. For example, the seed produced in 2023-2024 sufficed to cover over 125,000 hectares and benefited nearly 2.5 million people in the region.

HTMA project partners gathered in Nepal for the annual and project closure meeting (Photo-CIMMYT-Nepal)

Hailu Tefera, from USAID, praised the project’s success during the annual review and project closure meeting held in Nepal from August 21-22, 2024. We have seen great strides in scaling heat stress tolerant hybrids in the region. This initiative aligns with the US Government’s Global Food Security Strategy, where building farmers’ resilience to shocks and climate vulnerability is central,said Tefera, acknowledging the adaptive and agile partnership demonstrated by the project’s partners throughout HTMA’s discovery and scaling phases.

One of the project’s key achievements was creating a multi-stakeholder platform and leveraging resources across the region. Partners, including national agricultural research systems, seed companies, and higher learning institutes, expanded the project’s impact. The collaboration we fostered under the HTMA project is a working example of effective partnerships,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program. He highlighted how synergies with other developmental projects in the region, especially projects supported by the USAID country mission in Nepal helped launch local hybrid seed production, transforming the country from a net importer of hybrid maize seeds to producing locally in just a few years, and such seeds of resilience cover nearly 10,000 hectares in 2023/24 alone. Using heat tolerant (HT) maize seed allows smallholder farmers to harvest nearly one metric ton per hectare additional yield than normal maize under stress conditions.

The value of the seed these new hybrids was validated by adopter farmers who grow maize in stress-vulnerable ecologies by expressing their willingness to pay a premium price for HT hybrid seed as per the study conducted in Nepal and India. “The spillover effect of the project is helping countries like Bhutan to strengthen their seed systems and initiate hybrid seed production for the first time,” added Prasanna, expressing gratitude to USAID and all project partners.

The salient achievements of the project, including technical know-how, outputs, outcomes, and learnings were compiled as an infographic, titled “HTML Tool‘ and it was formally released by Narahari Prasad Ghimire, Director General of the Department of Agriculture, Government of Nepal, during the HTMA meeting in Nepal.

Rewarding achievement

Subash Raj Upadhyay, Managing Director of Lumbini Seed Company in Nepal, recalls the early days of producing heat stress-tolerant hybrid maize seed in Nepal, which began in 2018. “Our journey started with just one hectare of seed production in 2018 and 2019, and we expanded to 30 hectares by 2022. This was the first time that we started hybrid maize seed production in Nepal, specifically RH-10, a heat stress tolerant hybrid from CIMMYT, released by the National Maize Research Program of Nepal. The support of USAID’s projects like the Nepal seed and fertilizer project was crucial for our success,” said Upadhyay, who was among the award recipients for setting a potent example in scaling up heat stress-tolerant hybrids.

HTMA TOOL- an infographic launched during the meeting (Photo-CIMMYT Nepal)

In addition to Lumbini Seed Company, Jullundur Seed Private Limited Company in Pakistan was also recognized for its efforts in seed scaling. The National Maize Research Program of Nepal and the University of Agricultural Sciences, Raichur, India, were acknowledged for their rewarding achievement in research and development during the project period.

“The recognition exemplifies the public-private partnership that we demonstrated under the HTMA project, where the public sector mainly focused on strategic research and product development, and seed companies took charge of seed delivery and scaling,” said Zaidi during the project’s phaseout meeting in Nepal, attended by over 60 participants from the project’s target and spillover countries. “Such partnership models need to be strengthened and replicated in other projects. It is important to consolidate the gains and maintain the momentum of the HTMA project in the years to come to benefit millions of smallholder farmers, echoed Prasanna, who presented certificates of recognition to the partners in the presence of USAID representatives, senior government officials from Nepal and project partners from South Asia and beyond.

Harnessing the benefits of commercial agriculture

Rajendra in the maize field (Photo: Deepa Woli, CIMMYT)

Rajendra Kathariya, a 41-year-old resident of Joshipur-2 in Kailali district, far-west of Kathmandu, has transformed his life and that of his family of five through commercial agriculture. Despite many challenges, Rajendra has remained committed to achieving financial sustainability through enhanced farming practices. Over the last two years, his partnership with Nepal Seed and Fertilizer (NSAF) and CIMMYT, in collaboration with Nisrau Multipurpose Cooperative, a partner cooperative of NSAF, has been instrumental in his success. 

Moving from traditional to modern farming

Previously, Rajendra cultivated cereal crops using traditional methods which often led to food crises for his family. However, he has now shifted to cultivating various crops throughout the year using modern farming techniques on his 1.02 ha of land and an additional 2.71 ha which he has leased. 

“Before NSAF’s support, we only cultivated two crops per year. Now we harvest three crops and are considering commercial maize production,” Rajendra said. 

Remarkable achievements in crop production

Last year, Rajendra cultivated rice on 3.72 ha, yielding 8.8 metric tons (t) worth NPR 250,000 (US $1,880.71). Similarly, he sold 3.8t of spring maize from 1.35 ha, earning NPR 110,000 (US $827.51). This year, he expanded maize cultivation to 2.03 ha, with an expected income of NPR 200,000 (US $1,504.57). His potato crop yielded 5.5t worth NPR 125,000 (US $940.35), with an additional 5.5t stored for future sale. 

In addition to crops, Rajendra has established a pig farm, earning NPR 400,000 (US $3,009.13) in 2023 from selling pigs. He received a feed-making machine for pigs from NSAF, under its support to agribusiness Micro, Small and Medium Enterprises (MSMEs).  

Embracing modern technology and techniques

Rajendra uses both organic and chemical fertilizers and follows improved farming techniques such as hybrid seeds, line sowing, and machinery use. He owns a mini tiller and rents other machinery as needed. This year, with support from NSAF, he used a drone to spray fertilizer on his spring maize, significantly reducing labor and time. 

“I have viewed videos of drones spraying fertilizer but never imagined it happening on my spring maize land. As a demonstration, 0.57 ha was used for nano urea spraying. The task was completed within five minutes of the drone taking flight. Similarly, I was astonished to learn that a drone can cover 2.02 ha in a mere 20 minutes,” he shared. 

Intercropping and future plans

Rajendra has also implemented intercropping, combining maize with legumes on a 0.10-hectare plot. “Spring maize-legume intercropping is productive and effective for farmers such as me. We can make a profit from legumes, as well as spring maize. I will continue using this practice in the future,” he said. 

Financial investments and community impact

The profits from agriculture have helped Rajendra to manage his household comfortably. He can now provide education for his four children, manage household expenses, and also pay the loan that he had taken for his household expenses. In addition, he recently invested NPR 250,000 (US $1,880.71) to build a new pig shed. He also sells his produce in local markets at Joshipur, Kailali.  

“I have travelled a long way from being a subsistence farmer to engaging in commercial farming. This shift from traditional to improved farming technologies has been made possible with the support of NSAF/CIMMYT. I am grateful for their assistance and encouragement,” Rajendra said. 

Vision for sustainability

Rajendra’s story reflects his dedication and hard work. “I was working as a daily wage laborer in India, hoping to secure a promising future for my children. Today, I can achieve complete sustainability through agriculture and provide quality education and a better life for my children,” he shared. 

Drone on maize field (Photo: by Shishir Sapkota, CIMMYT)

Greater successes through NARS partnerships

Map: BISA works with National Agricultural Research Systems (NARS) of South Asia to develop ACASA.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is different from many projects supported by our team. I would love to dive into the promising features of the ACASA platform and the exciting technical advances being made, but I want to focus here on how the Borlaug Institute for South Asia (BISA) has organized this program for greater and longer-term impact.

BISA is a strong regional partner and is the lead institution for the ACASA program. In fact, we could have simply asked BISA to build the ACASA platform and known they would make a great technical product. However, our goal is not just to have great technical products, but also to improve the lives of small-scale producers. For any great technical product to deliver impact, it must be used.

From day one, the ACASA program has not just kept the users’ needs in mind, indeed they have kept the users themselves engaged on the project. By establishing strong, financially supported partnerships with the National Agricultural Research Systems (NARS) in Bangladesh, India, Nepal, and Sri Lanka, they are achieving four key outcomes, among many others:

  1. Benefit from local expertise regarding national agricultural practices, climate risks, and solutions
  2. Leverage NARS connections to national and subnational decision makers to inform product requirements
  3. Establish national ownership with a partner mandated to support users of the product
  4. Strengthen climate adaptation analytics across South Asia through peer-to-peer learning.

These outcomes lead to more accurate and appropriate products, user trust, and the long-term capacity to maintain and update the ACASA platform. The latter being essential given the constantly improving nature of our understanding of and predictions around climate and agriculture.

If this model of working has such advantages over “if you build it, they will come”, you might wonder why we do not use it in all cases. This approach requires divergence from business-as-usual for most researchers and is not without a cost. The BISA team are not only putting deep emphasis on the technical development of this product, but they are also spending considerable time, effort, and budget to create a program structure where the NARS are catalytic partners. The NARS teams are empowered on the project to contribute to methodologies used beyond their national boundaries, they have the task of making the best data available and validating the outputs, the responsibility of understanding and representing stakeholder requirements, and the ownership of their national platform for long-term use. BISA has developed a structure of accountability, provided funding, facilitated team-wide and theme-specific workshops, and shared decision-making power, which all presents additional work.

In the end, we encouraged this approach because we see too many decision support tools and platforms developed by international researchers who merely consult with users a few times during a project. These efforts may result in building captivating products, meeting all the needs brainstormed by the research team, but their future is sitting in a dusty (and unfortunately crowded) corner of the internet. While this approach seems fast and efficient, the efficiency is zero if there is no value gained from the output. So, we look for other ways to operate and engage with partners, to work within existing systems, and to move beyond theoretically useful products to ones that are used to address needs and can be evolved as those needs change. BISA has been an exemplary partner in building and supporting a strong ACASA team, and we are eager to see how each NARS partner leverages the ACASA product to generate impact for small-scale producers.

Tess Russo is a senior program officer at the Bill & Melinda Gates Foundation, based in Seattle, United States.  

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Weather data and crop disease simulations can power predictions of wheat blast outbreaks, new study shows

Cutting-edge models for crops and crop diseases, boosted by high-resolution climate datasets, could propel the development of early warning systems for wheat blast in Asia, helping to safeguard farmers’ grain supplies and livelihoods from this deadly and mysterious crop disease, according to a recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT).

Originally from the Americas, wheat blast shocked farmers and experts in 2016 by striking 15,000 hectares of Bangladesh wheat fields, laying waste to a third of the crops. The complex interactions of wheat and the fungus, Magnaporthe oryzae pathotype Triticum (MoT), which causes blast, are not fully understood. Few current wheat varieties carry genetic resistance to it and fungicides only partly control it. Warm temperatures and high humidity favor MoT spore production and spores can fly far on winds and high-altitude currents.

Mean potential wheat blast disease infections (NPI) across Asia, based on disease and crop infection model simulations using air temperature and humidity data from 1980-2019. Black dots represent wheat growing areas with presumably unsuitable climates for wheat blast. The x and y axes indicate longitude and latitude.

“Using a wheat blast infection model with data for Asia air temperatures and humidity during 1980-2019, we found high potential for blast on wheat crops in Bangladesh, Myanmar, and areas of India, whereas the cooler and drier weather in countries such as Afghanistan and Pakistan appear to render their wheat crops as unlikely for MoT establishment,” said Carlo Montes, a CIMMYT agricultural climatologist and first author of the paper, published in the International Journal of Biometeorology. “Our findings and approach are directly relevant for work to strengthen monitoring and forecasting tools for wheat blast and other crop diseases, as well as building farmers’ and agronomists’ disease control capacity.”

Montes emphasized the urgency of those efforts, noting that some 13 million hectares in South Asia are sown to wheat in rotation with rice and nearly all the region’s wheat varieties are susceptible to wheat blast.

Read the full study: Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: Results from a continental‑scale modeling approach

Cover photo: Researchers take part in a wheat blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

Integrated initiative launches in Nepal, India and Bangladesh

TAFSSA inception workshops in Nepal, India and Bangladesh. (Credit: CIMMYT/CGIAR)

CGIAR, in collaboration with government agencies and other relevant stakeholders, held country launches of the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative in three of its four working locations: Nepal, India and Bangladesh.

TAFSSA, which also operates in Pakistan, aims to deliver a coordinated program of research and engagement, transforming evidence into impact through collaboration with public and private partners across the production-to-consumption continuum. The end result will be productive and environmentally sound South Asian agrifood systems that support equitable access to sustainable healthy diets, as well as contributing to improved farmer livelihoods and resilience, while conserving land, air and groundwater resources.

A vision for South Asian agrifood systems

The three country-level launch events provided a platform for CGIAR’S partners to discuss TAFSSA’s five key areas:

  1. Facilitating agrifood system transformation through inclusive learning platforms, public data systems, and collaborations.
  2. Changing agroecosystems and rural economies to increase revenue and sustain diverse food production within environmental constraints.
  3. Improving access to and affordability of sustainably produced healthful foods through evidence and actions across the post-harvest value chain.
  4. Addressing the behavioral and structural factors of sustainable healthy diets
  5. Building resilience and limiting environmental impact.

The three inception events in Nepal, India and Bangladesh also provided a space for open debate on creating partnerships to achieve common goals, through multidisciplinary conversation on each focal area. Breakout sessions were also held according to emphasis area, explaining the initiative and its components clearly and providing opportunities to brainstorm with participants on how to build more stakeholder-responsive activities.

More than 70 participants attended each inception session, both in-person and online, representing government agencies, CGIAR and its research centers working on TAFSSA, international organizations working in the region, academic institutions, and other key stakeholder groups.

Project endorsements

At the launch event in Nepal on June 9, Temina Lalani Shariff, regional director for South Asia at CGIAR, described TAFSSA as a gateway to the rest of CGIAR’s global research efforts. She explained, “More than 100 partners from around the world will exchange their knowledge, skills and expertise through CGIAR’s new platform to work together for agriculture development.”

Purnima Menon, TAFSSA co-lead and senior research fellow with the International Food Policy Research Institute (IFPRI), presented the project in India on June 15. “The research portfolio and engagement plan we’re proposing is really intending to cut across the food system,” said Menon. “We want to engage people in production systems, people in the middle of the value chain, and consumers, to build the research portfolio. The idea is to do so in a way that is interlinked with the five new CGIAR impact areas and that amplifies CGIAR’s research on the ground.”

Introducing TAFSSA in Bangladesh on July 18, Timothy J. Krupnik, Initiative lead and senior agronomist with the International Maize and Wheat Improvement Center (CIMMYT), stated, “The approach we’ve taken while developing this Initiative was to first look at agrifood crisis issues in South Asia. We evaluated key challenges in this region which has world’s highest concentrations of hunger and poverty.” He highlighted climate change, resource constraints and social structural inequalities, all of which will be addressed by TAFSSA through several focus areas.

Shaikh Mohammad Bokhtiar, Chairman of the Bangladesh Agriculture Research Council (BARC) welcomed these ideas at the TAFSSA Bangladesh launch. “If we want to create an intelligent society or nation, if we want sustainability, we must provide nutrition for all,” said Bokhtiar. “In this region, I believe that combining science, technology and innovation in the TAFSSA initiative will deliver good results.”

Shariff also attended the launch in Bangladesh, where she remarked, “We are here to share a common path to work together to confront the challenges. For that, cooperation is the essential component which is common across Nepal, India and Bangladesh.”

At each of the launch events, TAFSSA was announced as a flagship initiative in South Asia by Martin Kropff, managing director of Resilient Agrifood Systems (RAFS) at CGIAR. He expressed confidence that it would be the first regional program to deliver significant development results and acknowledged that the planned collaboration and partnership with national research institutes would ensure TAFSSA’s success.

Galvanizing food systems transformation in South Asia

Solar Powered Irrigation System in Bihar, India. (Credit: Ayush Manik)

In the race to make food production and consumption more sustainable, South Asia is key.

Home to one quarter of humanity — one-fifth of whom are youth — the region has the world’s largest concentration of poverty and malnutrition. While South Asia produces one quarter of the world’s consumed food, its agrifood systems today face formidable poverty reduction, climate change adaptation and mitigation, environmental health, and biodiversity challenges. Significant hurdles remain to secure an adequate and affordable supply of diverse foods necessary for sustainable and healthy diets.

South Asia’s predominantly rice-based farming systems are crucial to food security and political and economic stability, but parts of this region are threatened by unsustainable groundwater withdrawal — the region extracts one-quarter of global groundwater — due to food and energy policy distortions. South Asia’s farmers are both contributors to and victims of climate change and extreme weather that disproportionately affect resource-poor and women farmers.

The region needs food systems that generate profits and incentivize farmers to produce nutritious foods, while also reducing prices for consumers purchasing healthy products by shortening and reducing inefficiencies within value chains. A new CGIAR Research Initiative, Transforming Agrifood Systems in South Asia (TAFSSA), aims to address challenges.

Read the full article: Galvanizing Food Systems Transformation in South Asia

New CIMMYT maize hybrid available from South Asian Tropical Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce a new, improved tropical maize hybrid that is now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across rainfed tropics of South Asia and similar agro-ecologies. NARS and seed companies are hereby invited to apply for licenses to pursue national release and /or scale-up seed production and deliver these maize hybrids to farming communities.

Product Code CIM19SADT-01
Target agroecology Tropical, rainfed lowlands of South Asia
Key traits Medium maturing, single-cross hybrid; yellow, semi-dent kernels; high yielding; drought-tolerant; and resistant to TLB, FSR, and BLSB
Performance data Download the CIMMYT Asia Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 26 Aug 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrid, CIM19SADT-01, was identified through rigorous trialing and a stage-gate advancement process which started in 2019 and culminated in the 2020 and 2021 South Asia Regional On-Farm Trials for our South Asian Drought Tolerance (SADT) and Drought + Waterlogging Tolerance (SAWLDT) maize breeding pipelines. The product was found to meet the stringent performance criteria for CIMMYT’s SADT pipeline. While there is variation between different products coming from the same pipeline, the SADT pipeline is designed around the product concept described below:

Product Profile Basic traits Nice-to-have / Emerging traits Target agroecologies
SADT (South Asian Drought Tolerance) Medium maturing, yellow, high yielding, drought tolerant, and resistant to TLB and FSR FER, BLSB, FAW Semi-arid, rainfed, lowland tropics of South Asia, and similar agroecologies
FER: Fusarium Ear Rot; BLSB: Banded Leaf and Sheath Blight; FAW: Fall Armyworm; TLB: Turcicum Leaf Blight; FSR: Fusarium Stalk Rot

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Fall armyworm reported in India: battle against the pest extends now to Asia

A fall armyworm found on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)
A fall armyworm found on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)

The fall armyworm (FAW), Spodoptera frugiperda, a devastating insect-pest, has been identified for the first time on the Indian subcontinent. Native to the Americas, the pest is known to eat over 80 plant species, with a particular preference for maize, a main staple crop around the world. The fall armyworm was first officially reported in Nigeria in West Africa in 2016, and rapidly spread across 44 countries in sub-Saharan Africa.  Sightings of damage to maize crops in India due to fall armyworm mark the first report of the pest in Asia.

Scientists from the College of Agriculture at the University of Agricultural and Horticultural Sciences (UAHS) confirmed the arrival of the pest in maize fields within campus grounds in Shivamogga, in the state of Karnataka, southern India. Both morphological and molecular techniques confirmed the identity as FAW.

A pest alert published on July 30 by the National Bureau of Agricultural Insect Resources (NBAIR), part of the Indian Council of Agricultural Research (ICAR), further confirmed a greater than 70% prevalence of fall armyworm in a maize field in the district of Chikkaballapur, in the state of Karnataka.  Unofficial reports of incidence of FAW are rapidly emerging from several states in India, including Andhra Pradesh, Maharashtra and Telangana.

The pest has the potential to spread quickly not only within India, but also to other neighboring countries in Asia, owing to suitable climatic conditions.

Since the arrival of FAW in Africa in 2016, the CGIAR Research Program on Maize (MAIZE) has intensively worked with partners on a variety of fronts to tackle the challenge. At a Stakeholders Consultation Meeting held in Nairobi in April 2017, 160 experts from 29 countries worked together and developed an Action Plan to fight fall armyworm. The meeting was co-organized by the International Maize and Wheat Improvement Center (CIMMYT), the Alliance for a Green Revolution in Africa (AGRA) and the Food and Agriculture Organization of the United Nations (FAO), in partnership with the government of Kenya.

In early 2018 MAIZE, in partnership with the United States Agency for International Development (USAID) and other collaborators, released a comprehensive manual on effective management of this pest in Africa. The manual, “Fall Armyworm in Africa: A Guide for Integrated Pest Management,” provides tips on FAW identification as well as technologies and practices for effective and sustainable management.

Leaf damage from fall armyworm on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)
Leaf damage from fall armyworm on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)

“The strategies outlined in this manual can be of great importance to farmers in India when dealing with this insect pest. FAW is indeed one of the most destructive crop pests, and there is no option than to adopt an integrated pest management strategy to effectively tackle this complex challenge,” said B.M. Prasanna, director of MAIZE and the Global Maize Program at CIMMYT. “MAIZE and partners are dedicated to finding solutions to this problem that will protect the food security and incomes of smallholder farmers across Asia and Africa.”

Other regions are at risk as well. Researchers have warned of the potential impacts if FAW spreads to Europe, where customs inspectors have already reported having discovered and destroyed the pest on quarantined crops imported from Africa on several occasions.

Global experts on maize and key stakeholders in Asia will gather together in Ludhiana, India, on October 8-10, 2018, for the 13th Asian Maize Conference to discuss pressing issues to the crop across the continent, including the spread of fall armyworm. The conference, organized by the Indian Council of Agricultural Research (ICAR), the Indian Institute of Maize Research (IIMR), CIMMYT, MAIZE, Punjab Agricultural University (PAU) and the Borlaug Institute for South Asia (BISA), is expected to attract more than 250 participants from almost all the major maize-growing countries in Asia.