Skip to main content

Tag: soil science

SP Poonia

SP Poonia is a Lead Researcher with CIMMYT’s Global Wheat Program and Sustainable Agrifood Systems (SAS) program in India.

Through his work, he aims to feed nutritionally rich and safe food globally through best collective efforts for enhancing farming systems’ productivity with efficient resource use and the adoption of conservation agriculture-based preferred technologies at grassroot level.

CIMMYT at COP27

COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.

Gender and food security

In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.

Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.

The role of CGIAR genebanks in a climate crisis

Govaerts and Sarah Hearne, principal scientist, introduced the Agriculture Innovation Mission for Climate (AIM4C) innovation sprint on Fast Tracking Climate Solution from Genebank Collections, at a virtual side event organized by the Foundation for Food & Agriculture Research (FFAR).

Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.

Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.

The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.

The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.

Addressing soil fertility management

Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.

Along with 20 partners, CIMMYT submitted an AIM4C innovation sprint on climate-resilient soil fertility management by smallholders in Africa, Asia, and Latin America, which was announced at COP27 alongside other sprints.

Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.

Digital solutions for sustainable systems

Tharayil Shereef Amjath Babu, agricultural economist in modeling and targeting, hosted an event on Accelerating Digital Climate Services for resilient food systems in the Global South, exploring the work of two CGIAR Initiatives: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience and Transforming Agrifood Systems in South Asia (TAFSSA) on November 17.

In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.

Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)

Md. Saiful Islam

Saiful Islam is a Research Coordinator and Cropping Systems Agronomist with the Innovation Science for Agroecosystems and Food Systems in Asia research theme in CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh.

Currently, he has experiments run by local collaborators at over 50 farmers’ fields in the north-west region of Bangladesh. Capacity development with researchers, extension agents, and farmers is an important part of the team’s work. He and their team share results through publications, ranging from scientific articles to extension leaflets, and scale recommendations for farmers through the innovation networks.

Islam works closely with farmers, farmer organizations, national and international non-governmental organizations, and agricultural research and development institutions to help rural people with food and nutritional security for a given community.

Kh. Abul Khayer

Kh. Abul Khayer is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He conducts demonstrations, adaptive trials and field days, and coordinates participatory trails on major cereals, vegetables, oilseeds and grain legumes. He collects and reports on data from farmer participatory trials, and assists on monitoring and evaluation of project activities.

For the Cereal Systems Initiative for South Asia (CSISA), Khayer conducts training needs assessments and imparts formal and informal training to partners, farmers and service providers in cooperation with CSISA team members. He analyzes and creates the project scope and milestones.

Khayer interacts with and organizes meetings with various stakeholders and partners to discuss, streamline and aid the implementation of field activities. He facilitates partnerships with a wide range of clientele from public and private sector organizations, including farmers’ groups.

Mohammad Shahidul Islam

Mohammad Shahidul Islam is an agricultural development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh.

After graduating in agricultural science, Islam completed a masters in agronomy. He started his professional life with the Palli Karma Sahayak Foundation (PKSF) as a technical officer focusing on poverty reduction, rural service market development, and capacity development.

Islam has been with CIMMYT since 2014 and has a decade worth of experience in agricultural research and development, providing technical and/or management to support the design and implementation of project strategies considering agriculture mechanization, livelihoods, food security, and the empowerment of women. In addition, he has expertise in knowledge management, capacity building, integrated development communications and advocacy to develop and scale-up innovations, using people-centered and community-based development approaches to sustain against climate change penalties that develop their socio-economic condition.

K.M. Zasim Uddin

K.M. Zasim Uddin is an agricultural development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He has a masters in agronomy from Rajshahi University

He is part of projects including the Cereal Systems Initiative for South Asia (CSISA), Fall Armyworm R4D and Management (FAW), Big data analytics for climate-smart agricultural practices in South Asia (Big Data² CSA), and Climate Services for Resilient Development in South Asia (CSRD). His main responsibilities are research and development on agricultural mechanization for the CSISA Mechanization and Extension Activity (CSISA-MEA). He has participated in versatile training, workshops and conference programs across Asia.

Uddin has worked in different national and international non-government organizations and companies for more than 13 years, including in research and development at Syngenta Bangladesh Limited and on the Borga Chasi Unnayan Program at BRAC. He also worked as an agriculture officer under the Char Livelihood Program, funded by the United Kingdom Department for International Development.

Mustafa Kamal

Mustafa Kamal is a GIS and remote sensing analyst in CIMMYT, leading the GIS, remote sensing and data team in Bangladesh as part of the Sustainable Agrifood Systems (SAS) program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia.

Kamal’s core expertise is in earth observation and geospatial data science, scientific and cloud computing, webGIS, Unmanned Aerial Systems (UAS), advance landcover-landuse classification, and tool development. He contributes to research and innovation of irrigation and agro-meteorological advisory, crop identification and yield prediction, disaster and crop monitoring, landscape diversity, and climate analytics. He has published many peer-reviewed papers, reports, and training manuals, and provided teaching/training.

Kamal’s interdisciplinary background in urban and rural planning and disaster management helps him to integrate and lead an interdisciplinary team to provide solutions for sustainable agrifood systems.

Lokendra Khadka

Lokendra Khadka is a Research associate in the Sustainable Agrifood Systems (SAS) program in Nepal. He currently focuses on scaling inclusive and sustainable irrigation technologies in coordination with the public and private sector.

Lokendra’s research expertise expands from resource conservation technologies related to cereal based cropping systems to scale-appropriate farm mechanization and irrigation.

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Understanding the role of organic material application in soil microbial community structures

While previous studies have demonstrated the importance of organic material in soil for sustainable agricultural practices, there has been limited research into how organic material application affects the soil microbial community structures.

Researchers from El Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) studied soil from the International Maize and Wheat Improvement Center’s (CIMMYT) long-term experiment in northwestern Mexico to determine the effect on the soil metagenome after adding easily decomposable organic residues. The soil was collected from plots where maize and wheat were cultivated without tillage on permanent beds with crop residue left on the soil surface since 1992.

Dried young maize plants were added to the soil in the laboratory. After three days of incubation, soil samples were analyzed using shotgun metagenomic sequencing to discover how the application of young maize plants affects the structure of microbial communities in arable soil, how the potential functioning of microbial communities is altered, and how the application affects the soil taxonomic and functional diversity.

Bacterial and viral groups were strongly affected by organic material application, whereas archaeal, protist and fungal groups were less affected. Soil viral structure and richness were impacted, as well as metabolic functionality. Further differences were recorded in cellulose degraders with copiotrophic lifestyle, which were enriched by the application of young maize plants, while groups with slow growing oligotrophic and chemolithoautotrophic metabolism performed better in unamended soil.

Given the importance of embedding and adopting sustainable agricultural practices as part of climate change adaptation and mitigation, the study improves our insight in a key aspect of sustainable agriculture, the management of crop residues.

Read the full study: Application of young maize plant residues alters the microbiome composition and its functioning in a soil under conservation agriculture: a metagenomics study

Cover photo: Wheat crops growing at CIMMYT’s long-term experiment site in Ciudad Obregon, Mexico. (Credit: Nele Verhulst/CIMMYT)

Sieglinde Snapp

Sieg Snapp is the director of the Sustainable Agrifood Systems program at CIMMYT, which brings together global agricultural economics, systems analysis on agrifood innovations and agricultural systems for development in Africa, Asia and Latin America.

As a Professor of Soils and Cropping Systems Ecology at Michigan State University and Associate Director of the Center for Global Change and Earth Observations, she led research on sustainable farming, particularly for cereal-based, rainfed systems in Africa and North America.

Snapp first partnered with CIMMYT in 1993, when she developed the “mother and baby” trial design. This go-to tool for participatory research has developed farmer-approved technologies in 30 countries.

Snapp has partnered with local and international scientists to tackle sustainable development goals, improve livelihoods and farm sustainably. Her two hundred publications and text books address co-learning, ecological intensification and open data to generate relevant science.

New CSISA Infographic highlights the impact of the CIMMYT’s Soil Intelligence System (SIS)

In agriculture, good soil management is a pillar of productive systems that can sustainably produce sufficient and healthy food for the world’s growing population.

Soil properties, however, vary widely across geography. To understand the productive capacity of our soils, we need high-quality data. Soil Intelligence System (SIS) is an initiative to develop comprehensive soil information at scale under the Cereal Systems Initiative for South Asia (CSISA) project in India. SIS is led by the International Maize and Wheat Improvement Centre (CIMMYT) in collaboration with ISRIC – World Soil Information, International Food Policy Research Institute (IFPRI), and numerous local partners on the ground.

Funded by the Gates Foundation, the initiative launched in 2019 helps rationalize the costs of generating high-quality soils data while building accessible geo-spatial information systems based on advanced geo-statistics. SIS is currently operational in the States of Andhra Pradesh, Bihar and Odisha where the project partners collaborate with state government and state agricultural universities help produce robust soil health information.

Farmers are the primary beneficiaries of this initiative, as they get reliable soil health management recommendations to increase yields and profits sustainably while state partners, extension and agricultural development institutions and private sector benefit primarily by expanding their understanding for agricultural interventions.

Modern Soil Intelligence System Impact

CIMMYT’s SIS Project lead Balwinder Singh said, “The Soil Intelligence Systems initiative under CSISA is an important step towards the sustainable intensification of agriculture in South Asia. SIS has helped create comprehensive soil information – digital soil maps – for the states of Andhra Pradesh, Bihar and Odisha. The data generated through SIS is helping stakeholders to make precise agronomy decisions at scale that are sustainable.”

Since its launch in December 2019, a wider network and multi-institutional alliances have been built for soil health management and the application of big data in addressing agricultural challenges. In the three states the infrastructure and capacity of partners have been strengthened to leverage soil information for decision-making in agriculture by devising new soil health management recommendations. For example, in the state of Andhra Pradesh, based on SIS data and outreach, State Fertilizer and Micronutrient Policy (SFMP) recommendations were created. Similarly, soil health management zones have been established to strengthen the fertilizer distribution markets enabling farmers with access and informed choices.

“Soil Intelligence System delivers interoperable information services that are readily usable by emerging digital agricultural decision support systems in India”, noted Kempen Senior Soil Scientist at ISRIC.

The three-part infographic highlights the impact of SIS initiative in the select three States and emphasizes the importance of SIS in other parts of the country as well.

Abel Saldivia Tejeda

Abel Saldivia Tejeda is an agronomist at CIMMYT Headquarters in El Batán, Mexico, where  he oversees field experimentation for conservation agriculture-based trials and testing of post-harvest storage technologies.

Saldivia also works with local research partners at different sites in north and central Mexico for the development of sustainable crop management practices and post-harvest technologies.

Tesfaye Shiferaw Sida

Tesfaye Shiferaw Sida is a multi-disciplinary researcher, educator and R&D practitioner emphasizing on production ecology and resource conservation. He currently holds a Scientist position at International Maize & Wheat Improvement Center (CIMMYT). He organizes and runs projects that facilitate the delivery of agronomy-at-scale solutions, create links among institutions in digital decision support systems, assist implementation of next generation agronomy at scale innovations and nurture internal efficiencies for demand-driven R&D in agronomy.

He is passionate for data-driven decisions, hence proficient in advanced data analytics and programing tools including Python, R, ArcGIS, and more. He is experienced with dynamic systems modeling tools such APSIM, FARMSIM, STELLA and SMILE. He aspires to link hands-on, on-farm and practical experiences to the emerging big data and digital capabilities to assist smallholder farmers benefit from the ‘digital revolution’.

Gustavo Teixeira

Gustavo Teixeira is an Automation and Mechanization Lead with CIMMYT’s Excellence in Breeding Platform.

As a Breeding Operations and Phenotyping module leader, he provides evaluation of breeding program operations according to continuous improvement and operational excellence methodologies and lead initiatives to improve CGIAR and National Agricultural Research Systems (NARS) breeding operations capacities.

Teixeira is an expert in agriculture engineering, processes, mechanization and automatization. He has over 15 years of experience in the private sector, including as Automation Manager for R&D in Latin America at Syngenta.