Skip to main content

Tag: smallholder farmers

Can organic fertilizers rebuild Zimbabwe’s fragile soils?

(Tracy Chokurongerwa and Atlas representative in her trial plot (Photo: CIMMYT)

“Our soils are exhausted. Even the best hybrid seed won’t yield much without nutrients. Organic fertilizers give us hope, but are they affordable and available? We need to understand our soils and make informed choices. This is an agrarian district; water isn’t scarce, but good soil is,” lamented Mrs. Munyoro, a district local authority official in Murehwa.

These words reflect a difficult reality confronting many smallholder farmers in Zimbabwe’s dryland farming regions: the urgent need to restore soil health in an increasingly fragile climate. With nearly 70% of the soils in districts like Murehwa and Mutoko classified as sandy, low in organic carbon, and prone to nutrient leaching, the potential for long-term productivity is steadily declining. Compounding this challenge is a decline in livestock populations due to disease, which reduces access to cattle manure, once a dependable source of organic nutrients.

To respond to these issues, the Resilience Building through Agroecological Intensification in Zimbabwe (RAIZ) project, led by the research consortium CIMMYT, is conducting field trials targeting soil fertility enhancement strategies that align scientific rigor with local practicality. These trials explore how conservation agriculture (CA) techniques and various organic fertility inputs—ranging from traditional manure to market-supplied products like Bokashi, Atlas orgfert (organic D), Orgfert, and Vermicompost—can sustainably improve soil fertility, structure, microbial health, and ultimately yield outcomes.

But why do these trials matter? The market is increasingly saturated with organic fertilisers, which offer both opportunities and dilemmas for smallholder farmers. From ZimEarthworms’ vermicompost, Bokashi, Orgfert, and Atlas orgfert (organic D) gaining visibility, questions remain around their affordability, accessibility, and context-specific performance. Farmers continue to rely on cattle manure where available, but rising livestock mortality, including from theileriosis (commonly referred to as January disease), is limiting this resource.

The RAIZ trials go beyond measuring yield data—they also evaluate farmer appreciation, labor requirements, and cost-effectiveness. Moreover, local authorities emphasize the importance of understanding how different organic inputs influence nutrient cycling, soil microbial activity, and overall soil fertility dynamics over time.

With several companies producing organic inputs, and cattle manure being a traditional staple, the big questions remain: What works best? What can farmers afford? And how can the findings shape broader adoption? This integrated approach is critical for guiding broader adoption of sustainable practices in Zimbabwe’s farming systems, where poor granite-derived sandy soils of low organic matter and low pH constitute up to 60% of the country’s arable land.

Insights from the Field

The farmer-led trial by Tracy Chokurongerwa in Murehwa offered compelling insights into the comparative value of organic inputs under both conventional and CA management, including intercropping setups such as maize–cowpea combinations. Treatments across plots were standardized to include five organic amendments: Vermicompost, Orgfert, Atlas orgfert (organic D), Bokashi, and cattle manure.

An aerial view of the experimental plot on organic soil amendments in Murehwa Ward 28 (Photo: CIMMYT)

Bokashi showed notable improved performance compared to the previous season, while Atlas orgfert (organic D) emerged as the preferred input by farmers based on visual crop vigor and yield observations. ZimEarthworms’ vermicompost performed particularly well when combined with Compound D fertilizer, suggesting synergistic effects between organic and synthetic inputs. However, challenges with land topography and water retention reinforced the need for supporting practices such as contour ridges, stormwater diversion channels, and timely land preparation.

In another trial, one farmer tested intercropping with pigeon pea and echoed the preference for Atlas orgfert (organic D). A separate rate trial examined the impact of increasing organic input volumes, revealing a positive yield response under CA systems, although erosion risks on sloped terrain were a concern—emphasizing once again the importance of land and water management.

In Mutoko, trials faced additional variables. Termite infestation was notable in one plot, aggravated by water runoff and poor mulch management. However, plots that utilized decomposed leaf litter mulch showed better moisture retention and stronger crop establishment under conservation agriculture practices. At some sites, the differences between CA and conventional till plots were striking to all visitors, clearly demonstrating the regenerative capacity of CA-based systems.

These examples illustrate how site-specific conditions—such as slope, soil type, and mulch availability—heavily influence the outcomes of soil fertility interventions. Importantly, researchers noted that marginal land allocation for trials (often the only land farmers can offer) can limit replicability and yield potential, highlighting the tension between field research conditions and real-world farming constraints.

Highlights of the 2023/24 Season

The 2023/24 season was a year of experimentation and learning for the RAIZ project, as farmers diligently undertook the targeted trials with recommended organic fertilizer rates and conservation agriculture (CA) methods. A total of 51 farmers participated in farmer-led experiments, with 30 testing standard or recommended rates of organic amendments under CA techniques, and 21 evaluating different organic fertilizer rates. Six decentralized learning centers hosted demonstrations on maize variety performance, CA principles, sorghum, and manure use, providing a platform for peer learning and knowledge exchange.

Despite erratic rainfall ranging from 250 to 500 mm, the trials delivered critical insights into what works and where. Results showed limited maize harvests, while the trials emphasized understanding which soil amendments are most effective across different areas. This approach helps farmers avoid costly fertilizer investments by identifying locally affordable and sustainable soil enhancement options. The need for early land preparation and strategic planning at the start of the season was a key takeaway, particularly in the face of climate unpredictability and ongoing soil degradation.

Reflections from the Ground

One of the strongest messages from both farmers and stakeholders was a call for continuity. Participants appreciated the way research was embedded within farmer realities and stressed the importance of scaling the initiative. Farmer engagement from the outset, coupled with co-implementation of trials, has fostered a sense of ownership and trust.

A particularly telling observation was the presence of witchweed in conventional maize plots, reinforcing the importance of integrated soil fertility management and diversified cropping systems. Such findings not only validate CA and organic input combinations but also contribute to a growing body of evidence on how to manage parasitic weeds through ecological approaches.

With community trust, scientific insight, and early success stories in hand, the pathway to broader adoption of organic-based soil restoration strategies is becoming clearer. However, sustained support, adaptive extension services, and inclusive learning platforms will be critical to maintain momentum. For districts like Murehwa and Mutoko, soil health is the limiting factor—but with the right inputs, the right knowledge, and continued collaboration, smallholder farmers can rebuild the fertility foundation of their lands, and with it, secure the future of rural livelihoods.

Rita Devi’s Small Farmers Large Field model revives agriculture in Bihar

Above: Farmers carrying potatoes harvested from the field (Photo: TAFSSA)

Bihar’s economy is driven by agriculture, which employs more than half of the workforce. With a yield of 27,654 kg per hectare from 330,000 hectares of land, Bihar accounts for 17% of India’s total potato production, behind only Uttar Pradesh and West Bengal. But the agricultural land is fraught with challenges: small and marginal farmers, who on average own less than 2 hectares of land, account for 97% of the landholdings. This creates less-than-ideal conditions for productive agriculture.

In Bihar’s largest potato-producing belt, a plethora of challenges make farming unprofitable: bottlenecks in getting good quality seeds, unaffordability of pesticides and fertilizers, the prevalence of crop pests and diseases, poor market prices at harvest time, and inadequate knowledge of good agronomic practices—all lead to lower net returns. Nalanda’s farmers are finding ways to make farming more profitable, productive, sustainable, and rewarding.

If this does not happen, farming will soon cease to be a lucrative—or even viable—livelihood.

Rita Devi, a 47-year-old farmer from Bihar, is one of 103 innovative farmers demonstrating new ways to tackle agricultural challenges through the Small Farmers Large Fields (SFLF) project, implemented by Transforming Agrifood Systems in South Asia (TAFSSA) in partnership with the International Potato Center (CIP).

Rita Devi inherited an acre of land after her husband’s prolonged illness and demise during the COVID-19 pandemic three years ago.

But she can’t imagine a world in which farming is a sustainable livelihood for her or future generations. “It’s hard to see profits in agriculture,” she sighs. “As long as the land size is small, how can the profits increase? The profits remain tiny, too.” For small farmers like Rita Devi, who are financially precarious, farming is neither a lucrative livelihood nor an aspirational lifestyle.

Rita Devi saw a glimmer of hope in the form of the SFLF program when she saw some people touring the village in September 2022, talking about farming in a new light.

Aggregation as a solution to farmers’ woes

In the field, TAFSSA staff at the International Potato Center (CIP), with support from the NGO Jeevika, mobilized farmers to pilot the SFLF collective action farming model.

Under the SFLF model, participating farmers organize themselves into groups to increase their collective bargaining power.

They buy inputs and secure farm services collectively from providers and achieve significant savings through bulk purchases; they improve their production practices and use quality seeds. Ultimately, their crops receive a premium for quality and volume.

The TAFSSA team planned to spread knowledge about improved farming practices among farmers and then use their collective bargaining power to procure better resources and prices. They started the initiative with training sessions.

Rajiv Ranjan, TAFSSA’s field coordinator and a farmer, said, “Varietal knowledge of seeds and crops was inadequate among farmers. They had no idea about the new varieties or how the different varieties performed.”

The training sessions combined presentations and interactive discussions with farmers, using visual aids such as photos and diagrams to enhance understanding. Key topics included field and seed preparation, high-yielding and disease-resistant crop varieties, irrigation optimization, and precision fertilizer application. Farmers also learned about preventive and reactive approaches to weed and disease management, and post-harvest handling and storage techniques.

Better seed quality means better yields. Better bargaining power helped farmers get a better price for their crop (Photo: TAFFSA)

Connecting with farmers through the Small Farmers Large Fields pilot

Rita Devi decided to attend the training sessions in December 2022 to learn more about farming and explore how this new knowledge would help her reduce the costs of farming. Her main motivation was to improve her crop yield, which would be financially rewarding.

When TAFSSA staff first entered the villages and interacted with the farmers, many of them had their doubts about the interventions. International Potato Center (CIP) staff continued to meet with farmers in the villages and explain the benefits of collective farming. In the beginning, a few large farmers joined the program, and this led to the adoption of the practices by other small farmers. Trust was built over time.

The International Potato Center (CIP) developed a comprehensive Package of Practice (PoP) with illustrations of key field operations, major pests, and diseases. Accompanied by concise guidelines on input application methods, fertilizer and pesticide dosages, and timing during the crop cycle, the PoP was translated into Hindi, printed as a leaflet, and distributed to farmers in both pilot sites. Designed as a quick reference guide, the leaflet helps farmers with all aspects of potato and seed production, including efficient pest and disease identification and management.

Rita Devi recalls receiving information on water conservation, optimizing fertilizer dosage, and pest control, all of which led to monitored and restricted input use and financial savings.

“Now we know the correct amount of fertilizer dosage, and could save money,” said Rita Devi, who joined the pilot program in the rabi season of 2023–24 and implemented lessons she learned in the training and demonstrations. The financial savings were tangible and motivated her to move forward.

One of the lessons learned by her community is how to optimize irrigation for rabi potato, which requires five to six irrigation cycles in the region. The CIP team gave clear instructions on when these cycles should take place: first light irrigation 5–10 days after planting to cover one-third of the ridge, on-demand irrigation covering half of the ridge in subsequent cycles, stopping irrigation 8–10 days before harvest, and avoiding waterlogging at all times.

Farmers engaged in growing and harvesting potatoes (Photo: TAFFSA)

Harnessing collective strengths

The SFLF initiative aimed to strengthen farmers’ bargaining power by improving supply chain integration. A key focus was to help farmers collectively procure quality inputs such as seeds and fertilizers from reliable and affordable sources. High-quality seeds were sourced directly from Punjab, replacing expensive, substandard local options. Negotiated prices and proper storage ensured that farmers in Nalanda had seamless access to these resources. Similar arrangements were made for fertilizers and pesticides.

Rita Devi is a passionate supporter of the initiative for its financial and operational benefits. “Even if no one else makes the provision, we will form a farmer group to procure seeds from Punjab,” she asserts, reflecting the project’s effectiveness. Her determination shows how collective action and better linkages can empower smallholder farmers and optimize their farming practices.

In another exercise, Rita Devi tested crop diversification. After harvesting potatoes, she planted maize and moong beans on her farm to increase her farm income.

Farmer engaged in growing and harvesting potatoes (Photo: TAFFSA)

SFLF’s tangible and intangible impact

Ranjan attests to a noticeable change in farmers’ confidence: “SFLF has helped farmers by increasing knowledge and income. Information from local experts in the village and neighbouring villages also helped the farmers. Earlier, farmers were afraid of the quality of seeds they bought from the market. With the CIP linkages, they get assured quality and variety of seeds.”

With better seed quality and improved farming practices, Rita’s income from crops has improved. However, her profit is limited to the small plot. She is resourceful in her income generation: she plans to sell the surplus seed she has acquired to farmers during the rabi season in 2024.

Most farmers in the SFLF program have roughly doubled their incomes and net returns, after adjusting for production costs, compared to non-SFLF farmers.

Rita Devi hopes that as word spreads about the positive impact on yields and market values, more farmers will join the SFLF model. Additionally, subsequent seasons of the pilot will help refine the model to address all the prevalent issues they face.

Sowing knowledge, Reaping impact: Lydia’s journey from trial farmer to community leader in Monze, Zambia

Lydia Siankwede explaining her mother trial demonstration to agronomists, sharing insights and results (photo: CIMMYT)

An early morning walk across the fields in Zambia’s Southern province, one is met with maize fields infested with fall armyworm. In contrast to last season’s El Nino induced drought, and as we approached Lydia Siankwede’s field, one is met with her thriving maize and legume field, with its deep-green canopy signaling strong growth and optimal soil health in her crop.

Each morning, Lydia tends to her field with an inquisitive mind, clutching her protocol, which serves as a guide for daily tasks. The dew clings to her shoes as she inspects each plot, checking crop performance, scouting for pests, and noting observations in her trial protocol. Yet beneath this plant vigor, a silent threat lurks—fall armyworm, its larvae discreetly feeding on tender maize leaves.

Her field, which hosts a mother trial under the EU-funded Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) program, is a patchwork of promising technologies. A mother trial is a farmer-managed, researcher-led experiment that serves as a central site for testing a variety of agricultural treatments under controlled conditions.

Mother trials are part of a mother-and-baby trial approach—a participatory research model designed to test and disseminate new farming technologies while involving farmers in the evaluation process. The approach involves mother trials and baby trials. Baby trials are farmer-managed trials conducted across multiple locations, usually in individual farmers’ fields. Each participant chooses a subset of treatments from the mother trial to test in their own field under specific local conditions. In these mother-and-baby trials, science meets farmer reality, and knowledge grows with every season.

Across the Southern Province, mother-and-baby trials are part of a broader research effort to develop crop intensification practices tailored to smallholder farming systems. In Kazungula Camp, where rainfall is low and erratic, the focus has been on integrating livestock and crop systems, rotating maize with fodder legumes like mucuna and lablab. In other communities, experiments are ongoing with integrating soybean into the maize-based cropping systems and intensifying them with pigeon pea and Gliricidia, both leguminous shrubs that provide fodder and enhance soil fertility. Each treatment is carefully monitored across experimental plots over several seasons to assess its effect on yields, soil health, pest pressure, and its longer-term impact in light of a changing climate.

Lydia, a hardworking farmer with 11 hectares of cultivable land, began her journey as a baby trial implementer, testing a single conservation agriculture (CA) practice in her own field. But her passion for learning and strong work ethic quickly set her apart. Within three years, she transitioned to managing a full-scale mother trial, giving her the opportunity to test a wider array and bundle of technologies across a larger plot. Today, Lydia experiments with crop rotations, intercropping, and fodder management—practices designed to boost productivity for humans, soil, and animals; build resilience; and reduce reliance on chemical inputs.

A maize–velvet bean (mucuna) rotation aimed at improving maize yield, soil fertility, and fodder production in Southern Zambia. (Photo: CIMMYT)

What do the agronomic results bring to the table?

Each season, unique by nature, has brought valuable lessons, with promising long-term results. Since 2021, more than 1,200 farmers in Kazungula Camp, including Lydia, have adopted CA-based crop rotations beyond the trials. While yield gains for maize and legumes are not always immediate, economic analyses consistently show that CA systems generate higher returns compared to conventional tillage systems with sole maize cropping. This proved especially important in years such as 2023/24, when rainfall barely reached 373 mm due to an unprecedented El Niño year. In Kazungula, trials on maize–mucuna strip cropping and maize–lablab rotations showed resilience, with farmers expressing strong interest in growing more fodder and advancing seed multiplication for these crops.

Her reality on-farm

For Lydia, these trials are more than research—they are a valuable tool for transformation. What impressed her most was the maize–lablab rotation. “It’s a game changer for me,” she says. “Lablab suppresses weeds, improves the soil, and even the leaves and pods are useful to eat as relish.” Although lablab is primarily cultivated as animal feed, Lydia’s family has started to enjoy lablab as part of their diet, reducing food costs and increasing nutrition.

In addition, the strip cropping of alternating four rows of narrowly planted maize with four legume rows has also impressed her, especially in terms of weed management. “Weeds are easier to manage, and although armyworm damage is present, it is not destructive,” she explains.

Her determination has grown with each season. Last year, Lydia harvested just 50 bags of maize from scattered parts of her trial field. But instead of pulling back, she leaned in. This season, with better planning and deeper knowledge, she expects to harvest up to 300 bags—enough to feed her household of seven and still have a surplus to sell.

Lydia’s story highlights how participatory research can empower farmers to lead change from the ground up. With access to the right knowledge, support, and tools, she is not merely surviving uncertain seasons—she is farming with purpose.

Scaling conservation agriculture: Victor Munakabanze’s journey from trials to transformative adoption

Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)

Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.

This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.

In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.

The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legume intercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.

A Champion in the Making

Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.

Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.

From Experimentation to Expansion

Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.

However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 mÂČ. The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.

Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.

Inspiring Adoption, One Farmer at a Time

Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.

CIMMYT drives wheat production systems and enhances livelihoods in Ethiopia’s Lowlands through the ADAPT-Wheat Project

Away Hamza, a young and ambitious farmer in Arsi Zone, Oromia region, proudly tends to his wheat field (Photo: CIMMYT)

Wheat plays a pivotal role in Ethiopia’s agricultural landscape. As the country’s second most important staple crop, it is crucial to national food security. Traditionally, wheat cultivation has been concentrated in Ethiopia’s highlands, but this has changed with the introduction of the ADAPT-Wheat project—an initiative designed to address the production challenges faced by Ethiopia’s irrigated lowland areas. Led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR), the project aims to tackle key issues such as the lack of stress-tolerant wheat varieties and limited access to reliable seed sources.

Transforming wheat farming in Ethiopia’s lowlands

The Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project focuses on bridging critical wheat production gaps and introducing innovative solutions for smallholder farmers, particularly in the Afar and Oromia regions. By improving wheat production through new varieties and modern technologies, the project is not only increasing agricultural productivity but also transforming farmers’ livelihoods. The initiative aims to directly benefit 1,000 households, with a much wider impact expected across the two regions.

Financially supported by BMZ, the project aligns with Ethiopia’s broader goal of achieving food self-sufficiency. Researchers and national partners have witnessed a significant shift in wheat production practices, demonstrating the success of innovative agricultural technologies and improved collaboration among stakeholders.

Insights from researchers and partners

Bekele Abeyo, CIMMYT-Ethiopia Country Representative and project leader:

“The ADAPT-Wheat project marks a major milestone in Ethiopia’s wheat production journey. It introduces viable wheat technologies that are well-suited for the irrigated lowlands, enhancing both production and productivity in the pursuit of food and nutritional security.” 

Tolossa Debele, senior researcher and EIARDG representative:

“For years, CIMMYT has been instrumental in advancing Ethiopia’s wheat production system by introducing germplasm, improving varieties, and offering financial, equipment & technical support and training for both researchers and farmers. With the ADAPT-Wheat project, we’ve seen another tangible difference in the livelihoods of smallholder farmers, particularly in the Afar and Oromia regions. The project’s support, including the introduction of modern farm machinery, has not only enhanced mechanization at the farm level but has also contributed significantly to the broader objectives of national agricultural development.”  

Tolossa Debele, senior researcher and EIAR-DG representative (Photo: CIMMYT)

Major milestones and achievements

1. Building capacity for sustainable change

One of the project’s most significant accomplishments has been its strong emphasis on capacity building—both human and physical—to empower local communities in wheat farming. Key capacity-building initiatives include:

  • Training for researchers: Software and scientific writing training to enhance technical skills and scientific contributions.
  • Training of trainers (TOT) for agricultural experts: Development agents and district-level subject matter specialists were trained to share knowledge with farmers.

The project also included seed distribution, experience-sharing visits, and field days to disseminate knowledge and encourage peer learning. A notable outcome has been informal seed exchange among farmers, amplifying the project’s impact.

Through these efforts, the project successfully reached approximately 4,300 households and engaged a wide range of stakeholders, contributing to human capacity development, seed production and distribution, technology diffusion, and sustainable farming practices.

Additionally, infrastructure development—such as the construction of a quarantine facility and installation of air conditioning units at the Werer Research Center—has strengthened research capacity and maintained high standards for agricultural innovation. The procurement of essential farm machinery has also set the stage for more sustainable wheat farming in Ethiopia’s lowlands.

2. Introducing elite wheat lines

The project introduced 505 elite bread wheat lines and 235 durum wheat lines. From these, 111 bread wheat and 49 durum wheat genotypes were identified for their promising traits, including heat stress tolerance, early maturity, and superior yield components. These lines were rigorously tested across diverse agroecological zones to ensure adaptability.

3. Demonstrating modern irrigation technology and mechanization

The project didn’t stop at improving wheat varieties—it also introduced modern mechanization practices to enhance efficiency and yield. In the Afar and Oromia regions, pilot farms demonstrated advanced machinery such as:

  • Subsoilers
  • Bailers
  • Land levelers
  • Planters
  • Ridge makers
  • Multi-crop threshers

These technologies have been showcased at various farm sites to facilitate adaptation and scaling.

4. Releasing and adapting wheat varieties

The project identified eight wheat varieties (four bread wheat and four durum wheat) suited for Ethiopia’s lowland irrigated conditions.

Additionally, two new wheat varieties—one bread wheat and one durum wheat—were officially registered and released for large-scale production. These releases mark a significant milestone in Ethiopia’s efforts to strengthen wheat production systems.

5. Seed production and distribution

Ensuring the availability of high-quality seeds has been another key priority. Through partnerships with research centers, early-generation seeds were provided to private seed producers and farmers’ cooperative unions. Field monitoring ensured seed quality at harvest, resulting in the production of 430 quintals of certified seed.

Women and youth empowerment strategy

The ADAPT-Wheat project has made a deliberate effort to empower women and youth by ensuring they have access to high-quality seeds, training, and technical support. Notably, women comprised 32% of seed distribution beneficiaries, strengthening their role in improving food security and livelihoods.

Voices from the field: Farmers share their stories

Damma Yami from Jeju district, Alaga Dore village

Farmer Damma Yami, has carefully monitors her thriving wheat crop as it nears harvest (Photo: CIMMYT)

Damma Yami’s story is a powerful example of how innovative agricultural initiatives can transform communities, especially in regions facing harsh environmental conditions.

“For many years, we have lived in arid conditions where livestock farming was our primary livelihood. However, with the challenges posed by weather trends, our traditional systems were no longer sufficient to maintain our livelihoods. The introduction of the ADAPT-Wheat project in recent years has reversed this trend. The project brought us wheat cultivation, as a new and golden opportunity for the farming community. We received high-yielding seeds, training, and technical support on farming practices, and soon we began to see impressive results. The benefits of the project are clear: it provides food for our families, generates income to send children to school, and helps meet other basic needs. As a farmer who engaged in this project, I can confidently say that the project has reshaped our future livelihood.”

Yeshiwas Worku from Oromia region, Arsi Zone, Merti district, Woticha Dole village

Farmer Yeshiwas Worku actively monitoring the growth and performance of his wheat crop on his plot, ensuring optimal results through the support of the ADAPT project (Photo: CIMMYT)

Yeshiwas Worku, a 40-year-old farmer was among those who benefited from the project.

Yeshiwas explains that before the project, wheat cultivation was not traditionally practiced in his area, but it has now become a game-changer for the community. The introduction of modern farming tools, machinery, and access to improved crop varieties has been key to their success. With the help of the project, wheat production has not only become their main source of income but has also helped farmers gain confidence in their ability to sustain their livelihoods.

“We are now familiar with modern farming tools, machines, and practices thanks to the implementing partners of the ADAPT project. We also have access to improved crop varieties, which are crucial for better production and increased income. Now, wheat production has become the main source of our livelihood. This alternative farming opportunity has not only boosted our confidence but has also allowed us to secure a more sustainable livelihood for my family and me. I am deeply grateful to the project implementing partners for playing such a crucial role in transforming our lives. The impact has truly been transformative.”

A transformative impact on wheat production

The ADAPT-Wheat project, alongside CIMMYT’s ongoing work in Ethiopia, has significantly improved wheat production systems and enhanced the livelihoods of smallholder farmers in the lowland regions. More than just a This project is technological intervention, the project serves as a lifeline for smallholder farmers. By introducing innovative wheat technologies, improving seed availability, and empowering local communities, it directly contributes to Ethiopia’s food security goals while fostering economic growth and resilience in rural areas.

As Ethiopia continues its journey toward agricultural self-sufficiency, the success of the ADAPT-Wheat project serves as a model for sustainable agricultural development.

Scaling Conservation Agriculture-based Sustainable Intensification in Ethiopia (SCASI): Empowering Farmers and Engaging Development Partners

This image illustrates one of the SCASI’s practices – mulching – in the Wolaita Zone. Mulching is key to improving soil health, conserving moisture and increasing crop productivity in sustainable agriculture (Photo: CIMMYT)

Ethiopia faces increasing challenges from climate change, including erratic rainfall, soil erosion and longer dry seasons. With a rapidly growing population of more than 120 million, the country’s agricultural systems and natural resources are under considerable pressure. To address these challenges, the Scaling Conservation Agriculture-based Sustainable Intensification (SCASI) project, launched in March 2022 and implemented by CIMMYT and CFGB networks with the financial support from the Development Fund of Norway, offers a promising solution. SCASI integrates Conservation Agriculture-based Sustainable Intensification (CASI) practices to improve productivity while conserving natural resources. 

The SCASI initiative is an exemplary model of how holistic agricultural approaches can enhance crop productivity, improve soil health, and build resilience to climate change in Ethiopia. Here’s an overview of the project’s key components and impacts.  

Key components of CASI

CASI is a comprehensive production system in which conservation agriculture (minimum tillage, covering the soil surface with mulch and use of cereals and legumes in the form of intercropping or crop rotation) is combined with improved seeds, application of recommended organic and inorganic fertilizers, use of best management practices (recommended seed rate, timely weeding, proactive pest management, etc.) to increase productivity per unit area while improving the health of the production environment (soil, climate, fauna and flora and biodiversity). CASI also includes practices that help optimize the mixed crop-livestock systems by reducing the competition for crop residues through the promotion of alternative fodder crops, alley cropping, agroforestry and other locally adapted innovations. 

Implementation across Ethiopia

  • Targeted Regions: The initiative was implemented in eight districts in the Amhara, Oromia, Benishangul-Gumuz, and South Ethiopia regions, each with unique agricultural contexts.  
  • Direct Impact: Approximately 15,000 households (more than 75,000 smallholder farmers) have directly benefited, been capacitated, and gained access to sustainable practices that improved their productivity and livelihoods. 
  • Partnership: Creates a unique partnership between national institutions, international organizations, and NGOs to support and strengthen national capacity to demonstrate and scale up CASI practices. Implements a collaborative and inclusive process in which partners contribute based on their expertise, capacity, and thematic focus. 

How do we implement SCASI?

This is a well-managed plot in Baro village, Ura district, illustrates the key components of the SCASI project in Benishangul Gumuz. The effective implementation of sustainable agricultural practices is evident, reflecting the positive impact on productivity, diversification and soil health (Photo: CIMMYT)

The SCASI project uses an approach that integrates collaborative partnerships, with CIMMYT leading action research, the Ministry of Agriculture and regional offices aligning policy, and NGOs (CFGB, FHE, TDA, MSCFSO) engaging communities. It is supported by a comprehensive implementation framework that includes large-scale demonstrations to illustrate the benefits of CASI, action research to adapt practices to local needs, and capacity building to empower farmers and stakeholders for sustainable adoption and scalability. 

CIMMYT’s researchers, provide action research findings that highlight the multifaceted approach of the SCASI initiative, which focuses on context-specific solutions to improve agricultural productivity and sustainability in Ethiopia. Birhan Abdulkadir, SCASI project leader and agronomist at CIMMYT, said, “We conducted a comprehensive participatory assessment to identify the major production constraints in the 40 kebeles and developed site-specific packages from the combinations of CASI practices. These were implemented in mega demonstrations on host farmers plots with close support from CGFB networks and BoAs. We facilitated access to inputs and provided technical backstopping.”  

The project also uses farmer-centered approaches to promote the practices. Host farmers train other farmers and share knowledge and skills through farmer field schools (FFS), self-help groups (SHG), various farmer social networks and media. All these scaling efforts are coherent, inclusive and effective in different contexts and have played a crucial role in catalyzing the adoption and scaling up of CASI practices over the past nearly three years.  

The merits of SCASI 

The SCASI project has had a significant impact in Ethiopia, particularly in helping farmers improve productivity and soil health. As evidence of the project’s effectiveness in addressing the challenges farmers face, Birhan Abdulkadir noted that by adopting minimum tillage and using crop residues as mulch and compost, among other recommended practices, farmers have dramatically increased their maize yields. This approach not only improves productivity and soil health but also saves time on weeding and reduces production costs. 

In August 2024, a delegation of donor representatives and implementing partners visited the Benishangul Gumuz Region and Wolaita Zone for a joint monitoring and evaluation field visit. This visit provided valuable insights into the impact of the project in Ethiopia. Interacting with technology adopters and government partners, the team observed positive results and encouraging examples of how the project is improving agricultural practices. These interactions highlighted the benefits of the interventions, reinforcing the project’s effectiveness in improving farmers’ livelihoods and promoting sustainable practices in the region. In total, 3,700 hectares of agricultural land in the Asosa zone are now using SCASI, demonstrating the project’s widespread impact. 


Mr. Bobeker Holeta, Head of the Benishangul Regional State Bureau of Agriculture, emphasized the commitment to understanding the SCASI project over the past two years. He highlighted its effectiveness as a sustainable to improve farmers’ food security and climate resilience. As a result, the regional government has decided to expand the use of this technology to cover 50% of the region’s agricultural land. He believes this decision is an important step in supporting farmers and transforming the agricultural system, ultimately leading to a more resilient and productive agricultural landscape. 

Mr. Beshir Hitman, a host farmer from Asosa Zone in Akendo Afafri village, has experienced significant benefits from adopting SCASI technology. Starting with just 0.4 hectares two years ago, he has now expanded his operations to 2.5 hectares. Previously, farmers relied on broadcasting and multiple tillage systems, which were effective but labour intensive. Mr Hitman points out that the SCASI methods have not only improved his crop production and productivity but have also saved him time and labor by minimizing weeding.   


 

In Asosa zone, Ura District, Baro Village, farmer Rawda Mustefa stands proudly on her SCASI project plot. Her successful adoption of sustainable practices demonstrates the positive impact on her farming results (Photo: CIMMYT)

The thriving maize fields of farmer Fantan Karamala in Dunga Arumela village, Ura district, Asosa zone illustrate the effectiveness of the SCASI project. Her commitment has resulted in an impressive six quintals increase in maize yield. By incorporating mulching with crop diversification and expanding her demonstration to 2 hectares, she has successfully intercropped soybean with maize, significantly increasing her income. 

Farmers in the Wolaita zone are also inspired by the principles and benefits of SCASI technology. Many have adopted sustainable practices that enhance productivity and improve soil health. The positive impact on yields and incomes has motivated these farmers to adopt innovative approaches, fostering a community-wide commitment to resilience and food security. Their shared experiences highlight the transformative potential of technology in their farming practices.

Farmer Adanech Bebiso in the Boloso Sore district of Wolaita Zone beams with joy as she reaps multiple benefits from her small plots of land managed under the SCASI project. Her positive experience reflects the transformative impact of sustainable agricultural practices on her livelihood (Photo: CIMMYT)

Adanech Bebiso shared her experience, stating, “We began using SCASI after the training we received in 2021. Along with inputs like improved seeds, ginger, taro, sweet potatoes, and forage plants, we also received regular technical support. Previously, using conventional techniques yielded minimal results for many years. SCASI has transformed our operations, and we are reaping the benefits. I started with a 60x40m plot, and my maize harvest increased dramatically from 6 to 16 quintals. This farm has improved our lives in many ways, and we are truly benefiting from this endeavor.” 


The reduction of multiple tillage and the production of organic fertilizers, such as vermicompost, have empowered women to become more actively involved in farming. In addition, the availability of fodder has opened up new opportunities for farmers, allowing them to explore alternative businesses such as livestock fattening and dairy production. Many farmers are replacing local cows with improved varieties to enhance milk production and dairy quality. 

These changes not only improve the farmers’ livelihoods but also foster social cohesion and build economic capital within the community. For example, the establishment of Self-Help Groups (SHGs) has become a valuable platform for technology transfer, financial savings, and access to credit, further supporting their agricultural and business endeavors. 

Host farmers like Amarech Koricho play a key role in their communities by sharing their knowledge. She has trained around 50 fellow farmers in her area about SCASI practices. As a result, these farmers are thriving and actively adopting CASI practices to improve their land management and crop production. Their collective efforts are having a significant impact on sustainable agriculture in the region. 


During the joint monitoring visit facilitated by CIMMYT, Tilahun Tadesse, Program Manager of the Terepeza Development Association (TDA), emphasized the advantages of the SCASI approach. He noted that farmers were experiencing higher yields per hectare and greater resilience during droughts compared to conventional methods. He attributed the success of these trials to farmers’ commitment, progressive learning, and increased awareness. The variety of crops grown on the demonstration plots are producing impressive results, further demonstrating the effectiveness of the SCASI project. 


Lessons and future directions

Action research conducted over two years in four regions of Ethiopia highlights the potential of SCASI to drive agricultural transformation. By integrating conservation agriculture with sustainable intensification principles, it effectively addresses immediate agricultural challenges while building resilience to the impacts of climate change. This initiative goes beyond increasing agricultural productivity and improving soil health; it also promotes the expansion of social capital and strengthens system resilience. The practices have effectively reached rural communities through various channels, including radio, demonstrating that targeted, long-term promotion efforts increase the uptake of CASI. The tangible successes experienced of early adopters motivate non-adopters to join the movement. Additionally, host farmers play a crucial role in cascading knowledge and practices to their peers, further facilitating the scaling up of CASI practices. By combining sustainable farming practices with community-based solutions, SCASI empowers farmers to overcome collectively address challenges. 

Looking ahead, a sustained commitment to institutional capacity building, the integration of CASI-friendly policies into regional and national frameworks, and effective resource mobilization will be critical to sustaining the momentum of SCASI and expanding its benefits throughout Ethiopia. By expanding the initiative’s reach, CIMMYT and its partners aim to foster a more resilient, productive and sustainable agricultural future that adapts to the country’s diverse agro-ecological conditions. This collective effort will not only improve food security but also empower communities to thrive in the face of climate challenges. 

Why early-stage on-farm sparse testing could be a game changer for crop breeding in Africa

(Photo: CIMMYT)

Over 80% of the world’s 570 million farms are smallholder farms under 2 hectares, supporting rural livelihoods in impoverished regions. Smallholder farmers, who form a significant portion of the 690 million people experiencing hunger, need improved crop varieties to thrive under challenging conditions like low inputs, climate change stresses, and pests. 

Challenges of breeding for smallholder farmers 

Particularly at early stages, breeding programs face difficulties replicating the diverse and resource-constrained environments of smallholder farms, referred to as the Target Population of Environments (TPE). The TPE encompasses all locations where new crop varieties will be grown, characterized by varied biophysical conditions, environmental stresses, and farming practices. 

Conventional research stations, where new selection candidates are tested, don’t fully replicate smallholder conditions. Practices like manual labor for weed management or intercropping are common among smallholders but rarely modeled on research stations. This mismatch can lead to inaccurate predictions of crop performance on farms and discarding potentially successful candidate varieties. 

Early-Stage On-Farm Sparse Testing (OFST)

Early-stage OFST shifts testing to hundreds of smallholder farms at early stages, addressing two major issues. First, it evaluates crops under real-world, farmer-managed conditions. Second, it captures the diversity within the TPE by conducting trials on numerous farms. 

Using farm-as-incomplete-block (FAIB) designs, small farms test 3–5 candidate varieties, aligning with their plot size and resource constraints. A genomic relationship matrix connects trials across farms, ensuring comparability between farms and enhancing selection accuracy through the sharing of information. This approach reduce replication and enable testing more candidates, thereby improving breeding efficiency and providing a basis for accelerated parent recycling. Smallholder farmers are highly diverse, and careful sampling ensures a wide range of farmers can participate. The small land requirements of this approach allow small, poor and/or women farmers to equally participate. 

(Photo: CIMMYT)
On-Farm Testing and on-station testing: complementary yet demanding approaches

Early-stage on-farm testing complements, rather than replaces, on-station trials. Controlled assessments for traits like disease resistance and managed abiotic stresses remain essential at research stations. Conversely, insights from early-stage OFST can help refine on-station testing to better represent farming realities.

Scaling early-stage OFST demands strong partnerships between CGIAR, NARES, and farmers for decentralized trial management. Farmers must consent to participate and be compensated for risks. Additionally, significant resources and coordination are required to ensure trials are representative and reliable. 

Despite these challenges, early-stage OFST holds transformative potential. By aligning breeding programs with smallholder realities, it can deliver improved crop varieties faster and more effectively, enhancing food security for those who need it most. 

For more information, see the article: Accelerating Genetic Gain through Early-Stage On-Farm Sparse Testing by Werner et al., Trends in Plant Science. 

Accelerating genetic gain through early-stage on-farm sparse testing.  

Accelerating genetic gain through early-stage on-farm sparse testing 

Werner, Christian R. et al. 

Trends in Plant Science, Volume 0, Issue 0 

Agro fair in Kailali rejuvenates farmers

In May, CIMMYT, in collaboration with the local government, organized an Agriculture Fair in Janaki Rural Municipality, Kailali district, Nepal, introducing farmers to modern farming techniques and machinery. The event inspired farmers like Ramfal Badayak, chairman of Biz Briddhi Krishak Cooperative, to adopt advanced tools, leading his cooperative to purchase two plant cultivators that now save time and labor for all members. With over 40 stalls and more than 4,000 daily visitors, the fair also benefited local suppliers by enabling direct sales to farmers, reducing costs by eliminating middlemen. This transformative event exemplified the potential of such platforms to modernize agriculture and support local communities.

Read the full story.

It’s time to scale: Emerging lessons from decades of Conservation Agriculture research in Southern Africa

CA in action at the farmer level. (Photo: Christian Thierfelder/CIMMYT)

For decades, smallholder farmers in Southern Africa have battled the whims of a changing climate—from withered crops to yield reductions and looming food insecurity concerns. And the outlook is not improving. Based on the latest available science, the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) reaffirms the projected negative impacts of climate change on livelihoods in Southern Africa.

Conservation Agriculture (CA) has been considered as an important step to make smallholder farming systems climate smart and resilient. The principles of CA are simple yet potent: minimal soil disturbance, crop cover, and diverse rotations, which tend to have lasting implications on rebuilding soil health, conserving moisture, and nurturing a thriving ecosystem. A strong evidence base from on-farm and on-station trials show that CA has the potential to build the adaptive capacity and resilience of smallholder farming systems to climate stress.

Yet, despite the positive results, significant scaling gaps remain. Key questions arise on what can be done to turn the tide, scale, and encourage uptake. What institutional, policy and economic incentives would enable scaling? Could mechanization be the missing link? The Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA) project responds to these questions. With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA), and CIMMYT, the ACASA project goes beyond the narrow focus on promotion and technology delivery of past and ongoing interventions on CA in Southern Africa.

ACASA was designed to help stakeholders gain deeper understanding of the interactions between the socio-economic, biophysical, and institutional constraints and opportunities for adoption of CA practices. To do this, the project has undertaken extensive surveys aimed at understanding incentives, drivers, and barriers of CA adoption across Zambia, Malawi, and Zimbabwe.

Dialogues for change

Participants from across the region during the reflective meeting. (Photo: CIMMYT)

In December 2023, CIMMYT collaborated with IITA and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development of Zimbabwe to convene a highly engaging, reflective, and learning meeting, with the participation of government representatives, the private sector, and research institutes, among others. The primary objective was to share valuable insights accumulated over years of research and development on conservation agriculture in southern Africa. These insights are a result of collaborative efforts in social science, scaling, and mechanization work by CIMMYT, IITA, and extension and research partners in Malawi, Zambia, and Zimbabwe. Conversations centered on tracing the historical pathway of CA, leveraging mechanization, and identifying key enablers to transform smallholder agriculture.

Tracing the pathway of conservation agriculture

For decades, CIMMYT has been a leading force in promoting Conservation Agriculture. From the early stages in the 1990s, CIMMYT introduced CA principles and practices through on-farm and on-station field days, to undertaking robust research on biophysical impacts and developing adapted technologies in collaboration with national and global partners. As this research progressed and matured, efforts were made to integrate and focus on understanding the social and economic factors influencing CA adoption, while recognizing the significance of enabling environments. To date, linkages with mechanization and other innovations promoting CA-friendly equipment have been strengthened, ensuring inclusivity and empowerment. Questions remain around policy and institutional innovations to nudge and sustain adoption. In a nutshell, there is scope to borrow tools and methods from behavioral and experimental economics to better study and facilitate behavioral change among smallholder farmers. This snapshot highlights global efforts, grounded in scientific evidence, farmer centric approaches, and collaborative partnerships.

Insights from the field

Described as a data and evidence driven process, a notable highlight was the detailed gathering and analytical efforts using a large multi-country household survey involving 305 villages and 4,374 households across Malawi, Zambia, and Zimbabwe. The main thrust was not only to harvest data but listen to farmers and better understand their context while deciphering their decision-making processes concerning CA adoption, across the three countries. A compelling and hopeful story unfolds from the results. The adoption of CA practices such as crop residue retention, minimum tillage, crop rotation, and intercropping is much higher than previously thought, highlighting a crucial need for better targeted surveys. Key enablers to strengthen adoption include access to CA extension, hosting demonstrations, and access to credit. In addition, age, and extension in the case of Zambia were identified as important drivers of the speed and persistence of adoption. Demand for mechanization is rising, which is key to address drudgery associated with CA and to raise production efficiencies. Key recommendations centered on the need for investments in a dense network of farmer-centric learning centers that allow for experiential learning, facilitating equitable access to mechanization, promoting private sector participation, and developing integrated weed management options as weeds remain the Achilles Heel of CA adoption in the region. [1]

Emerging lessons

A deep dive on the findings reveals critical considerations for the widespread adoption of Conservation Agriculture (CA). Firstly, weed-related labor challenges pose a significant obstacle, with around 75% of farmers in three countries citing weeds as the most constraining issue during initial CA adoption. Addressing this weed management challenge is essential, emphasizing the need for environmentally safe, non-chemical solutions as a research priority. Secondly, there is a noticeable gap between scientific research on CA and farmer practices, primarily attributed to limited technical knowledge. Bridging this gap requires innovative approaches to translate scientific information into practical, farmer-centered products. Thirdly, incentivizing CA adoption through complementary input support programs, like payments for environmental services, may encourage farmers, especially when private returns are not immediate.

Fourthly, strengthening extension systems is crucial to facilitate farmer learning and bridge the awareness-to-know-how gap. Lastly, investing in improved machinery value chains can alleviate high labor costs and drudgery associated with CA practices, with economic estimates suggesting farmers’ willingness to pay for machinery hire services. These insights collectively highlight the multifaceted nature of challenges and opportunities for scaling up CA adoption.

Moving forward

ACASA’s research findings are not just numbers — they are seeds of hope. They point towards a future where CA adoption among smallholder farmers can transform the breadbasket of the three African countries, and beyond. CIMMYT and its partners remain committed to continuous learning, refining their approaches, and working hand-in-hand with farmers to nurture the CA revolution.

It will not be a pipe dream to transform agriculture in Southern Africa through CA by cultivating seeds of resilience, one at a time. This is because the experience from the region suggests that with the right political will, it is possible to mainstream CA as a critical adjunct to climate-smart agriculture strategies and resilience building. This broader institutional and political buy-in is important since CA programming cannot succeed without sector-wide approaches to removing systemic constraints to technology adoption.  A classic example is the Government-backed Pfumvudza program in Zimbabwe, which has seen adoption of planting basins conditioned on receipt of input subsidies soar to more than 90%.

[1] CIMMYT/IITA Scientists explore the weed issue in detail in a paper just accepted and forthcoming in Renewable Agriculture and Food Systems – Unanswered questions and unquestioned answers: The challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa.

Unanswered questions and unquestioned answers

Over the past few decades, Conservation Agriculture (CA) has moved from theory to practice for many farmers in southern Africa. CA is a system that involves minimum soil disturbance, crop residue retention, and crop diversification among other complimentary agricultural practices. One reason for its increasing popularity is its potential to mitigate threats from climate change while increasing yields.

However, there are limits to the adaptation of CA, especially for smallholder farmers. Challenges are both agronomic (e.g. lack of sufficient crop residues as mulch, weed control, pest and disease carryover through crop residues), socio-economic, and political (both locally and regionally).

A recent paper, Unanswered questions and unquestioned answers: the challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa, published in the journal Renewable Agriculture and Food Systems in February 2024, led by CIMMYT and CGIAR scientists examines two specific challenges to more widespread CA adaptation: how to deal with trade-offs in using crop residue and finding alternatives to herbicides for weed control.

For crop residue, the two most prevalent actions are using leftover crop residue for soil cover or feeding it to livestock. Currently, many farmers allow livestock to graze on crop residue in the field, leading to overgrazing and insufficient ground cover. This tradeoff is further challenged by other multiple household uses of residues such as fuel and building material. The most common way to control weeds is the application of herbicides. However, inefficient and injudicious herbicide use poses a threat to human health and the environment, so the research team set out to identify potential alternatives to chemical weed control as the sole practices in CA systems.

“The answer to the question ‘how should farmers control weeds?’ has always been herbicides,” said lead author Christian Thierfelder, CIMMYT principal cropping systems agronomist. “But herbicides have many negative side effects, so we wanted to question that answer and examine other potential weed control methods.”

What to do with crop residue

Previous research from the region found that ungrazed areas had long-term positive effects on soil fertility and crop yields. However, it is common practice for many farmers in Malawi, Zambia, and Zimbabwe to allow open grazing after the harvest in their communities. Livestock are free to graze wherever they wander, which results in overgrazing.

“Open grazing systems help keep costs down but are very inefficient in terms of use of resources. It leads to bare fields with poor soil,” said Thierfelder.

Maize on residues. (Photo: CIMMYT)

While it is easy to suggest that regulations should be enacted to limit open grazing, it is difficult to implement and enforce such rules in practice. The authors found that enforcement is lacking in smaller villages because community members are often related, which makes punishment difficult, and there is an inherent conflict of interest among those responsible for enforcement.

Controlling weeds

Weeding challenges in CA systems have been addressed worldwide by simply using herbicides. However, chemical weeding is often not affordable and, sometimes, inaccessible to the smallholder farmers and environmentally unfriendly.

Using herbicides, though effective when properly applied, also requires a degree of specialized knowledge, and without basic training, this may be an unviable option as they may pose a risk to the health of the farmers. Thus, alternatives need to be identified to overcome this challenge.

Some alternatives include mechanical methods, involving the use of handheld tools or more sophisticated tools pulled by animals or engines. While this can be effective, there is the possibility of high initial investments, and intercropping (a tenet of CA) forces farmers to maneuver carefully between rows to avoid unintended damage of the intercrop.

Increasing crop competition is another potential weed control system. By increasing plant density, reducing crop row spacing, and integrating other crops through intercropping, the crop competes more successfully with the weeds for resources such as light, moisture, and nutrients. When the crop seed rate is increased, the density of the crops increases, providing more cover to intercept light, and reducing the amount of light reaching the weeds thereby controlling their proliferation.

A holistic approach

“What we learned is that many of the crop residue and weed challenges are part of broader complications that cannot be resolved without understanding the interactions among the current scientific recommendations, private incentives, social norms, institutions, and government policy,” said Thierfelder.

Continuing research into CA should aim to examine the social and institutional innovations needed to mainstream CA as well as strengthen and expand the research on weed control alternatives and focus on the science of communal grazing land management to enhance their productivity.

Women farmers turn the tide on soybean production

Juliana Moises tends her soybean plot. (Photo: CIMMYT)

From the rich plateau landscapes of Angonia district in the Tete province of Mozambique emerges a tale of determination and hard work. Juliana Nicolau Moises, a mother of four, has been a devoted soybean farmer for more than a decade, tending to a crop whose pods carry the potential for value-added products, including milk and porridge for her children. But one wonders, what motivates smallholder farmers like Juliana to invest their efforts in soybean production.

“I have never looked back on producing soybeans,” reflects Moises. “This legume crop has allowed me to feed my family and meet my household needs, let alone the cash income from sales of the surplus crop. It has taken a lot of hard work and resilience to navigate through the complexities of soybean production.”

Entering her second season of implementing the Chinyanja Soy Use Case trials with CGIAR’s Initiative on Excellence in Agronomy, delivered in partnership with CIMMYT and the International Institute of Tropical Agriculture (IITA), Moises eagerly anticipates a bumper harvest in the early planted fields. She has been avidly implementing trials on planting dates to establish the implications of early, mid, and late planting on soybean yield. Let alone the required attention to detail, she exudes a deep understanding of the significance of the trials by carrying out key agronomic practices to ensure a good harvest. This will not only nourish the health and wellbeing of her family but also symbolizes the fruits of her dedication.

Moises’s commitment extends beyond the trial she hosts as she implements her learning from the project to other fields, using innovative approaches like the double-row planting method. In soybean farming, this involves planting two rows of seeds on a wider ridge established on the traditional spacing that farmers use on maize. Traditionally, farmers in Angonia have been planting single rows of soybean on ridges spaced at 90 cm used for maize, thereby resulting in low soy plant populations and ultimately low yields. This different technique optimizes the plant population and land use efficiency, improving yields, and facilitating easier weeding.

Moises’s soybean plot in Angonia, Mozambique. (Photo: CIMMYT)

Despite the promise of enhanced production, challenges persist. Southern Africa continues to face a growing demand for soybeans, with annual productivity of 861,000 metric tons (mT) falling short of the 2-million-ton demand. In Mozambique, vibrant soybean farms blanket the landscape, yet smallholder farmers like Moises grapple with underdeveloped markets and climate-related adversities, such as droughts and floods currently worsened by the El Niño phenomenon.

“As a devoted soybean farmer, I have met my own fair share of challenges. One of our biggest challenges is the labor requirement across the production season,” shared Moises as she navigates through her fields. “We need machinery for planting, weeding, and harvesting in order to reduce the labor and drudgery associated with soybean production. In addition, markets remain a challenge.” Her unwavering commitment inspires neighboring farmers, creating a ripple effect of hope and determination in the community.

Sharing the same sentiments is Veronica Ernesto Gama, who teams up with her husband every year to tend to her soybean field. Having started in 2007, their yields have sustained the food basket of her family while meeting nutritional needs. “In the past, I used to just scatter around soybean seeds in one place, but after these trials, I have learned the significance of applying the agronomically recommended spacing and the need for quality improved seeds to ensure a bumper harvest,” said Gama.

The power of collaboration

Addressing these challenges head-on is CGIAR’s Excellence in Agronomy Chinyanja Triangle Soy Use Case, a collaborative effort aimed at strengthening the soybean industry primarily by empowering farmers with improved agronomic practices and decision support. Solidaridad, an international non-government organization (NGO) pursuing digital platforms for scaling agronomy, serves as the demand partner of the Excellence in Agronomy Chinyanja Triangle Soy Use Case, while CGIAR provides technical support. Solidaridad’s role is vital in catalyzing demand for the product or service in question. Research outputs drawn from the trials will be used to develop a mobile phone application on the Kvuno, a social enterprise borne out of Solidaridad. The platform will support farmers with onsite advisories on planting dates, site-specific fertilizer recommendations, variety selection, and crop configurations.

To date, the initiative has drawn the willingness of 70 farmers in the Angonia district of Tete province, who are implementing different suites of trials, including nutrient omission, planting date, plant configuration, and fertilizer usage. Excellence in Agronomy has come at an opportune time for smallholders’ journeys in soybean production, emphasizing the importance of optimized spacing and improved agronomic practices.

As the story unfolds in Mozambique, women like Moises and Gama are the unsung heroes driving soybean production. Their dedication, coupled with initiatives like Excellence in Agronomy, paint a picture of progress and potential. Their commitment inspires many surrounding farmers who draw inspiration on the trials in their fields. As the sun continues to rise over the dusty soils of Angonia, it showcases not just Moises’s fields, but the bright future of soybean production in the hands of resilient women farmers.

Advancing appropriate-scale mechanization in the Global South

Smallholder farmers in Chimanimani, Zimbabwe use a multi-crop thresher for the faster processing of wheat. (Photo: CIMMYT)

To foster collaboration and knowledge sharing, CIMMYT hosted a 2-day workshop in September 2023 in Lusaka, Zambia, on appropriate mechanization for smallholder farmers in the Global South. This event was part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub funded by the United States Agency for International Development (USAID).

Recognizing that equitable access to finance and credit are key enablers for mechanization, this platform strived to understand smallholder farmer needs and the identification of key financing models to facilitate widespread adoption.

With over 40 participants ranging from government representatives, development partners, and stakeholders from organizations such as USAID, the Food and Agriculture Organization (FAO), the International Institute of Tropical Agriculture (IITA), the International Fertilizer Development Center (IFDC), and Hello Tractor, this regional event provided an opportunity for robust discussions and to align the course of action.

Unpacking mechanization in the Global South

Appropriate-scale mechanization is essential and a top policy priority to transform African agriculture. Evidence shows that nearly 70% of operations in sub-Saharan Africa are done manually. However, human labor is limited and is increasingly scarce and costly given the unfolding transformation of rural spaces in most places, necessitating agricultural mechanization. The cornerstone of this shift lies in integrating small, affordable machines tailored to the operations and needs of smallholder farmers, which must be accessible through market-based financial and business models.

A top policy priority in Zambia

The Permanent Secretary, Technical Services of the Zambian Ministry of Agriculture, Green Mbozi, officially opened the meeting. He lauded the meeting as timely and commendable as agriculture mechanization is a top policy priority for Zambia.

Green Mbozi, permanent secretary, opens the meeting. (Photo: CIMMYT)

“The government has embarked on a process to formulate a national mechanization strategy, which will serve as a blueprint on how to sustainably promote agricultural machinery and equipment across the value chains. The insights from this workshop would be helpful in feeding into the formulation of the strategy and help in identifying entry points to support sustainable agriculture mechanization,” said Mbozi.

Accelerating change through inclusive dialogues

The dialogue played a crucial role in bolstering support for sustainable agriculture mechanization while tackling challenges hindering active adoption. Mbozi highlighted the imminent launch of an agricultural mechanization strategy developed with technical support from FAO and CIMMYT through the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project.

The mechanization strategy champions sustainable and efficient mechanization practices, strengthens the private sector’s role in mechanization, and provides training and financial support to small-scale farmers, women, and youth. Proposed initiatives include regional centers of excellence, a national mechanization association, and the use of information and communication technologies to promote mechanization.

Sieg Snapp, director of Sustainable Agrifood Systems, delivers a presentation on mechanization financing. (Photo: CIMMYT)

“It is important to develop the right bundle of mechanization services that meet the needs of farmers and are profitable for mechanization service providers,” said Director of Sustainable Agrifood Systems (SAS) at CIMMYT, Sieg Snapp. “Finding the right financing is needed to support multiple bundles of mechanization services, which provide profits throughout the year.”

Additionally, the SIFAZ project promotes local manufacturing, supporting quality assurance, conducting demand studies, and establishing an agricultural mechanization data bank to catalyze transformative progress.

Key insights from USAID and FAO

David Howlett, the Feed the Future coordinator at the USAID Mission in Zambia, shared with participants that, “USAID is working to address the effects of climate change through mechanization and other adaptation strategies.” Aligning with the central focus of the meeting, he further reiterated that mechanization will be key to building resilience by improving agricultural systems.

David Howlett, Feed the Future coordinator for the Zambia USAID mission, expresses commitment to investing in climate adaptation and mitigation strategies. (Photo: CIMMYT)

Offering insights drawn from country-level experiences on scale mechanization for smallholder farmers, Joseph Mpagalile from FAO said, “FAO has been helping countries develop national agricultural mechanization strategies, with 12 countries in Africa already revising or preparing new strategies for sustainable agricultural mechanization.”

Private sector engagement: lessons from Hello Tractor

Operating across 13 African countries, Hello Tractor has been leveraging digitalization to scale mechanization in Africa since its inception. Hello Tractor facilitates services to over 500,000 smallholder farmers through 3,000+ tractors and combine harvesters, while providing remote tracking of assets and preventing fraud and machine misuse for machinery owners. At the heart of the company are booking agents who connect farmers to solutions to increase productivity and income.

Call to action

As the discussions ended, key outcomes distilled highlighted a pressing need to sensitize farmers on the merits of mechanization and facilitating access through tailored financial resources. Special attention was also directed towards empowering women and youth through implementation of de-risking mechanisms and strategic marketing linkages.

Recognizing the critical absence of data, a compelling call for a funding pool to collect essential information in the ESA region became clear. In addition, it was emphasized that appropriate-scale mechanization should be driven by sustainable business and financing models. The journey towards mechanization is a collective effort, blending policy initiatives, private sector engagement, and research-driven strategies.

Mechanization can transform but scaling is a challenge

CIMMYT advances agricultural mechanization to boost smallholder farming, targeting efficiency and inclusivity. Addressing challenges like financial access and market collaboration, it fosters mechanization scaling through initiatives like MasAgro in Mexico, MasAgro Africa and tools like Scaling Scan. This approach aims to rejuvenate agriculture for youth, under the guidance of director general Bram Govaerts, ensuring sustainable and globally inclusive agricultural systems.

Read the full story.

Bringing mechanization to farmers’ doorsteps

It is a winter morning in Ward 12 of Mutare Rural district in Zimbabwe. Farmers brave the cold weather to gather around several tents lined with a range of new agricultural machinery. The number of farmers increases, and the excited chatter gets louder as they attempt to identify the different machines on display. “That is a tractor, but it just has two wheels,” says one farmer. With enthusiasm, another identifies a multi-crop thresher and peanut butter machine and asks for the prices.

The scene typifies one of several settings for an awareness meeting conducted under the Feed the Future Zimbabwe Mechanization and Extension (Mechanization) Activity, funded by the United States Agency for International Development (USAID). The project operates in Zimbabwe’s Manicaland and Masvingo provinces and addresses the pressing need to improve farm power and machinery access for smallholder farmers in ten districts: Buhera, Chimanimani, Chipinge, Mutare rural, Bikita, Chiredzi, Chivi, Masvingo rural, Mwenezi and Zaka.

Awareness meetings provide community members the opportunity to interact with the Mechanization Activity Team and learn more about the machinery suitable for their farm operations. (Photo: CIMMYT)

In recent years, farmers in the region have faced a decline in cattle populations due to tick-borne diseases—the devastating ‘January disease’ (Theileriosis) hitting hardest—causing significant draft power losses. In addition, on-farm and off-farm activities have notoriously been identified as labor-intensive, time consuming and back-breaking due to the level of effort required to execute certain tasks. Activities such as post-harvest processing have also been traditionally carried out by women, who are thus disproportionally affected by drudgery. Collectively, these challenges have affected not only food production and the quality of farm yields, but also drastically impacted farming families’ potential to realize sufficient household food and income security.

“Finding the best model of extension of appropriate machinery and developing financing mechanisms for smallholder farmers has been the work of previous projects on appropriate-scale mechanization,” says Christian Thierfelder, research director for the Mechanization Activity. “In this activity, we are implementing a service provider model in Zimbabwe and are aiming to reach 150 service providers and 22,500 users of these machines in the next two years.”

Despite previous successes under initiatives such as FACASI and R4/ZAMBUKO, there remains a huge demand for affordable machines that improve farm labor and generate income for smallholder farmers. “We already see hundreds of farmers demanding to mechanize agricultural activities in our intervention areas,” explains Leon Jamann, chief of party for the project. “That is why our activity aims to collaborate with banks and microfinance institutions to bank these farmers at fair rates so that they can buy the machinery that they need and want.”

A launchpad for success

The awareness meetings have served as launchpads to acquaint farmers with appropriate machinery right at the ‘farm gate’ while affording them a chance to explore the full range on offer. Since its inception, the Mechanization Activity has showcased through live demonstrations the operation and performance of machinery including the two-wheel tractor and trailer, ripper, basin digger, boom sprayer, multi-crop thresher, feed chopper-grinder, groundnut sheller and peanut butter machine. Each machine harmonizes with on-farm and off-farm activities, easing the labor burden and improving efficiency in land preparation, harvesting and post-harvest tasks. The aim is to create demand for and trigger business interest in the machinery through a service provision model.

The model centers on the service provider, typically an individual who owns machinery and extends their services to others for a fee. In some cases, organized Internal Savings and Lending (ISAL) and Production, Productivity Lending and Savings (PPL) groups have expressed, through the awareness meetings, interest in procuring a machine for use within the group. This symbiotic relationship empowers service providers economically, while granting communities access to crucial services that improve their land and labor productivity.

In the next step, service providers are then linked with banks to finance their machinery. This ensures a sustainable approach, as the mechanization solutions are locally produced, financed and used. Enhancing these local capacities and linkages is at the core of the activity and ensures impact beyond the project life cycle.

From awareness to demand

So far, a total of 32 awareness meetings have been held across three operational hubs in Masvingo and Manicaland provinces reaching 1,637 farmers—843 females and 794 males. The impact is evident, with 475 service providers identified across 20 implementation wards.

232 participants are keen to acquire a two-wheel tractor, with a further 191 opting for trailers, 63 for rippers, 125 for multi-crop threshers, 166 for chopper grinders, 178 for peanut butter machines and 31 for groundnut shellers. Among the prospective service providers are those opting to purchase a single unit while others are choosing two, three or more units from the machinery on offer.

Beyond the numbers, the Mechanization and Extension Activity continues to appeal to women and youth through sustainable and climate-smart intensification of crop production using conservation agriculture practices, opportunities for employment creation and enhancing profitability.

Graduate intern Titos Chibi demonstrates the two-wheel tractor during an awareness meeting in Ward 10 in Bikita. (Photo: CIMMYT)

“I enjoyed learning about the service provider approach and learning about the machinery on display,” reflected Nyarai Mutsetse, a female farmer from Ward 12. “Other women even got the chance to try out the two-wheel tractor. From now on, we are going to save money in our groups and purchase some of these machines.”

Echoing the same sentiments, Patience Chadambuka was fascinated by the two-wheel tractor demonstration, and impressed that it could serve multiple purposes. “I can use it for different tasks—ferrying wood, land preparation and it can also help us raise money to take our children to school through service provision,” she said. “We are beginning to save the money, together with my husband because we would like to purchase the tractor and use it for our business.”

The Mechanization Activity awareness meetings paint a vivid picture of collaboration with other Feed the Future Zimbabwe Activities such as the Fostering Agribusiness for Resilient Markets (FARM), Resilience Anchors and Farmer to Farmer, among others. The activity harmonizes smallholder farmers with private sector enterprises, including machinery manufacturers, local mechanics, financial institutions and the Government of Zimbabwe. This collective cooperation is pivotal in helping smallholder farmers realize their mechanization business goals.