A worker uses a machine to seal a bag of maize seed at the Sementes Nzara Yapera Lda warehouse in Catandika, Mozambique. Photo: CIMMYT/Kipenz Films.
A newly published special issue in the journal Outlook on Agriculture features views and experiences on seed systems performance in Sub-Saharan Africa and options to drive faster uptake of new crop varieties. The contributions reflect the breadth of perspectives and expertise within CGIAR and beyond and make the case for the need for more demand-oriented variety development and seed delivery.
A seed system refers to the various actors, processes, and relationships that allow for the production, conservation, exchange and use of propagation materials for crops, trees, forages, livestock, and fish. For the International Maize and Wheat Improvement Center (CIMMYT), seed systems involve private seed companies, retailers, and government research agencies, among others, that are involved in the design, testing, production and distribution of high-yielding, climate-resilient, and pest- and disease-resistant maize hybrids.
“A well-functioning seed system is critical for ensuring that farmers have reliable access to the quality seeds that they want. It forms the critical link between breeders and the small-scale farmers responsible for much of the food production in Sub-Saharan Africa, Latin America and South Asia,” said CIMMYT Senior Economist Jason Donovan, who co-authored the introductory article.
“The papers in this collection raise important issues which up to now have not received enough attention, to include the strategies, capacities and incentives of the private sector to invest in the distribution of new varieties. The topics discussed have implications for the One CGIAR in its ongoing efforts to develop a coherent and coordinated seed system research program that supports accelerated varietal uptake and turnover through effective seed delivery,” he added.
CIMMYT researchers contributed two papers, one which looks at the role of different types of seed producers and traders in shaping seed systems performance and another which proposes new directions for research on gender and formal maize seed systems. The special edition grew out of the CGIAR Community of Excellence for Seed Systems Development where CIMMYT led the discussion on seed value chains and private sector linkages.
One consensus among the authors is that a wider range of partnerships will be required to reenforce the potential of seed systems to delivery more new varieties to small-scale farmers in less time.
The ever-changing environmental conditions and the urgency to improve food production and productivity for growing populations have ushered in the necessity for smallholder farmers to have widespread access to improved seed in the last mile. However, adequate access to the preferred, good-quality seeds that are climate-resilient and nutrition-dense is essential to farmers’ food and livelihood security. While seed security is an important first step to improved food production in developing countries and well examined in disaster situations, it remains understudied concerning long-term seed sector development, says a new study.
The Food and Agriculture Organization of the United Nations (FAO) describes seed security as “ready access by rural households, particularly farmers and farming communities, to adequate quantities of quality seeds adapted to their agro-ecological conditions and socioeconomic needs, at planting time, under normal and abnormal weather conditions.” In 2016, FAO specified two elements: varietal suitability (traits that respond to farmers’ preferences) and resilience (stability of seed system in the context of shocks) in addition to seed quantity, quality, and access identified in the earlier conceptualization of seed security.
Widespread seed insecurity
The study analyzed farmers’ seed use and preferences (demand-side) and the role of actors and institutions (supply-side) to understand farmers’ seed security. The latter was examined within the context of the recently adopted Pluralistic Seed System Development Strategy (PSSDS) of Ethiopia to understand how they affect the availability, quantity, quality, accessibility, and suitability of seeds from different sources. They focused on seed systems in two districts in Central Ethiopia — subsistence teff-growing and commercial wheat-growing districts. Since it started its operation in Ethiopia, CGIAR’s International Maize and Wheat Improvement Center (CIMMYT) has been one of the major actors in the commercial wheat district covered in this study. CIMMYT has contributed to the capacity building of Kulumsa Agricultural Research Center, a center of excellence for wheat research and development in East Africa that has released over 70 improved bread wheat and durum wheat varieties.
Despite great strides made in improving the seed sector in Ethiopia, the study found that the farmers in the two districts predominantly rely on the informal seed systems, concluding widespread seed insecurity in both regions. The study reported discrepancies between seeds farmers say they prefer and those they actually use. This discrepancy is due to the limited availability of improved varieties and specially certified seeds of these varieties, challenges with seed quality from some sources, and inequitable access to preferred seed and information according to sex, age, and wealth.
Explaining the finding concerning the widespread seed insecurity observed in the study districts, Teshome Hunduma, the lead author of the study, noted: “We were able to reveal some of the social, political, and institutional constraints and opportunities that underlie chronic seed insecurity among smallholder farmers in the two districts in Ethiopia. The country has a good seed sector development policy, for instance, the PSSDS, but these constraints limited its implementation.”
Women empowerment and access to certified seeds
In the study districts where CIMMYT operates, wealthy farmers aligned with the Ethiopian government received a privileged position as model farmers enjoyed increased seed access. Likewise, female-headed households targeted by the extension services had improved access to certified seeds. The presence of development actors, including CIMMYT alongside its partners such as Kulumsa Agricultural Research Center, actively contributed to the “unusual empowerment of women in the predominantly wheat-growing districts,” according to Hunduma. Hunduma referred to the following excerpt from the study to confirm his upbeat impression during his field research.
The study reports: “the women focus group participants highlighted unexpectedly positive empowerment of female heads of household and their related access to improved agricultural technologies [improved wheat]:
Unfortunately, all of us are on our own, i.e., we are widows and divorcees. ( . . . ) We do everything that most men do in farming. In the past, women, including widows and divorcees, were not considered equal to men. Now, we have more freedom and voice. We equally participate in meetings, trainings, and access inputs as men. We express our ideas in public gatherings… We learnt new techniques and gained skills in agriculture. We have better savings; some of us have saved between 70,000 to 100,000 ETB. We have full control over our incomes and resources. We hire labor and rent land to expand our production.
According to Hunduma, “development actors, including CGIAR and its partners, targeted female heads of households for varietal adaptation trial, seed multiplication, extension and credit services, which led to a significant push for a gender-sensitive approach to agricultural development.”
Over the past two decades, Ethiopia has also achieved high wheat production levels and productivity due to the germplasm that CGIAR introduced in the country in collaboration with its partners. This strategy has firmly put the country on the right path towards wheat self-sufficiency.
As national seed policies and programs in developing countries have primarily focused on the formal seed supply system, farmers’ use of seeds from the formal seed system remains limited. The pluralistic seed system approach could appear to provide a path to seed security in developing countries. Nevertheless, political, organizational, and economic interests within key institutions represent significant obstacles, which need to be addressed. The study concludes that efforts to support farmers’ access to seeds should recognize the complementarity of formal and informal seed systems. Thus the study advocates a pluralistic approach to seed sector development by promoting complementarity of activities between value-chain components of each seed system.
Cover photo: Part of Ethiopia’s Southeastern wheat belt in the Heexosa district, where the pioneering Green Revolution project started in Ethiopia. (Credit: Joshua Masinde/CIMMYT)
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT) For more information, see CIMMYT’s Wheat Doctor: http://wheatdoctor.cimmyt.org/index.php?option=com_content&task=view&id=84&Itemid=43&lang=en. Photo credit: CIMMYT.
The COVID-19 pandemic has exposed vast inequalities when it comes to food security. But there is an even larger and more concerning crisis waiting for us: global food shortages caused by climate change.
Nobody knows when or how hard it will hit, but we inch closer each year with new temperature records, the spread of pests, and emerging crop diseases. We are already seeing the beginning of this future crisis. Climate-induced food price hikes have caused political turmoil in the Middle East, while climate-related disasters have been linked with mass human migration in South Asia.
Every seed company and crop research center worldwide is preoccupied with the race to breed hardier crops to keep pace with the demands of a growing population as circumstances become increasingly challenging. But the truth is, this is a relay race, and yet the crop research field is running 100-meter sprints in different places at different times.
For every scientific advance, other areas of crop research go under-resourced and are technology poor, with asymmetries in research investment creating islands of knowledge that are disparate and disconnected. These research asymmetries hold back crop improvement as a whole, contributing to climate-induced crop failure and the political turmoil that ensues when staple foods become scarce.
While it is common for academic crop scientists to share ideas and collaborate with industry, it is far less typical for major seed companies to cooperate with each other.
If the public and private sectors are to have any chance of outrunning climate change, industry must shift toward investing in mutually beneficial research and development to pool resources and build on every gain, in the interests of the whole.
In an unprecedented first step that reveals just how much pressure the sector feels about the daunting task ahead, some of the crop industry’s main players and competitors — including Syngenta, BASF, Corteva and KWS — recently shared their insights into the gaps in existing crop science.
The shortcomings identified that hold back the crop industry from addressing the looming food crisis have three features in common. They are all under-represented in scientific literature, are likely to boost productivity across a wide range of crops and environments, and crucially, the research is fundamental enough to be “pre-competitive,” or valuable without jeopardizing individual business outcomes.
For example, although scientists have made progress towards improving the potential of crucial processes in crop development, like photosynthesis, other gaps in knowledge must be filled to ensure that this translates into improved yield, especially under unstable environments.
Such research is critical to ensuring reliable harvests across a range of crops, and can be conducted without infringing the intellectual property or proprietary technology of any single company.
However, accessing research funding can be surprisingly difficult. Public research budgets are shrinking, their funds are at risk of being re-appropriated, and collaboration is not the industry standard.
New funding models, such as public-private partnerships, can collectively address knowledge gaps to avoid potential catastrophes for society at large.
This approach has already proven fruitful. The public-private consortium “Crops of the Future Collaborative” brings competitors together to jointly fund research into the characteristics crops need to adapt to a changing future.
Industry matched the Collaborative’s initial $10 million investment by the Foundation for Food & Agriculture Research to work on corn that survives in drought conditions and leafy greens that are resistant to pests.
Conducting this research jointly drastically improves crop efficiency and the technological toolbox available to breeders and other crop scientists, passing the baton in the race towards a food secure future.
Increasing the global food supply through research and development is the most achievable and sure approach to avoid a global food crisis, and comes with historically high returns on investment. Furthermore, scientists can tap into a global infrastructure of researchers across public and private sectors, international organizations, and the millions of farmers worldwide who have willingly collaborated over the last half century to provide enough food for all.
Failure to collaborate will ultimately result in unsustainable food systems, which not only renders seed companies obsolete but threatens a prerequisite of civilization: food security.
The private sector has the knowledge and resources to redefine the race. Rather than competing against one another, the crop industry must join forces to compete instead with climate change. And it is a contest we can only win if all players work together.
Matthew Reynolds is a distinguished scientist with the International Maize and Wheat Improvement Center. Jeffrey L. Rosichan is a director with Foundation for Food & Agriculture Research. Leon Broers is a board member with KWS SAAT SE & Co. KGaA.
Farmer Florence Ochieng harvests green maize on her 105-acre family farm near Kitale, Kenya. (Photo: P. Lowe/CIMMYT)
Smallholder farmers are often torn between maize seed varieties that have multiple desirable traits. Since they cannot always have it all — there are limits on what traits breeders can integrate in any given variety — they face the dilemma of which seed to pick at the expense of an equally desirable option.
Trait preference trade-offs among maize farmers in western Kenya, published in March 2021, provides evidence of this prioritization and seeks to help breeders, seed companies and other stakeholders set priorities that account for farmers’ needs and their willingness to make preference trade-offs. The researchers evaluated responses from 1,288 male and female farmers in the mid-altitude maize growing areas of western Kenya.
The study argues that farmer-centered seed systems (including seed companies) should be guided by farmers’ priorities and reflect a greater understanding of the tradeoffs these farmers make between traits and varieties. They have two key options, according to Paswel Marenya, the study’s lead researcher and adoption and impact assessment economist at the International Maize and Wheat Improvement Center (CIMMYT). The first involves prioritizing the critical must-have traits in any one variety. The second option entails having multiple varieties that meet diverse farmers’ needs and then segmenting the seed markets.
While Marenya argues that prioritization is important for balancing commercial realities and farmers’ diverse interests, he is quick to add that “market segmentation has limits imposed by the commercial viability of each segment.”
“At every turn, from breeding to farmer varietal preferences to seed company considerations, there have to be trade-offs, as one cannot keep segmenting the market forever,” Marenya said. “At some point, you must stop and choose what traits to prioritize in your breeding or commercially viable market segments, based on the most pressing challenges already identified.”
CIMMYT researchers conduct interviews in Kenya to determine farmer preferences for maize traits. (Photo: CIMMYT)
Differences in tradeoffs among men and women
From a gender lens, the paper reveals an obvious difference in tradeoffs made by men and women. Whereas the two groups desire some similar traits in their varieties of choice, women seem to be willing to make slightly larger yield sacrifices in favor of tolerance to drought and Striga and good storability. Women also valued good storability over 90-day maturity, while men appeared to place a higher value on the closed tip, a sign of resistance to moisture infiltration which causes grain rotting.
“These results imply that unless the risks of storage or pre-harvest losses are reduced or eliminated, the value of high yielding varieties can be diminished if they are susceptible to production stresses or the grain characteristics make them susceptible to storage pests,” the study states.
The study indicates that farmers may adopt stress tolerant and high yielding varieties with somewhat low storability only if advanced grain storage technologies are available.
Until then, the suggestion to policy makers responsible for maize breeding is to use “multi-criteria evaluations” of new varieties to ensure that traits for stress tolerance and storability are given optimal weighting in variety release decisions.
Additionally, information about farmer preferences should be fed back to breeding programs in national and international institutes responsible for maize genetic improvement.
Mary Nzau enters a mock agrodealer shop set up on a field on the outskirts of Tala town in Machakos County, Kenya. On display are nine 2kg bags of hybrid maize seed. She picks one. By the look of it, her mind is made up. After a quick scan of the shelf, she has in her hand the variety that she has been purchasing for years.
Regina Mbaika Mutua is less lucky. The variety she always buys is not on display in the mock shop. As part of the experiment, the research team has removed from the shelf the variety she indicated she usually buys. The team’s goal is to observe what factors influence her seed purchase decision in the absence of the variety she was expecting to purchase.
“Although I did not find the variety I was looking for, I picked an alternative as I have seen it perform well on a neighboring farm,” Mutua says, adding that she will plant it this season alongside recycled (farm-saved) seed on her one-acre farm.
Michael Mutua passes up the popular variety he has been planting for the previous two years. He picks one that has been advertised extensively on local radio. “I have heard about it severally on radio. I would like to experiment with this new seed and see how it performs on my farm. Should I like the results, I will give it a chance in ensuing seasons,” he says.
Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
The big adoption conundrum
The goal of the out-of-stock study is to improve an understanding of how farmers make their maize seed choices, says Pieter Rutsaert, Markets and Value Chain Specialist at the International Maize and Wheat Improvement Center (CIMMYT).
“We do this by inviting farmers to a mock agrodealer store that we set up in their villages and give them a small budget to purchase a bag of seed. However, not all farmers walk into the same store: some will find their preferred variety, others won’t. Some will have access to additional trait information or see some varieties with price promotions while others don’t.”
Rutsaert acknowledges that breeding programs and their partner seed companies have done a great job at giving farmers access to maize hybrids with priority traits such as drought tolerance and high yield. CIMMYT then works closely with local seed companies to get varieties into the hands of farmers. “We want to extend that support by providing insights to companies and public breeding programs on how to get new varieties more quickly into the hands of farmers,” he says.
Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)
The hybrid maize seed sector in Kenya is highly competitive. Amid intensifying competition, new varieties face a daunting task breaking into the market, independent of their quality. While farmers now have more options to pick from, a major challenge has been how to get them to adopt new varieties.
“Moving farmers from something they know to something they don’t is not easy. They tend to stick with what they know and have been growing for years,” Rutsaert says.
Pauline Muindi, gender research associate with CIMMYT, acted as the stand-in clerk at the mock store. She noticed that farmers tend to spend very little time in the shop when their preferred variety is available. However, this all changes in the out-of-stock situation, pushing farmers to step out of their comfort zone and explore new options.
The first step to overcoming this challenge is to entice maize farmers to try a new seed variety, even just once, Rutsaert observes. If it is a good variety, farmers will see that and then the market will work in its favor: farmers will come back to that variety in subsequent years and tell others about it.
“The good news is that many of the varieties we are currently seeing on the market have performed well — that’s why they’re popular. But there are newer varieties that are even better, especially in terms of attributes like drought tolerance. We would like to understand how farmers can be convinced to try out these newer varieties. Is it about the need for more awareness on varietal traits? Can we use price promotions? Or are there other factors?” he says.
A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)
Does seed price matter?
“With today’s climate uncertainty, it is better to stick to a variety that is adapted to such climate rather than banking on a variety one is oblivious of. The risk is not worth it,” Nzau says. She adds that she would rather buy a higher-priced seed packet she knows and trusts than a lower-priced one that she has not used in the past. Radio promotions of new or other varieties have limited sway over her decision to make the switch.
Faith Voni, another farmer, agrees. “It is better to purchase a higher-priced variety whose quality I can vouch for than risk purchasing a lower-priced one that I know little about. I do not wish to take such a risk.” Voni says she would also be more inclined to experiment with another variety that she had seen perform well on a neighbor’s farm.
Michael Mutua holds a different view. “If there is an option of an equally good but new variety that is lower-priced than the variety I prefer, my wallet decides,” he says.
Vivian Hoffmann, an economist at the International Food Policy Research Institute (IFPRI) and collaborator on the study, says price can be key for convincing consumers to try a new product. “Our previous research on maize flour choice found that a provisional 10 percent discount boosted sales tremendously,” Hoffmann says. “Of course, that only gets your foot in the door; after that, a new variety will need to win farmers over based on its merits.”
Hoffmann is interested in the extent to which drawing farmers’ attention to key varietal attributes influences their seed choice. “This information is generally already available on seed packets, but we live in a world of information overload. Promoting certain attributes through in-store signage is an approach that is widely used to help consumers make more healthier food choices. Doing the same for new seed varieties makes a lot of sense.”
Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
The value of drought tolerance
Situated on Kenya’s eastern region, Machakos is characterized by persistent water stress. Climate change induced erratic rainfall has pushed traits that can tolerate the unfavorable weather conditions in the favorite’s corner. While other traits such as high yield and disease resistance are equally important, the seed, when planted, must first withstand the effects of droughts or water stress in some seasons and germinate. This is the most crucial step in the long journey to either a decent, bare minimum or no yield. A lot of farmers still plant recycled seed alongside hybrid varieties. But these are no match to water stress conditions, which decimate fields planted with farmer-saved seed.
“If a variety is not climate resilient, I will likely not harvest anything at all,” says Nzau. She has planted a drought-tolerant variety for ten years now. Prior to that, she had planted about three other varieties as well as recycled seed. “The only advantage with recycled seed is that given the right amount of rainfall, they mature fast — typically within two months. This provides my family with an opportunity to eat boiled or roast maize,” she notes.
However, varieties need to do more than just survive harsh weather conditions. Breeders face a daunting task of incorporating as many traits as possible to cater to the overarching and the specific interests of multiple farmers. As Murenga Mwimali, a maize breeder at the Kenya Agricultural and Livestock Research Organization (KALRO) and collaborator in this research says, innovations in breeding technologies are making breeding more efficient.
“It is better to have a diversity of product profiles as different market niches are captured within a particular agroecological zones. This is such that farmers may not just benefit from the minimum traits like drought tolerance, but also more specific traits they are looking for,” Mwimali says.
Smallholder farmers continue to play a central role in the seed development process. Capturing what happens at the point of purchase, for instance, at the agrodealer, and understanding how they purchase seed offers valuable insights on the traits that are deemed essential in the breeding process. This work contributes to CIMMYT’s focus on fast-tracking varietal turnover by turning the levers towards a demand-driven seed system.
Cover photo: Pauline Muindi, gender research associate with CIMMYT, at the mock agrodealer shop where she acted as a clerk. (Photo: CIMMYT)
A shop attendant displays drought-tolerant maize seed at the Dryland Seed Company shop in Machakos, Kenya. (Photo: Florence Sipalla/CIMMYT)
For several decades, the International Maize and Wheat Improvement Center (CIMMYT) has worked with partners and farmers to improve maize and wheat varieties. Packed with “upgrades” such as tolerance to environmental stresses, tolerance to diseases and pests, boosted nutrient content, higher yield potential and storage capabilities, and improved efficiency in using water and fertilizers, these seeds are rolled out by CIMMYT and its partners to create new opportunities for easier and better lives for farmers.
Together with national research partners, farmers, local governments and seed companies, CIMMYT’s work in seed systems has reaped results. Its experts are eager to put this experience into further action as CGIAR embarks on the next ten years of its journey to transform food, land, and water systems in a climate crisis. And rightly so: investments in CGIAR research — mainly through their contributions to enhancing yields of staple food crops — have returned ten-fold benefits and payoffs for poor people in terms of greater food abundance, lower prices of food, reduced food insecurity and poverty and reduced geographical footprint of agriculture. A large part of this impact is the result of CIMMYT’s day to day efforts to create a better world.
A Bangladeshi woman cuts up feed for her family’s livestock. They did not previously have animals, but were able to buy them after her husband, Gopal Mohanta, attended a farmer training from CIMMYT and its partners, which gave him access to better seed, technologies, and practices. Mohanta planted a wider range of crops, and in 2005 he planted maize for the first time, using improved seed based on CIMMYT materials. (Photo: S. Mojumder/Drik/CIMMYT)
Replacing old varieties, not as easy as it sounds
Slow variety turnover — that of more than ten years — makes farmers vulnerable to risks such as climate change and emerging biotic threats. On the other hand, planting improved varieties that match farmers’ needs and the geography they work in, can increase productivity gains and improve the nutritional status of smallholders and their families. This, in turn, contributes to increased household incomes. Indirectly, the benefits can reach the surrounding community by providing increased employment opportunities, wage increases and affordable access to food.
Despite its tremendous benefits, varietal turnover is no small feat.
When it comes to seeds, detailed multi-disciplinary research is behind every new variety and its deployment to farmers. Just as the production of a new snack, beverage or a car requires an in-depth study of what the customer wants, seed systems also must be demand-driven.
Socioeconomists have to work hand-in-hand with breeders and seed system specialists to understand the drivers and bottlenecks for improved varietal adoption, market needs, and gender and social inclusion in seed delivery. Bottlenecks include the lack of access by farmers — especially for resource-poor, socially-excluded ones — to reliable information about the advantages of new varieties. Even if farmers are aware of new varieties, seeds might not be available for sale where they live or they might be too expensive.
Possibly the most complex reason for slow variety turnover is risk vulnerability: some farmers simply can’t afford to take the risk of investing in something that might be good but could also disappoint. At the same time, seed companies also perceive a certain risk: they might not be interested in taking on an improved variety that trumps the seeds from older but more popular varieties they have on stock. For them, building and marketing a new brand of seeds requires significant investments.
Agricultural seed on sale by a vendor near Islamabad, Pakistan. For improved crop varieties to reach farmers, they usually must first reach local vendors like these, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
New approaches are yielding results
Despite the complexity of the challenge, CIMMYT has been making progress, especially in Africa where slow variety turnover is creating roadblocks for increased food security and poverty alleviation.
Recent analysis of the weighted average age of CIMMYT-related improved maize varieties in 8 countries across eastern and southern Africa reveals that the overall weighted average age has decreased from 14.6 years in 2013 to 10.2 years in 2020. The remarkable progress in accelerating the rate of variety turnover and deploying the improved genetics — with climate resilience, nutritional-enhancement and grain yield — are benefiting more than eight million smallholders in Africa.
In Ethiopia, CIMMYT, EIAR and ICARDA’s work led to the adoption of improved rust-resistant varieties, corresponding productivity gains and economic benefits that, besides the urgent need to fight against the damaging rust epidemic, depended on a combination of enabling factors: pre-release seed multiplication, pro-active policies and rust awareness campaigns. The estimated income gain that farmers enjoyed due to adopting post-2010 varieties in 2016/2017 reached $48 million. For the country itself, the adoption of these varieties could save $65 million that otherwise would be spent on wheat imports.
Bill Gates echoes this in Chapter 9 of his new climate book, How to Avoid a Climate Disaster, as he describes CIMMYT and IITA’s drought-tolerant maize work: “[…] experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them.”
Bidasem director general María Ester Rivas (center) stands for a photo with her seed processing team. Bidasem is a small seed company based in the city of Celaya in the central Mexican plains region known as the Bajío. Despite their small size, Bidasem and similar companies play an important role in reaching small farmers with improved seed that offers them better livelihoods. (Photo: X. Fonseca/CIMMYT)
Holistic action needed if we are to reach farmers with genetic innovations
Now more than ever, with increased frequency and intensification of erratic weather events on top of the complications of the COVID-19 pandemic, successful seed systems require the right investments, partnerships, efforts across disciplines, and enabling policies.
Varietal release and dissemination systems rely greatly on appropriate government policies and adoption of progressive seed laws and regulations. CGIAR’s commitment to farmers and the success of national seed systems is described in the recently launched 10-year strategy: “CGIAR will support effective seed systems by helping national governments and private sector companies and regulators build their capacities to play their roles successfully. New initiatives will be jointly designed along the seed distribution chain, including for regional seed registration, import and export procedures, efficient in-country trialing, registration and release of new varieties, and seed quality promotion through fit-for-purpose certification.”
In line with CGIAR’s ambitious goals, to provide farmers with a better service, small- and medium-size seed companies need to also be strengthened to become more market-oriented and dynamic. According to SPIA, helping local private seed dealers learn about new technology increases farm-level adoption by over 50% compared to the more commonly used approach, where public sector agricultural extension agents provide information about new seed to selected contact farmers.
CIMMYT socioeconomics and market experts are putting this in practice through working with agrodealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support and price incentives, to help both female and male farmers get the inputs that work best.
Within the new CGIAR, CIMMYT scientists will continue to work with partners to strongly improve the performance of wheat and maize in smallholder farmers’ fields. Concerted efforts from all actors conforming the entire seed system are essential to achieve our vision: to transform food systems for affordable, sufficient and healthy diets produced within planetary boundaries. Wheat and maize seed systems will form the basis to fulfill that vision and provide a tried and tested roadmap for other crops, including legumes, vegetables and fruits. Together, we can keep a finger on the pulse of farmers’ needs and build healthy diets for a better tomorrow from the ground up.
Agricultural market systems play a pivotal role in food security, livelihood development and economic growth. However, the agricultural sector in Nepal is constrained by a lack of spatially-explicit technologies and practices related to improved seed and fertilizer. Embracing these challenges, Dyutiman Choudhary, a scientist in market development with the International Maize and Wheat Improvement Center (CIMMYT), works to strengthen the seed and fertilizer market systems and value chains, with the ultimate goal to ensure demand-driven, inclusive and market-oriented cereal production.
Nepal’s agricultural sector is dominated by smallholder farmers. As farming is mostly semi-commercial and subsistence in nature, many smallholder farmers are isolated from markets and lack knowledge about the latest farming technologies and inputs. They are unable to upgrade their farms to increase productivity for generating marketable surplus to make profitable income. Agribusiness entities in Nepal — such as seed companies, agrodealers and importers — face market development challenges and lack the commercial and business orientation to develop and deliver new technologies to farmers. Output market linkages are weak and loosely integrated, leading to poor coordination, weak information flow and lower return to actors.
This is where Choudhary’s expertise in agribusiness management fits in to make a difference.
Born and raised in Shillong, a hill station in northeastern India with a distinctive charm, he was enrolled as an engineering student. However, his interest took a sudden turn when he got drawn towards biological sciences and ultimately decided to leave the engineering course by stepping into agribusiness management. “I realized I was walking in the right direction as I was fascinated to learn about the livelihood benefits of agroforestry and the scope of agribusiness in fostering overall economic growth.”
He joined CIMMYT in 2017 as an expert in market development, but his roles and responsibilities transitioned to working as a Lead for the Nepal Seed and Fertilizer (NSAF) project within four months of his appointment. His role involves leading an interdisciplinary team of scientists, partners and experts to develop a synergistic market system. The NSAF team fosters public private partnerships, improves access to support services and strengthens inclusive value chains in a supportive policy environment.
Choudhary’s research focuses on assessing crops, seed and fertilizer value chains; developing commercial and inclusive upgrading strategies with businesses and stakeholders; assessing competitiveness of seed companies; lobbying for policies to foster the growth of seed and fertilizer business; and building pathways for public and private sector services to market actors and smallholder farmers.
Dyutiman Choudhary (seventh from left) with seed producers during a field visit. (Photo: Dipak Kafle)
A roadmap to innovative market systems
Choudhary introduced the vision of a market system approach and put together a strategic roadmap in collaboration with a team from CIMMYT researchers from the Global Maize program, the Sustainable Intensification program and the Socioeconomics program. The roadmap addressed the concerns of low crop productivity, poor private sector growth and a less supportive policy environment inhibiting agricultural innovations in Nepal.
“Seed and fertilizer market systems in Nepal are uncompetitive and lack influx of new knowledge and innovations that restricts agriculture growth,” Choudhary explained.
Having prior experience as a regional lead for high-value products and value chains for South Asia and an inclusive market-oriented development expert in Eastern and Southern Africa, Choudhary carries unique capabilities for putting together a winning team and working with diverse partners to bring about a change in farming practices and build a strong agribusiness sector in Nepal.
Under his leadership, Nepalese seed companies are implementing innovative and competitive marketing approaches to develop newly acquired hybrid varieties under their brands. The companies are upgrading to build business models that cater to the growth of seed business, meet market demands and offer innovative services to smallholder farmers to build a sustainable national market. Facilitating financing opportunities has enabled these enterprises to produce strategic business plans to leverage $2 million to finance seed business. Improved value chain coordination mechanisms are increasing demand of seed company’s products and enhancing smallholder farmers’ access to output markets.
There is a renewed interest and confidence beaming from the private sector to invest in fertilizer business due to improved knowledge, communication and collaborative methods. The government committed to support balanced soil fertility management and allocated $2.4 million in 2019 to initiate fertilizer blending in Nepal.
Dyutiman Choudhary (left) welcomes the Feed the Future team leader to the CIMMYT office in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Dyutiman Choudhary shows a demonstration plot during a field visit with USAID and project partners in Nepal. (Photo: Darbin Joshi)
Dyutiman Choudhary (left) receives a token of appreciation at an International Seed Conference organized in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Competitiveness fosters productivity
The results of Choudhary’s work have the potential to transform Nepalese agriculture by unleashing new investments, changes in policies and practices, and innovative business management practices. “Despite a huge change in my TOR and the challenges to deliver impactful outcomes, I was able to successfully steer the project to produce exciting results that made the donor to declare it as their flagship project in Nepal,” he explained. “At the end of the day, reflecting upon the work achieved with my team and the stakeholders in co-creating solutions for complex issues brings me immense satisfaction.”
An amiable individual, he feels close to natural science and loves interacting with farmers. “I’ve always enjoyed traveling to biodiversity-rich locations, to understand local cultures and livelihood practices, so as to gauge the drivers of innovation and adaptation to change among diverse rural populations.”
“Keeping up the momentum, I want to continue to support growth in agribusiness management in less favorable regions, helping stakeholders in the farm-to-fork continuum to leverage the potential of innovations in research, development and delivery.”
Data has become a key driver of growth and change in today’s world.
There is growing recognition that data is indispensable for effective planning and decision-making in every sector. But the state of digital data in developing countries is far from satisfactory. In Asia, monitoring the Sustainable Development Goals (SDGs) remains a challenge due to a lack of accurate data.
Rural women in Nepal significantly contribute to food security, and when they are empowered, they can create avenues for agricultural growth. As seed producers are often disadvantaged in terms of accessing advanced agricultural knowledge and seed production skills, one opportunity for growth is strengthening the capacity of women seed producers.
“In more than 80% of households in Sindhupalchowk district, women have the final say on the selection of maize variety,” said D.B. Bhandari, managing director of Hairyali Community Seed Company (HCSC). “This urged me to engage women in seed production of preferred maize varieties for the mid-hills.”
HCSC, a partner company of the Nepal Seed and Fertilizer (NSAF) project implemented by the International Maize and Wheat Improvement Center (CIMMYT), is working to improve the business literacy of rural women to support their involvement in seed production and marketing of maize, wheat and rice seeds in Sindhupalchowk district, Bagmati province, Nepal.
Seed producers attend an orientation on the production and marketing of hybrid seed. (Photo: Dharma Dawadi/CIMMYT)
A path to empowerment and income
Access to agricultural inputs such as seed and fertilizer is challenging in Thulosirubari village due to its rural location and absence of agrodealers or nearby markets. Progressive farmers Parbati Gautam and Kamala Gautam, who grew up in the village in a family that has cultivated maize for generations and now grow maize, rice, millet and vegetables, found a solution. They decided to establish a cooperative —Thulosirubari Mahila Krishi Sahakari Sanstha — that not only eases the supply of seed for farmers in their village but also engages in seed production. The cooperative has 45 female members so far.
In coordination with HCSC and the Government of Nepal’s Prime Minister Agriculture Modernization Project (PMAMP), orientation programs and women-only trainings were designed and organized by the NSAF project so farmers could boost their seed production efficiency and profitability at the grassroots level. The partnership between CIMMYT, HCSC and PMAMP provided technical and financial support to these groups, improved their entrepreneurship skills and business literacy, and created marketing linkages between the farmers and buyers. Thirty-five women were trained in the use of good agricultural practices in quality seed production and marketing of hybrid maize, rice and tomato seeds. HCSC supported the women with male and female lines of hybrid maize — Khumal hybrid-2 — to produce first generation seeds and build their skills on estimating ratios for sowing seeds, balanced fertilizer application, weeding, rouging and detasseling.
“I am so happy to learn about the importance of having different male and female lines and how to maintain their quality for crossing to produce first generation of hybrid maize seeds,” Kamala Gautam said.
After getting the required training and technical support, seven farmers from the cooperative, including Kamala and Parbati, collectively produced 1.1 mt of Khumal hybrid-2 with the value of $2,514, which was sold to HCSC in 2019. As the cooperative is a contract seed producer for HCSC, the women have market assurance and do not worry where and how to sell their seed.
“My husband and I are not educated,” Parbati Gautam explained. “However, I was able to sell the hybrid maize seed then use the money to buy decent clothes and offer a better education to my two daughters and son.”
A woman stands in her rice seed production field in Nepal. (Photo: Mohan Mahato/CIMMYT)
Women empowering women
Parbati Gautam has served as chairperson at the cooperative for eight years, where she has mentored other seed producers. Based on her experience, women who have access to information and seed production technologies tend to have better crop yields and make informed decisions to increase their incomes and livelihoods.
According to Bhandari, farmers’ preferences are gradually shifting from local to hybrid varieties which offer better yields, early maturity and resilience to the effects of climate change. Parbati and Kamala Gautam confirm this, sharing that hybrid seed production provides 4-5 times more monetary value per kilogram of seed than that of grain.
“Although the cost of parent lines is expensive for seed production, improved farming technology ensures better quality seeds, higher yields and attractive farm business opportunities,” Parbati Gautam explained.
Since 2017, NSAF project researchers have been working to establish linkages with partner seed companies for seed marketing. Altogether, about 300 mt of maize and rice seed was produced by women farmers engaged in the project with the value of $112,000, and 80 percent of this seed was sold to three private seed companies including HCSC. In 2019, the NSAF project team established partnerships with an additional three cooperatives in Banke, Dang and Sindhupalchowk districts, where over 800 women are members.
The project’s engagement of women’s seed producer groups is an example of an inclusive seed business model where farmers decide what to grow and how to sell. This intervention can be piloted in other parts of Nepal where women account for over 60 percent of the rural farming community. Targeted and sustained interventions to increase women’s business agility, technical capacity in quality seed production, and market linkages will help boost productivity at household level and the country at large.
Seed systems are complex and dynamic, involving diverse, interdisciplinary actors. Women play an important role in the seed value chain, although underlying social and cultural norms can impact their equal participation. Gender-sensitive seed systems will create more opportunities for women and increase food security.
The International Maize and Wheat Improvement Center (CIMMYT) convened a multi-stakeholder technical workshop titled, “Gender dynamics in seed systems in sub-Saharan Africa and worldwide lessons” on December 2, 2019, in Nairobi, Kenya. Researchers and development practitioners operating in the nexus of gender and seed systems shared lessons learned and research findings to identify knowledge gaps and exchange ideas on promising — and implementable — interventions and approaches that expand opportunities for women in the seed sector.
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.
These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.
“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”
Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.
“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”
The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.
Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.
A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.
Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).
Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.
“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.
They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.
In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.
In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.
Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.
Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tastes differ
“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”
For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.
A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.
“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
That’s the way I like it
For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.
Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.
While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.
“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”
Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.
“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.
Early Maturing Short Duration High Yielding White Maize open-pollinated variety. (Photo: MMRI)
Pakistan’s maize sector achieved a remarkable milestone in 2019 by releasing ten new maize varieties developed by the International Maize and Wheat Improvement Center (CIMMYT) for commercial cultivation. The new varieties were released by two public sector research institutes.
The Maize and Millets Research Institute (MMRI) in Yousafwala, one of the leading and the oldest maize research institutes in Pakistan, released four open-pollinated varieties (OPVs) sourced from CIMMYT. The varieties, named Gohar-19, CIMMYT-PAK, Sahiwal Gold, and Pop-1 are the newest additions to Pakistan’s maize variety list. All the varieties are short-duration, which means they can be harvested quickly to rotate land for the next crop. They can also be grown in the main and off season, which makes them suitable for many different cropping systems.
The Agricultural Research Institute (ARI) in Quetta received approval for six of CIMMYT’s white kernel OPVs from the Provincial Seed Council (PSC), a government body responsible for variety registration in Balochistan. The varieties are named MERAJ-2019, MAHZAIB-2019, NOOR-2019, PAGHUNDA-2019, SILVER-2019, and SAR-SUBZ-2019. They are early-maturing with high yielding potential & drought tolerance. Drought stress is a major challenge for farmers in the Balochistan province, which covers 45% of Pakistan’s territory.
A group of maize experts visits maize research and seed production fields at the Maize and Millets Research Institute (MMRI) in Yousafwala, Pakistan. (Photo: CIMMYT)
Muhammad Arshad, Director of MMRI, acknowledged CIMMYT’s efforts to deploy the wide range of maize germplasm in the country. Arshad added that the Institute is working with partners to widely distribute these seeds to smallholder farmers at a reasonable price. “We are able to harvest maize yields from these early maturing varieties by applying 4-6 irrigations, unlike other varieties that require a minimum of ten irrigations per crop cycle,” said Syed Asmatullah Taran, Director of Cereal Crops at the Agricultural Research Institute in Quetta, Balochistan. “These are the first ever released maize varieties in our province,” he added, applauding CIMMYT for this milestone.
Muhammad Imtiaz, CIMMYT’s Country Representative for Pakistan and leader of the Agricultural Innovation Program (AIP), appreciated MMRI and ARI for their dedication and impactful efforts to strengthen the local maize seed system. Imtiaz explained that these new varieties will help cash-strapped smallholder farmers improve their livelihoods.
Through the AIP project, CIMMYT and its partners are helping new seeds reach farmers. “We expect to see more releases in 2020, as many varieties are in the pipeline,” said CIMMYT’s Seed Systems Specialist for South Asia, AbduRahman Beshir. “What is important is to scale up the seed production and distribution of these varieties so that farmers can get their share from the interventions. Water-efficient maize varieties will not only contribute to climate change adaptation strategy, but will also support the livelihood of marginal farmers.” Beshir also emphasized the importance of private sector engagement for seed delivery.
A maize field is prepared manually for planting in Balochistan province, Pakistan. (Photo: CIMMYT)
Maize is Pakistan’s third most important cereal following wheat and rice, encompassing an area of 1.3 million hectares. Maize productivity is also among the highest in South Asia, with national yields reaching almost 5 tons per hectare.
Despite its growing demand, maize production in Pakistan faces various challenges such as a lack of diverse genotypes suitable for various uses and ecologies, a weak seed delivery system unable to reach marginal farmers, high retail price of seeds and unpredictable weather conditions due to climate changes.
To enhance the availability, accessibility and affordability of quality maize seeds, the Agricultural Innovation Program (AIP) for Pakistan, led by CIMMYT and funded by USAID, is working with partners to benefit smallholder farmers across the country. The project focuses on the development and deployment of market-ready maize products sourced from different breeding hubs and systematically testing their adaptation in order to accelerate seed and varietal replacement in Pakistan. In the last six years, AIP’s public and private partners were able to access over 60 finished maize products and more than 150 parental lines from CIMMYT and IITA for further testing, variety registration, demonstration and seed scale up.
Some of the participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop held on December 2, 2019, in Nairobi, Kenya. (Photo: Kipenz Films/CIMMYT)
One important pillar of Africa’s food security is ensuring that quality seeds are developed and delivered to the millions of smallholder farmers that feed the continent. Reaching the last mile with climate-resilient and disease-resistant seeds remains a challenge in many parts of sub-Saharan Africa. “In countries where we invested in seed systems initiatives, we have seen an upsurge in smallholder farm productivity,” said Joseph DeVries, the President of Seed Systems Group. “A story that is not adequately told is that of the important role of women along the seed value chain. In Kenya, 40% of owners of agrodealer shops are women. The farming sector would gain a lot with a stronger role for women in developing a gender-sensitive seed sector,” he noted.
DeVries was one of the keynote speakers at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop organized by the International Maize and Wheat Improvement Center (CIMMYT) on December 2, 2019 in Nairobi, Kenya. The meeting brought together researchers, development practitioners, donors, farmers’ representatives, farmers, seed companies and other private actors.
CIMMYT’s Gender and Development Specialist, Rahma Adam, observed that with the African seed sector being male-dominated, the patriarchal nature of the family and community systems make it harder for women to penetrate the sector easily. For instance, many women employed in the sector mostly dominate the low-paying jobs. Workshop participants agreed that while there are many opportunities for women in the sector, the barriers to entry are many.
Joseph DeVries, President of Seed Systems Group, addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Acknowledging the gender gap in agriculture
“Decades of gender research have shown that where there is gender inequality, there is food insecurity,” remarked Jemimah Njuki, senior program specialist from the International Development Research Center (IDRC). The gender gap in agricultural productivity observed in sub-Saharan Africa — up to 30% in countries like Nigeria and Malawi — is often explained by unequal access to inputs and male labor for heavy operations such as land preparation, access to knowledge and capital.
Addressing such unequal access is not enough, according to Njuki. To switch to a truly gender-sensitive food system, “you need to address social norms and women’s agency and what they can do on their own.” Taking the example of financial services, women often find difficulties obtaining loans because banks ask for collateral like title deeds, which are typically in the name of the husband or a male in-law. Yet, women are very good at repaying their loans on time. Making finance institutions “womanable” as Njuki put it, would be good for the welfare of women and their family, hence good for business.
Jemimah Njuki, senior program officer at the International Development Research Center (IDRC), speaks at the workshop. (Photo: Kipenz Films/CIMMYT)
Is there such a thing as seed for women farmers?
Within a household, who has a say in buying new seeds? Do men and women farmers look for the same traits and attributes?
A study conducted in Ethiopia, Kenya, Tanzania and Uganda by Paswel Marenya, a senior agricultural economist at CIMMYT, revealed that in many cases, the man has a greater say in selecting new seed varieties. Other research shows that beyond grain yield, the characteristics of “a good variety” differ between men and women farmers. In the study, both genders mention what they were willing to pay as trade-off against yield. Women would favor a variety with a longer grain shelf-life (ability to store 3-4 months). Men preferred a variety that performs well with low fertilizer requirements. Equally, women farmers engaged in participatory varietal selections tended to provide more nuanced evaluation of varieties than men. Despite this evidence, seed companies do not often adapt their seed marketing strategy according to gender.
Making institutions and seed systems gender-sensitive
CIMMYT’s gender and development specialist Rahma Adam addresses participants at the “Gender dynamics in seed systems in sub-Saharan Africa” workshop. (Photo: Kipenz Films/CIMMYT)
Are there missed opportunities for the seed sector by being “gender-blind”? Rahma Adam believes “the current one-size-fits-all model does not work for many women farmers”. She advises seed companies to be more gender-sensitive when organizing seed marketing operations. Women tend to have less time to attend field demos, the major marketing tool for seed companies. Packaging may not be adapted to suit their more limited purchasing power.
There are good examples of women seed entrepreneurs that have established their niche and reach out to women farmers. Janey Leakey, Director of Leldet Seed Company in Nakuru, Kenya, is one such example. She markets small seed packs called Leldet bouquet, a mix of improved maize and legume seeds at the cost of a cup of tea, to enable women farmers test new varieties.
For the more informal sweet potato seed systems, many women farmers have been successfully engaged in lucrative vine multiplication, thanks to the use of women extensionists and women groups to teach appropriate storage techniques in drought-prone regions. “Such seed business can empower women within the household,” noted Jan Low, co-leader of the Sweetpotato for Profit and Health Initiative (SPHI) at the International Potato Center (CIP) and 2016 World Food Prize Laureate. A woman vine multiplier was able to negotiate with the husband for more land and water access to increase production.
Many other important actors in the public, private and development sectors have also been more deliberate in structuring some of their project or business implementation plans to include or benefit more women in the seed value chain. Among the players are CARE International, Kenya’s Ministry of Agriculture, the Centre for Agriculture and Bioscience International (CABI), the Seed Trade Association of Kenya (STAK), SeedCo, the Agricultural Market Development Trust (AGMARK), World Vision, the Food and Agriculture Organization (FAO), which attended and participated very actively in this workshop.
Some of the plans entail helping more women to access information on climate change to understand their cropping seasons, contracting women farmers as seed out-growers, encouraging and supporting them to join forces to produce seed in group settings. Some of these actors also train women to enhance their entrepreneurial acumen, help them to access finance, obtain the appropriate labor and time-saving machinery, and acquire small seed packs.
Ultimately, designing a seed system that works for men and women requires a holistic approach, from building women’s agency, addressing norms and unequal access to resources. It requires time, dedication, financial and human resources, as well as capabilities and multi-stakeholder collaboration. “The main take-home message is that building a gender-sensitive seed system starts with us,” said Amanda Lanzarone, program officer at the Bill & Melinda Gates Foundation.
In Nepal, it takes at least a year to collate the demand and supply of a required type and quantity of seed. A new digital seed information system is likely to change that, as it will enable all value chain actors to access information on seed demand and supply in real time. The information system is currently under development, as part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT).
In this system, a national database allows easy access to an online seed catalogue where characteristics and sources of all registered varieties are available. A balance sheet simultaneously gathers and shares real time information on seed demand and supply by all the stakeholders. The digital platform also helps to plan and monitor seed production and distribution over a period of time.
Screenshot of the DESIS portal, still under development.
Challenges to seed access
Over 2,500 seed entrepreneurs engaged in production, processing and marketing of seeds in Nepal rely on public research centers to get early generation seeds of various crops, especially cereals, for subsequent seed multiplication.
“The existing seed information system is cumbersome and the process of collecting information takes a minimum of one year before a seed company knows where to get the required amount and type of seed for multiplication,” said Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) and owner of a seed company in the far west of the country. Similarly, more than 700 rural municipalities and local units in Nepal require seeds to multiply under farmers cooperatives in their area.
One of the critical challenges farmers encounter around the world is timely access to quality seeds, due to unavailability of improved varieties, lack of information about them, and weak planning and supply management. Asmita Shrestha, a farmer in Surkhet district, has been involved in maize farming for the last 20 years. She is unaware of the availability of different types of maize that can be productive in the mid-hill region and therefore loses the opportunity to sow improved maize seeds and produce better harvests.
In Sindhupalchowk district, seed producer Ambika Thapa works in a cooperative and produces hybrid tomato seeds. Her problem is getting access to the right market that can provide a good profit for her efforts. A kilogram of hybrid tomato seed can fetch up to $2,000 in a retail and upscale market. However, she is not getting a quarter of this price due to lack of market information and linkages with buyers. This is the story of many Nepali female farmers, who account for over 60% of the rural farming community, where lack of improved technologies and access to profitable markets challenge farm productivity.
At present, the Seed Quality Control Center (SQCC), Nepal Agriculture Research Council (NARC), the Centre for Crop Development and Agro Bio-diversity Conservation (CCDABC) and the Vegetable Development Directorate (VDD) are using paper-based data collection systems to record and plan seed production every year. Aggregating seed demand and supply data and generating reports takes at least two to three months. Furthermore, individual provinces need to convene meetings to collect and estimate province-level seed demand that must come from rural municipalities and local bodies.
A digital technology solution
CIMMYT and its partners are leveraging digital technologies to create an integrated Digitally Enabled Seed Information System (DESIS) that is efficient, dynamic and scalable. This initiative was the result of collaboration between U.S. Global Development Lab and USAID under the Digital Development for Feed the Future (D2FTF) initiative, which aimed to demonstrate that digital tools and approaches can accelerate progress towards food security and nutrition goals.
FHI 360 talked to relevant stakeholders in Nepal to assess their needs, as part of the Mobile Solutions Technical Assistance and Research (mSTAR) project, funded by USAID. Based on this work, CIMMYT and its partners identified a local IT expert and launched the development of DESIS.
The Digitally Enabled Seed Information System (DESIS) will help to create market and research linkages for Nepal’s seed system.
DESIS will provide an automated version of the seed balance sheet. Using unique logins, agencies will be able to place their requests and seed producers to post their seed supplies. The platform will help to aggregate and manage breeder, foundation and source seed, as well as certified and labelled seed. The system will also include an offline seed catalogue where users can view seed characteristics, compare seeds and select released and registered varieties available in Nepal. Users can also generate seed quality reports on batches of seeds.
“As the main host of this system, the platform is well designed and perfectly applicable to the needs of SQCC,” said Madan Thapa, Chief of SQCC, during the initial user tests held at his office. Thapa also expressed the potential of the platform to adapt to future needs.
The system will also link farmers to seed suppliers and buyers, to build a better internal Nepalese seed market. The larger goal of DESIS is to help farmers grow better yields and improve livelihoods, while contributing to food security nationwide.
DESIS is planned to roll out in Nepal in early 2020. Primary users will be seed companies, agricultural research centers, the Ministry of Agriculture and Livestock Development, agrovets, cooperatives, farmers, development partners, universities, researchers, policy makers, and international institutions. The system is based on an open source software and will be available on a mobile website and Android app.
“It is highly secure, user friendly and easy to update,” said Warren Dally, an IT consultant who currently oversees the technical details of the software and the implementation process.
Farmers in Nepal show their most popular digital tool, a mobile phone, during a training. (Photo: Bandana Pradhan/CIMMYT)
As part of the NSAF project, CIMMYT is also working to roll out digital seed inspection and a QR code-based quality certification system. The higher vision of the system is to create a seed data warehouse that integrates the seed information portal and the seed market information system.
Digital solutions are critical to link the agricultural market with vital information so farmers can make decisions for better production and harvest. It will not be long before farmers like Asmita and Ambika can easily access information using their mobile phones on the type of variety suitable to grow in their region and the best market to sell their products.