Skip to main content

Tag: resilience

Farmer trials with improved seeds to promote seed production and improve local farming practices

In Kasoka village of Bukedea District in Uganda, Nelson Ekurutu, a dedicated farmer, is leading the way in agricultural experimentation. With support from the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project—funded by the Bill & Melinda Gates Foundation (BMGF) and implemented in partnership with CIMMYT and the National Semi-Arid Resources Research Institute (NaSARRI)—Nelson has embarked on a journey to test three new groundnut varieties: SERENUT 8, SERENUT 11, and SERENUT 14. The demonstration plots provide him with a platform to test new varieties, helping him and others understand what works best in their locality.  

While Nelson is drawn to the SERENUT 11 variety for its attractive leaves, he remains cautious, knowing that the real test will come only after the harvest. “This is my first time planting these varieties,” he says. As curious neighbors pass by and inquire about the varieties, he explains, ‘We are testing new varieties, and we’ll know more about their performance and yields after the harvest.” 

The AVISA project, which aims to improve the productivity of dryland crops such as groundnut, finger millet, and sorghum, plays a crucial role in Nelson’s work. With funding and technical support from CIMMYT and NaSARRI, farmers like Nelson are given the opportunity to test improved, drought-tolerant, and disease-resistant varieties. These varieties are designed to increase yields and help farmers become more resilient to climate change while enhancing production systems.  

Nelson is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Nelson’s demonstration plots, using seed supplied by NaSARRI, are part of this initiative. CIMMYT has been instrumental in ensuring that these varieties are adapted to the local environment, while also working with NaSARRI to build farmers’ capacity through hands-on training and technical assistance. 

In addition to groundnut, Nelson is also experimenting with finger millet and sorghum. He values the red finger millet variety  SEREMI 2 for its quick maturity and larger heads. “I planted the finger millet on April 10th, and by July this year (2024), it was ready for harvest,” he says proudly. In addition to finger millet, he is also testing several sorghum varieties—NAROSORG 2, which is red, and SESO 1, which is white. Although he likes them all, Nelson has a clear preference: “I prefer the red sorghum because birds don’t eat it as much. When mixed with cassava, it makes a good atapa.”  Atapa is a staple food in Uganda made by mixing cassava and sorghum flour and cooking it with water until it forms a firm, dough-like consistency. It is typically served as a side dish with stews, vegetables, or meat. Similar dishes are known by different names across the region—Ugali in Kenya, Sadza in Zimbabwe, and Pap in South Africa underlining its importance in African cuisine. 

Nelson showcases the SESO 1 sorghum variety that is white in color (Photo: Marion Aluoch/CIMMYT)

Nelson notes that although the white sorghum produces larger heads, it attracts more birds, requiring him to cover the heads to prevent damage. These trials represent Nelson’s first experience with these varieties, and he acknowledges the learning process involved. “The seed was sourced from NaSARRI specifically for these demonstration plots,” he explains. He believes that by seeing the results first-hand, other local farmers will be able to make informed decisions about adopting the new varieties for improved seed production.  

Nelson’s demonstration plots serve as valuable learning sites for the wider farming community. By bridging the gap between research and farmers’ needs, the AVISA project ensures that scientific innovations reach those who need them most. Reflecting on his journey, Nelson describes the testing of these new varieties as a continuous learning experience. “I’ve been growing sorghum for a long time, and when people see how I grow it, they often ask about the variety and where they can get seeds,” he says. After his harvest, Nelson plans to share the seeds with nearby farmers while keeping some for his own future planting. 

Although he hasn’t been involved in large-scale seed distribution before, Nelson sees potential for future collaboration. “ There’s a group of sunflower and groundnut farmers who have organized themselves into a SACCO to access funding,” he says, referring to the Parish Development Model (PDM) initiative. This model could offer Nelson the opportunity to expand seed distribution and help more farmers access improved varieties. 

Committed to helping local farmers adopt best practices, Nelson is eager to share his knowledge. “When people see how I grow the crops, they often ask for advice or seeds,” he says. He believes that organizing field days to showcase the new varieties would be an excellent way to engage more farmers and demonstrate the value of improved seeds. 

Nelson prefers the NAROSORG 2 sorghum variety known for its resilience and red grain colour (Photo: Marion Aluoch/CIMMYT)

One of the challenges Nelson frequently encounters is farmer’s poor planting practices. “Some farmers broadcast the seeds instead of planting them properly in rows,” he notes, stressing the importance of correct planting techniques. Despite this, he continues to share seeds and farming knowledge to help his fellow farmers to improve their yields. 

Another key issue Nelson highlights is seed recycling, a crucial aspect of sustainable farming. “When you recycle seeds too much, they get tired,” he explains. For improved varieties, Nelson recommends recycling seeds no more than three times to maintain the health of the crop. “I recycle mine only twice. The local seeds can be recycled up to 20 times, but improved varieties don’t perform as well after a few cycles.” 

Climate change is one of the biggest challenges for Nelson’s farming practices, but he remains hopeful. He believes that installing an irrigation system would help mitigate the effects of erratic rainfall and improve his yields. His willingness to try new techniques and experiment with new varieties shows his determination to find solutions in the face of adversity. 

Nelson is optimistic that his trials with ground nut, sorghum, and millet will encourage other farmers to adopt improved varieties, increase seed production and lead to greater productivity in his village and beyond. Through programs like the AVISA project—supported by CIMMYT and NaSARRI—farmers like Nelson are gaining access to better seeds, growing more resilient crops, and improving food security in their communities. 

SKUAST-K Maize Improvement Programme: Transforming Challenges into Bountiful Harvests

The SKUAST-K Maize Improvement Programme, in collaboration with CIMMYT, is making significant advancements in maize agriculture in Jammu and Kashmir. By developing resilient maize varieties and leveraging cutting-edge research, the programme addresses key challenges such as poor soil nutrition and erratic rainfall. This partnership has not only enhanced maize productivity and climate resilience but also secured substantial funding and facilitated the release of landmark varieties, ultimately contributing to a sustainable maize-based economy in the region.

Read the full story.

Rebel Seeds’ Borlaug gets Hard wheat classification

Australia’s smallest seed company, Rebel Seeds, has achieved a significant milestone with the Australian Hard classification for Borlaug 100, a wheat variety introduced in 2015 through the CIMMYT-Australia-ICARDA Germplasm Evaluation (CAIGE) project. This classification allows Borlaug 100 to be delivered into H2 segregations at bulk-handling sites across Queensland and northern New South Wales, benefiting local growers with better prices and enhancing its export potential. The success of Borlaug 100 underscores CIMMYT’s crucial role in providing resilient, high-yielding wheat varieties suited to diverse growing conditions globally.

Read the full story.

What do we know about the future of agri-food systems in Central and West Asia and North Africa (CWANA)?

In Central and West Asia and North Africa (CWANA), agri-food systems are under pressure from resource depletion, population growth, and food insecurity. CIMMYT’s work is vital, focusing on sustainable agricultural practices and innovative technology to enhance productivity and resilience. Research and development efforts are critical in addressing the environmental and socio-economic challenges of agriculture in this diverse and dynamic region.

Read the full story.

Forging collaborative ties from south to south

He Zhonghu presents at the Second International Wheat Congress in Beijing. (Photo: Fei Wei/CAAS)

More than 900 experts from 67 countries gathered for the Second International Wheat Congress, which took place from September 12-16 in-person in Beijing and online, to exchange ideas on how to improve the development of the wheat industry around the world, and call for increased global cooperation in the scientific and technological innovation of wheat to guarantee food security.

The International Maize and Wheat Improvement Center (CIMMYT) was honored to be one of the three organizers of this major world-class event, together with the Crop Science Society of China (CSSC) and the Institute of Crop Sciences of the Chinese Academy of Agricultural Sciences (ICS-CAAS).

This Congress as part of Wheat Initiative activity was established three years ago after the merger of two important conferences: the International Wheat Genetics Symposium and the International Wheat Conference. On this occasion, with Future Wheat: Resilience and Sustainability as the central theme, key issues included: use of diversity; evolution and germplasm; Triticeae genome structure and functional genomics; breeding and new technologies; crop management under climate change; biotic and abiotic resistance and physiology; and processing quality, nutrition, and human health.

In her capacity as co-host of the congress, Claudia Sadoff, CGIAR Executive Managing Director, stressed that the global partnership between China and CGIAR has been of special importance in strengthening achievements in scientific research.

“The priority is to increase grain yields, disease resistance, climate resilience, and nutritional quality through breeding modernization,” said Sadoff. “This is especially important as we are facing a food system crisis, with wheat at its heart. The global food crisis requires a system approach to stabilize wheat supply.”

Bram Govaerts, Director General of CIMMYT, reiterated this point, indicating that “meetings like this can be source of concrete proposals for consolidating enabling partnerships that will lead to the enduring transformation of wheat based agri-food systems worldwide”.

What’s next for global wheat?

Asking what’s next is a disturbing question when faced with a crop like wheat that is an important commodity for more than 35% of the world’s population, with global production exceeding 760 million tons in 2020. The same question that Alison Bentley, Director of CIMMYT’s Global Wheat Program, seeks to respond to build future resilience.

“It is important that we understand where the risks are in our global food system so that we can respond to and address the impacts,” Bentley explained, while presenting a roadmap for future wheat research and development, where food security and nutrition plays a decisive role taking in consideration the effects of climate change and population growth.

Zhonghu He, CIMMYT Distinguished Scientist and Country Representative for China, said, “Thanks to the fact that this Congress was a hybrid event, there was a large online participation of researchers, students and representatives of entities from developing countries – a fact that reiterates the importance of the work that we have been doing together and can promote even further in the face of the challenges that we face today in terms of conflict, high cost of living, climate change and COVID-19.”

More than 900 experts from 67 countries united to discuss improved collaboration in wheat research and development. (Photo: Fei Wei/CAAS)

China and CIMMYT

China and CIMMYT have worked side-by-side on wheat and maize research for the past 40 years in areas such as varietal breeding, genomics research, sustainable farming systems, and training. China is the largest wheat producer and consumer in the world, and China has always considered CIMMYT as a strategic win-win partner for wheat research.

These four decades of work are reflected in results, such as the fact that more than 26,000 accessions of wheat preserved in CIMMYT’s genebank were introduced and are stored in China. This has enabled collaborative research on this cereal to add up to 10.7 million tons of grain, worth $3.4 billion USD. It has also enabled more than 200 Chinese scientists and students working in wheat to visit CIMMYT´s global headquarters in Mexico to receive training courses and complete thesis research.

In recognition of the partnership between China and CIMMYT, six wheat varieties derived from CIMMYT germplasm received national awards in China and seven scientists were awarded the China Friendship Award, the highest recognition of international scientists for their contribution to China. In 2016, CIMMYT received the International Science and Technology Cooperation Award from China State Council.

The 3rd International Wheat Congress will be held in Australia in 2024.

Advice for food systems in crisis featured in GAP Report

Farm worker Charles Gitero checks wheat Robin for traces of disease at Ndabibi Farm, Naivasha, Kenya. (Photo: Peter Lowe/CIMMYT)

Expertise from CIMMYT on transforming food systems in a crisis-stricken world features in the yearly Global Agricultural Productivity (GAP) Report 2022, released October 4.

As a partner to the GAP Initiative, CIMMYT’s submission to the report is part of the Stories of partnership and productivity growth section. It explores the interdependency and vulnerability of food systems to market shocks and the long-term impacts of these shocks on vulnerable communities, particularly in the Global South.

To build agricultural resilience that can overcome threats of food insecurity and malnutrition, CIMMYT recommends targeted expansion of agricultural production and high levels of investment in research and capacity development.

Tek Sapkota, Agricultural Scientist and System/Climate Change Specialist with CIMMYT’s Sustainable Agrifood Systems (SAS) program, was a speaker at the launch event, which explored the outlook for agricultural productivity growth in the face of conflicts, COVID-19 and climate change. Presenters also examined where agricultural productivity is stagnating or falling and its repercussions for food security and the environment, and how to accelerate sustainable productivity growth at all scales of production.

Read or download the report: 2022 GAP Report

About the Global Agricultural Productivity Report:

The Global Agricultural Productivity (GAP) Report is a source for productivity data, analysis, and policy recommendations that inspire action. In collaboration with partners in the private sector, NGOs, conservation organizations, universities, and global research institutions, the annual report and year-round engagement provides a roadmap toward progress.

How to shockproof staples in a looming global food crisis

Empty shelfs in a Swiss grocery store. Photo Boris Dunand/Unsplash

The conflict in Ukraine has had a deeply destabilizing effect on the global wheat trade, causing unprecedented price volatility and uncertainty. As my colleagues and I have previously highlighted, the unintended consequences are likely to have outsized impacts on livelihoods in the Global South.

As the G7 group of nations recently acknowledged in a joint statement, the conflict is leading to steep price rises and increasing global food insecurity for millions, especially those most vulnerable, such as women and children.

In a new paper published in Nature Food, scientists and partners of the International Maize and Wheat Improvement Center (CIMMYT) present a package of applied solutions to respond to the crisis and ensure future wheat stability.

To stem the potential food crisis, food is needed in more places, and faster.

Recently announced talks between Russia, Turkey, Ukraine and the United Nations, among other negotiations, are already underway as part of this international effort to develop short-term solutions.

However, at present we are seeing the brakes applied in several places. For example, in India century-high temperature extremes have recently reduced official wheat production estimates by 6 percent, leading to reduced export potential. This shows the compounding effect of climatic instability on global wheat markets, an impact that is expected to worsen over time.

In our solutions agenda, we propose a package of short-, medium- and longer-term actions and urge immediate and sustained support for shockproofing major food security staple crops, including wheat.

  1. In the short term, the priority is mitigation of food security shocks through boosting production in existing high- and low-productivity areas, ensuring access to grain, and making use of flour substitution.
  2. In the medium term, we must increase the local, regional, and global resilience of wheat supply through targeted expansion (within agro-ecological boundaries), support for self-sufficiency, comprehensive technical support in production systems, and mainstreamed crop monitoring capacity.
  3. In the longer term, the transition to agri-food system resilience will need to encompass agroecosystem diversity, address gender disparities in agriculture and rural communities, and sustain an increased investment in a holistic, agri-food transition.

Conflict is being waged on wheat on multiple fronts: on battlefields, in the political arena and by our changing climate. Together these factors interact and amplify the threat to staple wheat production. To address this complexity, we now need to move beyond defining the problem to implementing practical action to ensure stable supply.

AgriLAC Resiliente presented in Guatemala

Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)
Representatives from CGIAR leadership, CGIAR Centers, government and other stakeholders stand for a group photo during the launch of the AgriLAC Resiliente Initiative in Guatemala City. (Photo: CGIAR)

Latin America and the Caribbean possess the largest reserve of arable land on the planet, 30% of renewable water, 46% of tropical forests and 30% of biodiversity. These resources represent an important contribution to the world’s food supply and other ecosystem services. However, climate change and natural disasters, exacerbated by COVID-19, have deteriorated economic and food security, destabilizing communities and causing unprecedented migration, impacting not only the region but the entire world.

Against this regional backdrop, AgriLAC Resiliente was created. This CGIAR Initiative seeks to increase the resilience, sustainability and competitiveness of the region’s agrifood systems and actors. It aims to equip them to meet urgent food security needs, mitigate climate hazards, stabilize communities vulnerable to conflict and reduce forced migration.

Guatemala was selected to present this Initiative, which will also impact farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua and Peru, and will be supported by national governments, the private sector, civil society, and regional and global donors and partners.

At a workshop on June 27–28, 2022, in Guatemala City, partners consolidated their collaboration by presenting the Initiative and developing a regional roadmap. Workshop participants included representatives from the government of Guatemala, NGOs, international cooperation programs, the private sector, producer associations, and other key stakeholders from the host country. Also at the workshop were the leaders from CGIAR research Centers involved in the Initiative, such as the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP) and the International Food Policy Research Institute (IFPRI).

Joaquín Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
Joaquín Lozano, CGIAR Regional Director for Latin America and the Caribbean, presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

Impact through partnerships

“Partnerships are the basis for a future of food security for all through the transformation of food systems in the context of a climate crisis. AgriLAC’s goal of a coordinated strategy and regional presence will facilitate strong joint action with partners, donors, and producers, and ensure that CGIAR science continues to be leveraged so that it has the greatest possible impact,” said Joaquín Lozano, CGIAR Regional Director for Latin America and the Caribbean.

This Initiative is one of many CGIAR Initiatives in Latin America and consists of five research components: Climate and nutrition that seeks to use collaborative innovations for climate resilient and nutritious agrifood systems; Digital agriculture through the use of digital and inclusive tools for the creation of actionable knowledge; Low-emission competitiveness focused on agroecosystems, landscapes and value chains that are low in sustainable emissions; Innovation and scaling with the Innova-Hubs network for agrifood innovations and scaling; and finally, Science for timely decision making and establishment of policies, institutions, and investments for resilient, competitive and low-emission agrifood systems.

“We know the important role that smallholder farmers, both women and men, will play in the appropriation of the support tools that the Initiative will offer, which will allow them to make better decisions for the benefit of their communities. That is why one of the greatest impacts we expect from the project will be the contribution to gender equality, the creation of opportunities for youth, and the promotion of social inclusion,” said Carolina González, leader of the Initiative, from the Alliance of Bioversity International and CIAT.

Bram Govaerts, Director General of CIMMYT, said: “In Guatemala, we have had the opportunity to work side by side with farmers who today, more than ever, face the vicious circle of conflict, poverty and climate change. Through this Initiative, we hope to continue making progress in the transformation of agrifood systems in Central America, helping to make agriculture a dignified and satisfying job and a source of prosperity for the region’s producers.”

“I realize the importance of implementing strategic actions designed to improve the livelihoods of farmers. The environmental impact of development without sustainable planning puts at risk the wellbeing of humanity. The Initiatives of this workshop contribute to reducing the vulnerability of both productive systems and farmers and their families. This is an ideal scenario to strengthen alliances that allow for greater impact and respond to the needs of the country and the region,” said Jose Angel Lopez, Guatemala’s Minister of Agriculture, Livestock and Food.

Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)
Bram Govaerts, Director General of CIMMYT (right), presents during the launch of the AgriLAC Resiliente Initiative. (Photo: CGIAR)

National and regional strategies

AgriLAC Resiliente will also be presented in Honduras, where national partners will learn more about the Initiative and its role in achieving a resilient, sustainable, and competitive Latin America and the Caribbean, that will enable it to achieve the Sustainable Development Goals.

Under the general coordination of CGIAR, other Initiatives are also underway in Guatemala that will synergize with the global research themes toward the transformation of more resilient agrifood systems.

“We are committed to providing a structure that responds to national and regional priorities, needs, and demands. The support of partners, donors and producers will be key to building sustainable and more efficient agrifood systems,” Lozano said.


About CGIAR

CGIAR is a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. Its research is carried out by 13 CGIAR Centers/Alliances in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

We would like to thank all Funders who support this research through their contributions to the CGIAR Trust Fund.

About the Alliance of Bioversity International and CIAT

The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) delivers research-based solutions that address the global crises of malnutrition, climate change, biodiversity loss, and environmental degradation. The Alliance focuses on the nexus of agriculture, nutrition and environment. We work with local, national, and multinational partners across Africa, Asia, and Latin America and the Caribbean, and with the public and private sectors and civil society. With novel partnerships, the Alliance generates evidence and mainstreams innovations to transform food systems and landscapes so that they sustain the planet, drive prosperity, and nourish people in a climate crisis.

The Alliance is a CGIAR Research Center. https://alliancebioversityciat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an international nonprofit agricultural research and training organization that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis. Applying high-quality science and strong partnerships, CIMMYT works toward a world with healthier, more prosperous people, freedom from global food crises, and more resilient agrifood systems. CIMMYT’s research brings higher productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a CGIAR Research Center. https://staging.cimmyt.org

About CIP

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweetpotato and andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agrifood systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia, and Latin America.

CIP is a CGIAR Research Center. https://cipotato.org/

About IFPRI

The International Food Policy Research Institute (IFPRI) provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition in developing countries. IFPRI currently has more than 600 employees working in over 50 countries. Global, regional, and national food systems face major challenges and require fundamental transformations. IFPRI is focused on responding to these challenges through a multidisciplinary approach to reshape food systems so they work for all people sustainably.

IFPRI is a CGIAR Research Center. www.ifpri.org

A new vision of making profits drives mechanization service providers in Zimbabwe

Introducing mechanization services in any smallholder farming community has proven to yield multiple benefits largely aimed at increasing farming efficiency but importantly creating a solid economic base to boost farmer incomes. Anchored on the two-wheel tractor along with implements for land preparation, planting, harvesting, shelling, transporting, appropriate-scale mechanization has in the last seven years gained currency across African farming households.

Interventions such as the mechanization pilot implemented by the International Maize and Wheat Improvement Center (CIMMYT) provide a channel through which smallholder farmers with access to some financial resources can invest to become a viable enterprise.  The aim of this intervention is not to make every farmer own its own machinery, which would be costly and inefficient, but to train farmers to become service providers to other community members. This model has been effectively tried before in other places under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

A recent visit to two service providers in southern Zimbabwe, demonstrates the high returns on investment achieved through enrolling in mechanization service provision.

Two service providers, one vision: Profit

Julius Shava (53) and Prince Chimema (22), shared their experience in offering diverse transporting and land preparation services using the two-wheel tractor, trailer, direct seeder, and sheller procured through the initiative.  Narrating how he learnt about the mechanization pilot and his subsequent enrolment, Shava explains how potential service providers had to make a financial commitment to the business before accessing the equipment.

“Through this mechanization business model, we would receive a two-wheel tractor, trailer, sheller, and seeder worth USD5,000, at a subsidized price of $USD2,500. The main condition for accessing this package was to pay a commitment fee of USD500 – there was no way I could let that opportunity slip away,” explains Shava.

“My wife and I decided to sell two cows to raise the funds and made the payment. Some community members were initially skeptical of the approach when it seemed that the consignment was delayed yet when the two-wheel tractor arrived, they were among the first to inquire about the services I was offering,” Shava adds.

“I made sure they all understood what I could provide for them using the 2WT and trailer such as land preparation and transportation – of manure, gravel stones and pit sand among other things.”

The multipurpose trailer with a loading capacity of up to one and a half tonnes can be attached to the two-wheel tractor for the provision of transport services. (S.Chikulo/CIMMYT)

Shava and Chimema are among fifteen service providers leading in the mechanization pilot initiative launched in July 2020 in Masvingo district. The initiative is supported by the Swiss Agency for Development and Cooperation (SDC) and managed by the World Food Program (WFP). The private sector machinery company Kurima Machinery facilitates provision of the two-wheel tractor, planter, trailer and sheller while the Zimbabwe Agriculture Trust (ZADT) manages the lease-to-own business model anchoring the mechanization pilot to the financial sector.

Counting the cost and returns

“How much turnover does a service provider realise on average?” is a question frequently asked by other farmers keen to take up the enterprise.

Shava explains the factors he considers, “When someone is hiring my services, I charge according to the distance and load to be transported.” For example, for a 200m delivery radius, I can charge USD5. However, for land preparation and ploughing, I charge USD100 per hectare.” He quickly adds that he also factors in his labor, fuel requirements and time into the final price of his service – a principle he learnt during a specialized technical and business training provided by Gwebi College of Agriculture for the mechanization pilot.

In addition, using the two-wheel tractor is efficient as a hectare is completed in about one hour where an animal drawn plough takes up to six hours or more, depending on the soil type. The reduced drudgery allows farmers to rest their livestock and adopt more efficient and sustainable land preparation technologies. Shava notes that these advantages are immediately apparent to farmers who seek the service.

Customers often pay in cash which is convenient for him as he saves the money or uses some of it to meet expenses related to the service provision. “So far I have reached up to 7 customers after two months from the Nemamwa area in Ward 12 of Masvingo and they were seeking different services. “For land preparation they were paying USD100 per hectare. In Ward 8, I managed to get about three customers.

“When it comes to pricing, I leave room for negotiation because it is inevitable that customers will always ask for a discount, but I ensure that I do not incur losses.” Since venturing into mechanization service provision, Shava has realized a gross income of USD$600 before deducting expenses such as fuel and regular maintenance. However, the two-wheel tractor is fuel efficient – utilizing at least seven liters of diesel per hectare. Diesel fuel is purchased in Masvingo town or from informal markets at the business center at a cost of USD1 per liter.

Young service providers making their mark

Service providers such as Prince Chimema, who are young, energetic and business minded are also among those quickly realizing the high returns on the small mechanization investment. Coming from a family of seven, Chimema – recently married and with a two-year old child – has found a secure income stream in service provision of different mechanization services.

“I am grateful for the financial support from my parents that enabled me to enroll into the mechanization pilot program,” says Chimeme. Like Shava, Chimema’s parents sold two cows to raise the USD500 commitment fee.  Soon, Chimema was approaching his relatives and neighbors in the community demonstrating the transporting, planting and land preparation services that he could provide. “Some of my customers would have seen me delivering manure or quarry stones to another household before requesting for my services; that is how my customer base has increased steadily.”

When pricing, Chimema considers the distance, fuel and time it will take to deliver the load. “In this area, requests are for transporting manure, quarry stones, pit sand and river sand. The price ranges from USD4 – USD8 per load. While most villagers pay in cash, a few may request to pay in kind using chickens,”

Chimema’s marketing strategy has been to push volumes by advertising his transporting services to other farmers outside of Ward 18. To date, he has focused on clients requiring transportation services. In Wards 18 and 19, Chimema has served a total of 60 customers, generating USD400 within the first two months of commencing the business.

Challenges and early lessons

Venturing into small mechanized service provision has not been without its challenges as attested by Chimema and Shava, “A lesson I learnt from the onset is never to overload the trailer beyond the recommended capacity,” explains Chimema. “During the mechanization training, we were advised that the trailer’s maximum carrying capacity is between 750-1000kg but at times I could overlook this leading to faults developing on my tractor,” says Prince.

Fuel access also presents challenges at times. “We have to get fuel from Masvingo because the quality of fuel here in the ward may be compromised while the price is slightly inflated because of the middlemen selling the fuel.

The delay in delivery of tractor-drawn direct seeders reduced the potential number of customers for both Chimema and Shava for planting services, as most farmers had proceeded to plant given the early onset of the rainy season. However, both service providers are hopeful that in the next season, with all the equipment in place, they can provide the full range of services to fellow smallholders.

Continuous improvement of the technology by including a toolbar is currently underway, which eases the level of effort required to operate the two-wheel tractor, making it more flexible for the service providers.

Twenty-two-year-old Prince Chimema of Ward 18 Masvingo district demonstrating the two-row direct seeder attached to the two-wheel tractor. (S.Chikulo/CIMMYT)

A vision for expansion and rural transformation

Chimema and Shava are optimistic about the future growth and performance of their business. Both aspire to expand their service provision over the coming five years by purchasing a second two-wheel tractor and creating employment for other villagers. “The income for the second two-wheel tractor should be generated from the current business” explains Shava.

In addition to the land preparation and transporting services, the maize sheller is set to increase their income. With a shelling capacity of 3-4 tons per day, the maize sheller significantly reduces the amount of time and effort required to shell a ton of maize manually (12.5 days).

“The priority now is to make sure that the loan repayment happens smoothly because I am generating enough income to pay back up for my package,” explains Shava. Once the payment is done, Shava would like to set up a borehole and drip irrigation system for their family plot and complete construction of his house in Masvingo town.

Chimema, on the other hand, is keen to start a poultry project. He is currently assisting his parents to pay school fees for his younger sibling but believes the poultry project will increase his income stream. “As I broadcast and market my services by word of mouth and through mobile platform messages; there is room for me to expand beyond Ward 18 and 19,” says Chimema. “I hope to employ at least two more people in the coming two or three years, to help me deliver the services to other farmers,” he adds.

“With the business experience gained from the current season, small mechanization service providers such as Chimema and Shava can increase the portfolio of services to customers”, says Christian Thierfelder, Principal Scientist at CIMMYT, leading the effort. “For example, at planting stage, service providers could provide a complete package for farmers including seed and fertilizer as well as a supply of appropriate herbicides for weed control as part of the land preparation and direct seeding service. Such an offering increases the value of the service and affords farmers the opportunity to witness the full benefits of small mechanized agriculture”, Thierfelder says.

“We have to provide farmers with options to abandon the hoe. The drudgery of farming has made this profession so unattractive that a rural exodus is looming. Providing business, employment and entrepreneurship will bring back hope and will lead to a true rural and agriculture transformation in Zimbabwe.” The high return on investment of the mechanized package makes it a viable year-round business option for farmers and entrepreneurs in rural Masvingo. The pilot is providing a proof of concept that this model works, even under low-potential environments.

Cover photo: Julius Shava and his wife standing at their lease-to-own two-wheel tractor which is part of the starter package for small-mechanization service providers in Masvingo District. (S.Chikulo/CIMMYT)

No greater challenge

Amidst the transition to One CGIAR and COVID-19 lockdowns, the world’s leading maize and wheat research organization’s community found the time to slow down and weigh the successes and bottlenecks of this complicated year. More than 400 people spread across the International Maize and Wheat Improvement Center’s (CIMMYT) 13 offices worldwide gathered for an all-staff virtual event to close 2020.

Aided by world-renowned economist Jeffrey Sachs’ vast experience in detangling global crises, sustainable development and poverty alleviation, staff reflected on the role they play within CGIAR and in helping CIMMYT increase its impact on nutrition security, poverty alleviation and a better world.

Connecting from his home in New York, Sachs urged CGIAR to see beyond the research priorities it set out to accomplish a half a century ago. With the 50th anniversary of CGIAR in 2021, Sachs encouraged CGIAR to think about the research priorities for the next 50 years. “We’re confronting a probably more systemic and even more complex set of challenges in food in 2021, than perhaps was the case in 1971,” he said.

“We need to expand the research agenda beyond the still-important focus on improved yields and varieties to consider the food system holistically. Our goal is a global food system that enables healthy diets, sustainable land use, resilience to environmental change, and good livelihoods for farm families.”

“Our goal is a global food system that enables healthy diets, sustainable land use, resilience to environmental change, and good livelihoods for farm families.”

Albeit not as famous as its colleague organizations the Food and Agriculture Organization of the UN (FAO) and the World Food Programme (WFP), CGIAR has been called “essential to feeding our future” by Bill Gates. Sachs echoed this sentiment and urged CGIAR to embrace its vital role in “achieving sustainable agriculture and healthy diets for all.”

The next 50 years

As CIMMYT moves into One CGIAR, it will capitalize on its over 50 years of experience, impact and expertise in genetic innovations, systems transformation and tools for resilient agri-food systems and fully embrace One CGIAR’s mission of delivering science and innovation that advance transformation of food, land and water systems in a climate crisis.

Throughout 2020, COVID-19 and global conflicts have put an almost impossible pressure on already overwhelmed agricultural production, smallholders’ livelihoods and global supply chains. As with any system, it requires resilience for its long-term sustainability. “Of course, CGIAR’s central goal has been to anticipate the future needs of food production and areas of new resilience such as flood resilience or drought,” said Sachs.

“I would add [for its future strategy to also consider] resilience to social disruptions and disruptions to global supply chains, as we experience with COVID-19 but also with geopolitical tensions,” he advised.

Jeffery Sachs quoted at CIMMYT’s virtual event in December 2020. (Graphic: CIMMYT)

Keeping cereals in the equation

While diversification is important to human diets and the sustainability of agricultural production, we cannot afford to ignore the major cereals. Maize, rice and wheat provide a basic nutritional value, macro- and micronutrients that many people across the globe can afford and access.

Sachs asked CGIAR to look deeply at the question of poverty and food poverty, both in rural and urban areas. “CGIAR has more knowledge of how smallholders are living and how their lives are changing than any other research institution in the world. And I think your work can therefore give tremendous guidance on the overall fight against poverty and on the anticipation of increased urbanization in future years, as agriculture becomes more mechanized, and as smallholders or the children of today’s smallholders leave for urban areas in the coming generation.”

“CGIAR has more knowledge of how smallholders are living and how their lives are changing than any other research institution in the world. And I think your work can therefore give tremendous guidance on the overall fight against poverty.”

Sachs acknowledged the large and important task that CGIAR faces in its future. “All of this is incredibly difficult. […] I find the food system challenges to be the most complex of all of the sustainability challenges we face.”

He spoke of the task at hand with urgency and that there is no greater intellectual challenge than the transformation to sustainable agriculture: “The role of the CGIAR will be unique and indispensable in helping to guide us through those transformations. I think this is the indispensable time for the CGIAR to lay out its new research agenda for the next 50 years to be the one that helps us to achieve the Sustainable Development Goals and the Paris Climate Agreement.”

Money-making machines

A new small-mechanization pilot initiative launched in July is equipping farmers with the business and technical skills they need to provide mechanization services to communities in six wards of Masvingo district, Zimbabwe.

With funding from the Swiss Agency for Development and Cooperation (SDC) managed by the United Nations World Food Program (WFP), the International Maize and Wheat Improvement Center (CIMMYT) is leading implementation of the pilot in collaboration with Kurima Machinery and the Zimbabwe Agriculture Development Trust (ZADT), who are supporting the technical training and financial management, respectively.

Anchored on a strong business model, 15 farmers have signed up to become service providers and invested an initial deposit of $500 to access the mechanization package comprising a two-wheel tractor and trailer, a direct planter and a maize cob sheller. Through a “lease-to-own” credit facility, eligible service providers will have 24 months to pay the remaining balance for the set of equipment.

“This approach addresses re-payment challenges in past interventions, where equipment was distributed without a firm commitment from the service providers and without putting in enough effort to establish a viable business,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “An advantage of this new form of financial commitment by the service providers is that it guarantees full participation and a change in their perception towards farming as a business.

Since 2013, smallholder farmers in Zimbabwe have been exposed to the benefits of combining small-mechanization with conservation farming systems to improve productivity — land preparation, planting and harvesting to achieve higher yields while reducing production costs. Besides making farming tasks more efficient for individuals, this set of equipment can be used to provide critical services to other farmers in their wards.

The two-wheel tractor can have various implements attached to it for services such as planting, transportation and shelling. It can also be used to run other important implements such as water pumps, mills or threshers.

This mechanization pilot therefore presents an additional pathway out of poverty and into sustainable production and income generation at household level, while boosting the local economy and rural employment in Masvingo district.

Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Training for local service provision

Eligible service providers were recently invited to attend a one-week specialized business and technical training course at Gwebi Agricultural College, just outside of Harare. The training package consisted of two main components: business management; and two-wheel tractor operation, maintenance and repair.

Elliot Zvovovo, a participating service provider, explains how the balanced training approach equipped him fully with all the knowledge and skills he needs to run his business. “I learned different ways of record keeping, managing income and treating my clients professionally,” he says.

“On the machinery side, I learned about of all the parts of a two-wheel tractor and practiced assembling the engine so that maintenance and repair will be easy for me.”

Julius Shava, another participating service provider, agrees, adding that knowing how to maintain the two-wheel tractor and troubleshooting will also minimize costs of hiring external mechanics to attend to faults. “I realized the importance of routine checks for oil and water levels, how to crank-start the tractor and hitch the planter all by myself.”

Supporting agricultural extension in line with service providers is critical to mainstreaming transformational change in rural areas. As such, seven local extension officers — key partners in the implementation of small-mechanization activities — were also invited to participate in the training.

“The training proved to be very effective, particularly the emphasis on mastering business principles and on the technical side, integrating service providers’ existing knowledge of conservation farming with small-mechanization,” says Canaan Zhakata, an extension officer for Ward 15.

Through the practical sessions, all service providers have now learned how to operate a two-wheel tractor, calibrate the direct planter for seed and fertilizer rates and use the sheller — giving them full technical skills and knowledge,” explains Dorcas Matangi, a research associate at CIMMYT.

The certification they have received will increase farmers’ confidence as they return to Masvingo to commence service delivery, with continued on-site support from their local extension officers. “Once we return to Masvingo, we can assist the new service providers by monitoring their service delivery to ensure full compliance with the technical requirements for operating the machinery,” says Tsvakai Dumbu, an extension officer for Ward 17.

A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A profitable business for the local economy

This mechanization pilot is poised for success as it draws on existing positive results gained by the women and youth service providers in western Zimbabwe, who are running successful mechanized enterprises following the recently completed Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

“During a recent seed fair, we heard of a youth group in Makonde that is making up to $7,000 just from maize shelling services,” says Zvovovo. “Knowing that it takes just one day to shell up to three tons of maize with the sheller, I now know that reaching such an income is achievable.”

This pilot will prove that there is scope for small-mechanization to expand on productivity through the two-wheel tractor, trailer and sheller, as shown in other parts of eastern and southern Africa. It will explore leverages on the opportunities and demand for services in Masvingo.

Cover image: An extension officer from Masvingo district drives a two-wheel tractor during a training for service providers and extension officers at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Saving water and time

“I wonder why I never considered using drip irrigation for all these years,” says Michael Duri, a 35-year-old farmer from Ward 30, Nyanga, Zimbabwe, as he walks through his 0.5-hectare plot of onions and potatoes. “This is by far the best method to water my crops.”

Duri is one of 30 beneficiaries of garden drip-kits installed by the International Maize and Wheat Improvement Center (CIMMYT), an implementing partner under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBF).

“In June 2020, I installed the drip kit across 0.07 hectares and quickly realized how much water I was saving through this technology and the reduced amount of physical effort I had to put in,” explains Duri. By September, he had invested in two water tanks and more drip lines to expand the area under drip irrigation to 0.5 hectares.

Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)
Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)

Water woes

Zimbabwe’s eastern highland districts like Nyanga are renowned for their diverse and abundant fresh produce. Farming families grow a variety of crops — potatoes, sugar beans, onions, tomatoes, leafy vegetables and garlic — all year round for income generation and food security.

Long poly-pipes lining the district — some stretching for more than 10 kilometers — use gravity to transport water from the mountains down to the villages and gardens. However, in the last five-to-ten years, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted water reserves.

To manage the limited resources, farmers access water based on a rationing schedule to ensure availability across all areas. Often during the lean season, water volumes are insufficient for effectively irrigating the vegetable plots in good time, which leads to moisture stress, inconsistent irrigation and poor crop performance. Reports of cutting off or diverting water supply among farmers are high despite the local council’s efforts to schedule water distribution and access across all areas. “When water availability is low, it’s not uncommon to find internal conflicts in the village as households battle to access water resources,” explains Grace Mhande, an avid potato producer in Ward 22.

Climate-proofing gardens

Traditionally, flood, drag hose, bucket and sprinkler systems have been used as the main irrigation methods. However, according to Raymond Nazare, an engineer from the University of Zimbabwe, these traditional irrigation designs “waste water, are laborious, require the services of young able-bodied workers and use up a lot of time on the part of the farmers.”

Prudence Nyanguru, who grows tomatoes, potatoes, cabbages and sugar beans in Ward 30, says the limited number of sprinklers available for her garden meant she previously had to irrigate every other day, alternating the sprinkler and hose pipe while spending more than five hours to complete an average 0.05-hectare plot.

“Whereas before I would spend six hours shifting the sprinklers or moving the hose, I now just switch on the drip and return in about two or three hours to turn off the lines,” says Nyanguru.

The drip technology is also helping farmers in Nyanga adapt to climate change by providing efficient water use, accurate control over water application, minimizing water wastage and making every drop count.

“With the sprinkler and flood systems, we noticed how easily the much-needed fertile top soil washed away along with any fertilizer applied,” laments Vaida Matenhei, another farmer from Ward 30. Matenhei now enjoys the simple operation and steady precision irrigation from her drip-kit installation as she monitors her second crop of sugar beans.

Frédéric Baudron, a systems agronomist at CIMMYT, observes that Zimbabwe has a long history of irrigation, but this has mostly tended to be large-scale. “This means either expensive pivots owned by large-scale commercial farmers — a minority of the farming population in Zimbabwe as in much of sub-Saharan Africa — or capital-intensive irrigation schemes shared by a multitude of small-scale farmers, often poorly managed because of conflicts amongst users,” he says. A similar pattern can be seen with mechanization interventions, where Zimbabwe continues to rely on large tractors when smaller, and more affordable, machines would be more adapted to most farmers in the country.

“Very little is done to promote small-scale irrigation,” explains Baudron. “However, an installation with drip kits and a small petrol pump costs just over $1 per square meter.”

Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A disability-inclusive technology

The design of the drip-kit intervention also focused on addressing the needs of people with disabilities. At least five beneficiaries have experienced the limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods in the past.

For 37-year-old Simon Makanza from Ward 22, for example, his physical handicap made accessing and carrying water for his home garden extremely difficult. The installation of the drip-kit at Makanza’s homestead garden has created a barrier-free environment where he no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy to operate.

“I used to walk to that well about 500 meters away to fetch water using a bucket,” he explains. “This was painstaking given my condition and by the time I finished, I would be exhausted and unable to do any other work.”

The fixed drip installation in his plot has transformed how he works, and it is now easier for Makanza to operate the pump and switches for the drip lines with minimal effort.

Families living with people with disabilities are also realizing the advantages of time-saving and ease of operation of the drip systems. “I don’t spend all day in the field like I used to,” says George Nyamakanga, whose brother Barnabas who has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our eight-member household.”

By extension, the ease of operation and efficiency of the drip-kits also enables elderly farmers and the sick to engage in garden activities, with direct benefits for the nutrition and incomes of these vulnerable groups.

Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Scaling for sustained productivity

Since the introduction of the drip-kits in Nyanga, more farmers like Duri are migrating from flood and sprinkler irrigation and investing in drip irrigation technology. From the 30 farmers who had drip-kits installed, three have now scaled up after witnessing the cost-effective, labor-saving and water conservation advantages of drip irrigation.

Dorcas Matangi, an assistant research associate at CIMMYT, explains that use of drip irrigation ensures precise irrigation, reduces disease incidence, and maximal utilization of pesticides compared to sprinklers thereby increasing profitability of the farmer. “Although we are still to evaluate quantitatively, profit margin indicators on the ground are already promising,” she says.

Thomas Chikwiramadara and Christopher Chinhimbiti are producing cabbages on their shared plot, pumping water out of a nearby river. One of the advantages for them is the labor-saving component, particularly with weed management. Because water is applied efficiently near the crop, less water is available for the weeds in-between crop plants and plots with drip irrigation are thus far less infested with weeds than plots irrigated with buckets or with flood irrigation.

“This drip system works well especially with weed management,” explains Chinhimbiti. “Now we don’t have to employ any casual labor to help on our plot because the weeds can be managed easily.”

Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Critical reflections on COVID-19

The COVID-19 global health crisis has disrupted food and agricultural systems around the world, affecting food production, supply chains, trade and markets, as well as people’s livelihoods and nutrition. Following an initial assessment in May 2020, the Food and Agriculture Organization of the United Nations (FAO) joined the International Fund for Agricultural Development (IFAD), the International Maize and Wheat Improvement Center (CIMMYT) and other CGIAR centers to conduct a comprehensive assessment of the impacts of the COVID-19 pandemic on Bangladesh’s agri-food system.

The report shares critical reflections and lessons learned, as well as providing detailed quantitative and qualitative information on all disruption pathways and possible recovery strategies.

According to the research team, the major visible impact was the decline of food demand due to the disruption of value chain actors in the food market and income shortages, especially among low- and daily wage-earning populations. This reduced demand lead in turn to reduced prices for agricultural goods, particularly perishable food items like vegetables, livestock and fish products.

Additionally, constraints on the movement of labor led to a disruption in agricultural services, including machinery and extension services, while domestic and international trade disruptions created input shortages and lead to price volatilities which increased production costs. This increase, coupled with reductions in production and output prices, essentially wiped farmer profits.

A farmer takes maize grain to a local reserve in Bangladesh. (Photo: Fahad Kaizer/FAO)
A farmer takes maize grain to a local reserve in Bangladesh. (Photo: Fahad Kaizer/FAO)

Building back a better food system

The latest report was launched at the same time as the CGIAR COVID-19 Hub in Bangladesh, which aims to build local resilience to the effects of the pandemic and support government-led recovery initiatives. At a panel discussion presenting the results of the assessment, researchers emphasized the importance of social safety net mechanisms and food demand creation, as well as the need for strong monitoring of food systems to ensure continued availability and affordability, and early detection of any critical issues.

The discussion centered on the need for public access to trustworthy information in order to raise awareness and instill confidence in the food they consume. One key recommendation which emerged is facilitating the digitalization of farming, which looks to re-connect farmers and consumers and build the food system back better. The accelerated development of digital platforms connecting farmers to markets with contactless delivery systems can ensure the safer flow of inputs and outputs while generating a higher share of consumer money for farmers. There is also a need to explore green growth strategies for reducing food waste — the creation and distribution of improved food storage systems, for instance — and circular nutrient initiatives to better utilize food waste as feed and bio manure.

Read the full report “Second rapid assessment of food and nutrition security in the context of COVID-19 in Bangladesh, May – July 2020”

Farmers flock towards nutritious, orange maize

At seed fair in Masvingo District, Zimbabwe, farmers browse numerous displays of maize, sorghum, millet, groundnuts and cowpeas presented by the seed companies gathered at Muchakata Business Centre.

The event — organized by the International Maize and Wheat Improvement Center (CIMMYT) as part of the R4 Rural Resilience Initiative — is promoting a range of stress-tolerant seeds, but there is a particular rush for the vitamin A-rich, orange maize on offer. Farmers excitedly show each other the distinctive orange packets they are purchasing and in no time all, this maize seed is sold out at the Mukushi Seeds stand.

“I first saw this orange maize in the plot of my neighbor, Florence Chimhini, who was participating in a CIMMYT project,” explains Dorcus Musingarimi, a farmer from Ward 17, Masvingo. “I was fascinated by the deep orange color and Florence told me that this maize was nutritious and contained vitamin A which helps to maintain normal vision and maintain a strong immune system.”

“I would like to grow it for myself and consume it with my family,” says Enna Mutasa, who also purchased the seed. “I heard that it is good for eyesight and skin — and it is also tasty.”

A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)
A customer shows off her orange maize purchases at a seed fair in Masvingo, Zimbabwe. (Photo: S. Chikulo/CIMMYT)

Knowledge transfer through mother trials

Florence Chimhini is one of ten farmers who has participated in the “mother trials” organized as part of the Zambuko/R4 Rural Resilience Initiative since 2018.

These trials were designed in a way that allows farmers to test the performance of six different maize varieties suited to the climatic conditions of their semi-arid region, while also growing them under the principles of conservation agriculture. Using this method, farmers like Chimhini could witness the traits of the different maize varieties for themselves and compare their performance under their own farm conditions.

An important outcome of the mother trials was a growing interest in new varieties previously unknown to smallholders in the area, such as the orange maize varieties ZS244A and ZS500  which are sold commercially by Mukushi Seeds.

“Recent breeding efforts have significantly advanced the vitamin A content of orange maize varieties,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “However, the orange color has previously been associated with relief food — which has negative connotations due to major food crises which brought low quality yellow maize to Zimbabwe.”

“Now that farmers have grown this maize in their own mother trial plots and got first-hand experience, their comments are overwhelmingly positive. The local dishes of roasted maize and maize porridge are tastier and have become a special treat for the farmers,” he explains.

“Though not as high yielding as current white maize varieties, growing orange maize under climate-smart conservation agriculture systems can also provide sustained and stable yields for farm families in Zimbabwe’s drought-prone areas.”

A seed company representative outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)
Grison Rowai, a seed systems officer at HarvestPlus outlines the benefits of an orange maize variety at a seed fair in Masvingo, Zimbabwe. (Photo: S.Chikulo/CIMMYT)

Addressing micronutrient deficiency

In Zimbabwe, at least one in every five children suffers from ailments caused by vitamin A deficiency, from low levels of concentration to stunting and blindness. The vitamin is commonly found in leafy green vegetables, fruits and animal products — sources that may be unavailable or unaffordable for many resource-poor households.

Staple maize grain, however, is often available to smallholder families and thus serves as a reliable means through which to provide additional micronutrient requirements through conventional biofortification. This allows people to improve their nutrition through the foods that they already grow and eat every day, says Lorence Mjere, a seed systems officer at HarvestPlus Zimbabwe.

The beta-carotene in orange maize gives it its distinctive orange color and provides consumers with up to 50% of their daily vitamin A requirements.

“Orange maize addresses hidden hunger in family diets by providing the much-needed pro-vitamin A which is converted to retinol upon consumption,” explains Thokozile Ndhlela, a maize breeder at CIMMYT. “In doing so, it helps alleviate symptoms of deficiency such as night blindness and poor growth in children, to name just a few.”

The success of the recent seed fairs shows that provitamin A maize is gaining momentum among smallholder farmers in Masvingo and its continued promotion will support all other efforts to improve food and nutrition security in rural farming communities of southern Africa.

Supporting smallholder farmers to better combat drought

A farmer in Banke district during monsoon season drought in 2017. (Photo: Anton Urfels/CIMMYT)
A farmer in Banke district during monsoon season drought in 2017. (Photo: Anton Urfels/CIMMYT)

Researchers from the Cereal Systems Initiative for South Asia (CSISA) project have been exploring the drivers of smallholder farmers’ underuse of groundwater wells to combat in-season drought during the monsoon rice season in Nepal’s breadbasket — the Terai region.

Their study, published in Water International, finds that several barriers inhibit full use of groundwater irrigation infrastructure.

Inconsistent rainfall has repeatedly damaged paddy crops in Nepal over the last years, even though most agricultural lands are equipped with groundwater wells. This has contributed to missed national policy targets of food self-sufficiency and slow growth in cereal productivity.

A key issue is farmers’ tendency to schedule irrigation very late in an effort to save their crops when in-season drought occurs. By this time, rice crops have already been damaged by lack of water and yields will be decreased. High irrigation costs, especially due to pumping equipment rental rates, are a major factor of this aversion to investment. Private irrigation is also a relatively new technology for many farmers making water use decisions.

After farmers decide to irrigate, queuing for pumpsets, tubewells, and repairs and maintenance further increases irrigation delays. Some villages have only a handful of pumpsets or tubewells shared between all households, so it can take up to two weeks for everybody to irrigate.

To address these issues, CSISA provides suggestions for three support pathways to support farmers in combatting monsoon season drought:

1. Raise awareness of the importance of timely irrigation

To avoid yield penalties and improve operational efficiency through better-matched pumpsets, CSISA has raised awareness through agricultural FM radio broadcasts on the strong relationship between water stress and yield penalties. Messages highlight the role of the plough pan in keeping infiltration rates low and encouraging farmers to improve irrigation scheduling. Anecdotal evidence suggests that improved pump selection may decrease irrigation costs by up to 50%, and CSISA has initiated follow-up studies to develop recommendations for farmers.

Social interaction is necessary for purchasing fuel, transporting and installing pumps, or sharing irrigation equipment. These activities pose risks of COVID-19 exposure and transmission and therefore require farmers to follow increased safety and hygiene practices, which may cause further delays to irrigation. Raising awareness about the importance of timely irrigation therefore needs to go hand in hand with the promotion of safe and hygienic irrigation practices. This information has been streamlined into CSISA’s ongoing partnerships and FM broadcasts.

2. Improve community-level water markets through increased focus on drought preparedness and overcoming financial constraints

Farmers can save time by taking an anticipatory approach to the terms and conditions of rentals, instead of negotiating them when cracks in the soil are already large. Many farmers reported that pump owners are reluctant to rent out pumpsets if renters cannot pay up front. Given the seasonality of cash flows in agriculture, pro-poor and low interest credit provisions are likely to further smoothen community-level water markets.

Quantified ethnographic-decision tree based on households’ surveys of smallholder decision to use groundwater irrigation in Nepal’s Terai. (Graphic: Urfels et al. (2020))
Quantified ethnographic-decision tree based on households’ surveys of smallholder decision to use groundwater irrigation in Nepal’s Terai. (Graphic: Urfels et al., 2020)

3. Prioritize regional investment

The study shows that delay factors differ across districts and that selectively targeted interventions will be most useful to provide high returns to investments. For example, farmers in Kailali reported that land access issues — due to use of large bullock carts to transport pumpsets — and fuel shortages constitute a barrier for 10% and 39% of the farmers, while in Rupandehi, maintenance and tubewell availability were reported to be of greater importance.

As drought is increasingly threatening paddy production in Nepal’s Terai region, CSISA’s research shows that several support pathways exist to support farmers in combatting droughts. Sustainable water use can only be brought up to a scale where it benefits most farmers if all available tools including electrification, solar pumps and improved water level monitoring are deployed to provide benefits to a wide range of farmers.

Read the study:
Drivers of groundwater utilization in water-limited rice production systems in Nepal