Published in Nature Scientific Reports, a new study describes an innovative method to assess the reach and impacts of knowledge and partnerships created as part of the work of research-for-development organizations.
It uses text mining and the analysis of social networks and hyperlinks to draw inferences from publicly available digital sources, including institutional repositories, scientific databases, and social media.
“The method can uncover narratives, dynamics, and relationships that are hidden from traditional bibliometric analyses,” said Tek Sapkota, a cropping systems and climate change specialist at the International Maize and Wheat improvement Center (CIMMYT) and co-author or the study, which also involved the University of Coimbra, Portugal, and the University of Molise, Italy.
“Nearly 90 percent of CIMMYT’s research is related to climate change and its impact on food systems and vice-versa, so we assessed that to illustrate our new, web-based analytical framework. This novel approach can help research-for-development organizations to leverage online data and measure their impact.”
Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)
Alison Bentley presents at a joint seminar between CIMMYT and WorldFish. (Photo: Sarah McLaughlin/CIMMYT)
“Now more than ever, we need to build greater resilience across our global food system,” said Alison Bentley, Director of Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), to introduce her part of a joint seminar between CIMMYT and WorldFish. The two CGIAR research centers may appear to have different focuses, but the pairing draws attention to many opportunities for intra-CGIAR collaboration to address the looming global food crisis.
Beginning with Ahmed Nasr-Allah, Country Director (Egypt) at WorldFish, the presentation explored Integrated Agriculture and Aquaculture (IAA) systems for food security. Over the coming decades, population growth and increased scarcity of water pose a challenge for food production and agriculture, so water efficiency needs to be maximized.
Nasr-Allah explained that wheat nutrients improve soil quality, which in turn positively impacts fish quality when using water running off growing crops. He gave an example of a farmer who allocated more space on his farm to irrigate and store water and fish, which enabled him to produce higher crop yields. Further research between WorldFish and CIMMYT in this area could be examining nutrient flow from the fish system to the crop system.
Second to present was Bentley, looking at shock-proofing wheat to build future resilience. “It’s important we understand where the risks lie in our global system so we can respond to shocks,” she explained, citing data on global import dependency on Ukrainian and Russian wheat. She went on to describe potential solutions to combat the predicted yield decrease in wheat in the Global South, including substituting a proportion of wheat flour with other under-utilized crops in products, without impacting flour quality or consumer evaluation.
Linking to WorldFish’s work, Bentley highlighted the need to use water more effectively by combining new varieties with enhanced mechanization options to improve crop management, and the potential of optimizing individual components in fish and wheat rotations that could then be combined for greater impact.
The third session was with WorldFish Scientist Sarah Freed, who discussed designing integrated production practices to meet diverse needs. She invited event attendees to consider whether the lessons learnt from challenges in rice growing areas, such as climate change, poverty, food and nutrition insecurity, and increased demand, could be applicable solutions to problems in wheat growing areas.
Using biophysical and sociocultural insights from rice-fish innovations as an example, she listed five recommendations for design: identify objectives; identify a range of production options; use a co-design process; implement fit-for-purpose design and evaluation; and enable adaptation. Of particular interest was the co-design process with people who are involved at all levels, from landowners to rice farmers to laborers, so that the design benefits a variety of stakeholders. Freed also noted that decisions taken for economic reasons, such as extending the shrimp season, can lead to increased soil salinity, which means the ground can no longer incorporate diverse crops.
All three speakers concluded the event by acknowledging the potential in combining their research areas to determine and implement food security solutions.
Representatives from CIMMYT and ICAR begin planning research for the Transforming Agrifood Systems in South Asia (TASSA) CGIAR Initiative. (Photo: Vikram/ICAR-CSSRI)
CGIAR researchers are taking an innovative approach to analyzing crop and farming systems, by emphasizing nutritional yield. “This is an unusual perspective for an agronomist to apply to our work,” said Timothy Krupnik from the International Maize and Wheat Improvement Center (CIMMYT). “However, farmers in India recognize the critical need to produce more nutritious food that is environmentally sustainable without losing yield levels.”To meet this need, more than 25 researchers from CIMMYT and the Indian Council of Agricultural Research’s Central Soil Salinity Research Institute (ICAR-CSSRI) met from 25-27 May in Karnal, in India’s Haryana state, to plan a collaborative research program on nutrition-smart agriculture.
The program is part of Transforming Agrifood Systems in South Asia (TAFSSA), a CGIAR Regional Integrated Initiative aiming to propel evidence into impact through engagement with public and private partners across the farm production-to-consumption continuum. The Initiative will achieve productive, environmentally-sound agrifood systems that support equitable access to sustainable healthy diets in the world’s most poverty-dense region.
Through three days of workshops, attendees met with more than 200 men and women farmers. They developed a common understanding of the research objectives, designed research for multi-criteria analysis of crop and farming systems with an emphasis on nutritional yield, and developed a joint action plan for data collection and analysis.
To provide attendees with context for the research program, Temina Lalani-Shariff, CIMMYT Regional Director for South Asia, presented an overview of CGIAR activities in India and CGIAR Research Initiatives globally. HS Jat, Principal Scientist (Agronomy) from ICAR-CSSRI also presented some of the institute’s ongoing research and experiments that are examining the effects of different crop rotations on the production of nutritious foods. This included a visit to ICAR-CSSRI’s research trials later in the day.
Workshop participants visit ICAR-CSSRI research trials. (Photo: Vikram/ICAR-CSSRI)
From the ground up
To improve on the participatory design of research and to tailor the Initiative’s work to on-the-ground needs, the second day of the program was dedicated to visiting farmers in the states of Haryana and Punjab. There, researchers discussed the proposed research priorities and experimental design with the farmers. The design and priorities were later amended based on this feedback.
During the workshop, researchers had a chance to run focus groups with farmers in India’s Haryana and Punjab states. (Photo: Timothy Krupnik/CIMMYT)
“This was an incredibly useful workshop for us,” said PC Sharma, Director of ICAR-CSSRI. “This represents a new way of thinking about how to approach crop rotations and production. Having the help of farmers and colleagues in the nutrition community to design our research means we can address multiple issues in one research program. This increases the value of our research and spreads the benefits wider.”
To conclude the workshops, groups presented on their field visits and selected crop rotations and management practices as part of agronomic trial design for nutrition-sensitive and environmentally efficient cropping systems, including consideration of implementation and data collection.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.
A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.
The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.
“If routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “While focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.”
Breeding milestone
The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.
This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.
Yield for climate resilience
The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.
“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).
Matthew Reynolds – Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)
Gustavo Ariel Slafer – Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida
For more information or to arrange interviews, please contact the CIMMYT media team:
The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische Universität München, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).
ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.
Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.
As agricultural researchers around the world explore ways to avert what is quickly becoming the worst global food crisis in 50 years, it is imperative to shift the focus from efficient food value chains to resilient food systems.
This was one of the key messages Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT) shared with global and local audiences at a series of lectures and presentations at Cornell University the week of March 14, 2022.
Speaking as an Andrew White Professor-at-Large lecturer and lifetime Cornell faculty member, Govaerts advocated for ratcheting up investment in agricultural research and development. Not only this is necessary to avert the looming humanitarian catastrophe, he argued, but also to recover from the COVID-19 pandemic and rebuild a more peaceful, resilient and food-secure world.
“Countries that are ill-prepared to absorb a global food shock are now facing similar conditions to those that triggered the Arab Spring a decade ago — possibly even worse,” Govaerts said.
“Today, humanity faces an existential challenge fueled by conflict, environmental degradation and climate change that urges a transformational response in the way that we produce, process, distribute and consume food,” he said.
“We need to get climate change out of agriculture, and agriculture out of climate change,” he said, advocating for climate change as the driver of research and innovation, and calling for investment in transforming from efficiency to resilience.
Referencing the Ukraine crisis and its looming food security implications, he reminded attendees that we can all be inspired by Norman Borlaug’s accomplishments applying science to agriculture, and move quickly, together, to avert disaster.
“We need the same bold thinking, to do something before it’s too late,” Govaerts told the audience, which included nearly 200 online attendees and a full auditorium at Cornell’s College of Agricultural and Life Sciences.
“There is no ‘other’ team that is going to do it for us. This is the meeting. This is the team.”
CIMMYT implements integrated agri-food systems initiatives to improve maize and wheat seeds, farming practices and technologies to increase yields sustainably with support from governments, philanthropists and farmers in more than 40 countries.
In addition, along with the Nobel Peace Center and the Governments of Mexico and Norway, CIMMYT launched the Agriculture for Peace call in 2020 to mobilize funding for agricultural research and extension services to help deliver much-needed global food systems transformation.
Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)
Grafting wheat shoot to oat root gives the plant tolerance to a disease called “Take-all,” caused by a pathogen in soil. The white arrow shows the graft junction. (Photo: Julian Hibberd)
Grafting is the technique of joining the shoot of one plant with the root of another, so they continue to grow together as one. Until now it was thought impossible to graft grass-like plants in the group known as monocotyledons because they lack a specific tissue type, called the vascular cambium, in their stem.
Researchers at the University of Cambridge have discovered that root and shoot tissues taken from the seeds of monocotyledonous grasses — representing their earliest embryonic stages — fuse efficiently. Their results are published today in the journal Nature.
An estimated 60,000 plants are monocotyledons; many are crops that are cultivated at enormous scale, for example rice, wheat and barley.
The finding has implications for the control of serious soil-borne pathogens including Panama Disease, or Tropical Race 4, which has been destroying banana plantations for over 30 years. A recent acceleration in the spread of this disease has prompted fears of global banana shortages.
“We’ve achieved something that everyone said was impossible. Grafting embryonic tissue holds real potential across a range of grass-like species. We found that even distantly related species, separated by deep evolutionary time, are graft compatible,” said Julian Hibberd in the University of Cambridge’s Department of Plant Sciences, senior author of the report.
The technique allows monocotyledons of the same species, and of two different species, to be grafted effectively. Grafting genetically different root and shoot tissues can result in a plant with new traits — ranging from dwarf shoots, to pest and disease resistance.
Alison Bentley, CIMMYT Global Wheat Program Director and a contributor to the report, sees great potential for the grafting method to be applied to monocot crops grown by resource-poor farmers in the Global South. “From our major cereals, wheat and rice, to bananas and matoke, this technology could change the way we think about adapting food security crops to increasing disease pressures and changing climates.”
High magnification images show successful grafting of wheat in which a connective vein forms between root and shoot tissue after four months. White arrows show the graft junction. (Photo: Julian Hibberd)Monocotyledons breakthrough
The scientists found that the technique was effective in a range of monocotyledonous crop plants including pineapple, banana, onion, tequila agave and date palm. This was confirmed through various tests, including the injection of fluorescent dye into the plant roots — from where it was seen to move up the plant and across the graft junction.
“I read back over decades of research papers on grafting and everybody said that it couldn’t be done in monocots. I was stubborn enough to keep going — for years — until I proved them wrong,” said Greg Reeves, a Gates Cambridge Scholar in the University of Cambridge Department of Plant Sciences, and first author of the paper.
“It’s an urgent challenge to make important food crops resistant to the diseases that are destroying them,” Reeves explained. “Our technique allows us to add disease resistance, or other beneficial properties like salt-tolerance, to grass-like plants without resorting to genetic modification or lengthy breeding programmes.”
The world’s banana industry is based on a single variety, called the Cavendish banana — a clone that can withstand long-distance transportation. With no genetic diversity between plants, the crop has little disease-resilience. And Cavendish bananas are sterile, so disease resistance cannot be bred into future generations of the plant. Research groups around the world are trying to find a way to stop Panama Disease before it becomes even more widespread.
Image of date palm two and a half years after grafting. Inset shows a magnified region at the base of the plant, with the arrowhead pointing to the graft junction. (Photo: Julian Hibberd)
Grafting has been used widely since antiquity in another plant group called the dicotyledons. Dicotyledonous orchard crops — including apples and cherries, and high-value annual crops including tomatoes and cucumbers — are routinely produced on grafted plants because the process confers beneficial properties, such as disease resistance or earlier flowering.
The researchers have filed a patent for their grafting technique through Cambridge Enterprise. They have also received funding from Ceres Agri-Tech, a knowledge exchange partnership between five leading universities in the United Kingdom and three renowned agricultural research institutes.
“Panama disease is a huge problem threatening bananas across the world. It’s fantastic that the University of Cambridge has the opportunity to play a role in saving such an important food crop,” said Louise Sutherland, Director of Ceres Agri-Tech.
Ceres Agri-Tech, led by the University of Cambridge, was created and managed by Cambridge Enterprise. It has provided translational funding as well as commercialisation expertise and support to the project, to scale up the technique and improve its efficiency.
This research was funded by the Gates Cambridge Scholarship programme.
The University of Cambridge is one of the world’s top ten leading universities, with a rich history of radical thinking dating back to 1209. Its mission is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.
The University comprises 31 autonomous Colleges and 150 departments, faculties and institutions. Its 24,450 student body includes more than 9,000 international students from 147 countries. In 2020, 70.6% of its new undergraduate students were from state schools and 21.6% from economically disadvantaged areas.
Cambridge research spans almost every discipline, from science, technology, engineering and medicine through to the arts, humanities and social sciences, with multi-disciplinary teams working to address major global challenges. Its researchers provide academic leadership, develop strategic partnerships and collaborate with colleagues worldwide.
The University sits at the heart of the ‘Cambridge cluster’, in which more than 5,300 knowledge-intensive firms employ more than 67,000 people and generate £18 billion in turnover. Cambridge has the highest number of patent applications per 100,000 residents in the UK.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.
Cover photo: A banana producer in Kenya. (Photo: N. Palmer/CIAT)
Several recent studies document the long-term health and economic benefits from the “Green Revolution” — the widespread adoption of high-yielding staple crop varieties during the last half of the 20th century — and argue for continued investment in the development and use of such varieties.
“Our estimates provide compelling evidence that the health benefits of broad-based increases in agricultural productivity should not be overlooked,” the authors state. “From a policy perspective, government subsidies for inputs leading to a green revolution as well as investments in extension and R&D programs seem to be important.”
Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT’s experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)
The COVID-19 pandemic exposed the fragility of the global food system and the need to transform it, increasing its environmental and economic resilience to withstand future threats, and underpinning healthier diets. The studies suggest that improved versions of cereal crops such as rice, wheat, and maize can play a key role.
“Our work speaks to the importance of supporting innovation and technology adoption in agriculture as a means of fostering economic development, improved health, and poverty reduction, said author Jan von der Goltz. “It also suggests that it is reasonable to view with some alarm the steady decline in funding for cereal crop improvement over the last few decades in sub-Saharan Africa, the continent with least diffusion of modern varieties.”
Likewise, a study co-authored by Prashant Bharadwaj of the University of California, San Diego, concluded that farmer adoption of high-yielding crop varieties (HYVs) in India reduced infant mortality dramatically across the country. Between 1960 and 2000, infant deaths dropped from 163.8 to 66.6 per 1,000 live births, and this occurred during the decades of India’s wheat productivity leap from 0.86 to 2.79 tons per hectare, as a result of HYV adoption and improved farming practices.
“What both of these papers do is to carefully establish a causal estimate of how HYVs affect infant mortality, by only comparing children born in the same location at different points in time, when HYV use was different, and by checking that mortality before arrival of HYVs was trending similarly in places that would receive different amount of HYVs,” Bharadwaj said.
“In the absence of a randomized control trial, these econometric techniques produce the best causal estimate of a phenomenon as important as the spread of HYVs during and after the Green Revolution,” he added. These thoughts were echoed by University of California San Diego professor Gordon McCord, a co-author of the global study.
Recent studies indicate that the Green Revolution also had long-term economic impacts, which also affected health outcomes.
In a 2021 update to the 2018 paper “Two Blades of Grass: The Impact of the Green Revolution,” Douglas Gollin, Professor of Development Economics at Oxford University and co-authors found that, in 90 countries where high-yielding varieties were adopted between 1965 and 2010, food crop yields increased by 44% and that, had this adoption not occurred, GDP per capita in the developing world could be half of what it is today.
Even a 10-year delay of the Green Revolution would, in 2010, have cost 17% of GDP per capita in the developing world, with a cumulative GDP loss of $83 trillion, equivalent to one year of current global GDP.
These GDP and health impacts were boosted by a related reduction in population growth. By observing causal inference at country, regional and developing world levels, and using a novel long-term impact assessment method, the study authors detected a trend: as living standards improved for rural families, they generally wanted to invest more in their children and have fewer.
“Our estimates suggest that the world would have contained more than 200 million additional people in 2010, if the onset of the Green Revolution had been delayed for ten years,” Gollin and his co-authors stated. This lower population growth seems to have increased the relative size of the working age population, which furthered GDP growth.
Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International) (CC BY-NC-ND 2.0)
A long-term investment in system transformation
It takes time from the point of an intervention to when broad health impacts can be observed in the population, the authors note. For example, although the development of modern high-yielding varieties began in the 1950s and 60s, the rate of adoption did not speed up until the 1980s, 1990s, and even into the 2000s, with evidence from sub-Saharan Africa showing that variety adoption has increased by as much in the 2000s as in the four preceding decades.
In addition, any nutrition and food security strategy which aims to reach the second Sustainable Development Goal of feeding 9 billion by 2050 must incorporate wider system transformation solutions, such as zero-emissions agriculture, affordable, diverse diets and increased land conservation.
As Gollin explained, “The Green Revolution taught us that we need to approach productivity increases, especially in staple crop yields, differently. The challenge now is more complex: we need to get the same productivity increases, with fewer inputs and resources, more environmental awareness, and in larger quantities for more people.”
In part, this means increasing productivity on existing agricultural land with positive environmental and social impacts, according to Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT).
“Breeding and sharing more productive, hardy crop varieties is as important as ever,” Govaerts said, “but also engaging farmers — in our case, smallholders — in shared research and innovation efforts to bridge yield gaps, build climate-resilient farming systems, and open access to better nutrition and market opportunities.”
Cover photo: Children eat lunch at a mobile crèche outside Delhi, India. (Photo: Atul Loke/ODI) (CC BY-NC 2.0)
Three scientists from the International Maize and Wheat Improvement Center (CIMMYT) have been included in the Highly Cited Researchers list for 2021, published by the Web of Science Group.
The list recognizes researchers who demonstrated significant influence in their field, or across fields, through the publication of multiple highly cited papers during the last decade. Their names are drawn from the publications that rank in the top 1% by citations for field and publication year in the Web of Science citation index.
Called a “who’s who” of influential researchers, the list draws on data and analysis performed by bibliometric experts and data scientists at the Institute for Scientific Information at Clarivate, the company which publishes the list.
This year, the three CIMMYT scientists listed are:
CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
High-level representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City on October 18, 2021, to learn about innovative research to promote sustainable production systems in Mexico and the world.
Carlos Slim Foundation and CNA representatives agreed that public and private sectors, civil society and international research organizations like CIMMYT must collaborate to address the challenges related to climate change, forced migration and rural insecurity.
“It is necessary to give more visibility to and make use of CIMMYT’s world-class laboratories and research fields, to enhance their impact on sustainable development and the 2030 agenda,” said Juan Cortina Gallardo, president of the CNA.
The tour included a visit to CIMMYT’s germplasm bank, where the world’s largest collections of maize and wheat biodiversity are conserved. Visitors also toured the laboratories, greenhouses and experimental fields where cutting-edge science is applied to improve yield potential, adaptability to climate change, resistance to pests and diseases, and nutritional and processing quality of maize and wheat.
Representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
From Mexico to the world
“CIMMYT implements Crops for Mexico, a research and capacity building project building on the successes and lessons learned from MasAgro, where smallholder farmers increase their productivity to expand their market opportunities and can, for example, join the supply chain of large companies as providers and contribute to social development of Mexican farming,” Cortina Gallardo said.
CIMMYT carries out more than 150 integrated development projects related to maize and wheat systems in 50 countries. They are all supported by first-class research infrastructure in CIMMYT’s global headquarters, funded by the Carlos Slim Foundation.
“Our goal is to put CIMMYT’s laboratories, greenhouses and experimental fields at the service of farmers and both public and private sectors as needed,” said Bram Govaerts, director general of CIMMYT. “Accelerating the development of sustainable agricultural practices and more nutritious and resilient varieties contributes to transforming agricultural systems around the world, strengthening global food security and reducing the impact of agriculture on climate change.”
With the past decade identified as the warmest on record and global temperatures predicted to rise by as much as 2 degrees Celsius over preindustrial levels by 2050, the world’s staple food crops are increasingly under threat.
A new review published this month in the Journal of Experimental Botany describes how researchers from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators are boosting climate resilience in wheat using powerful remote sensing tools, genomics and big data analysis. Scientists are combining multiple approaches to explore untapped diversity among wheat genetic resources and help select better parents and progeny in breeding.
The review — authored by a team of 25 scientists from CIMMYT, Henan Agricultural University, the University of Adelaide and the Wheat Initiative — also outlines how this research can be harnessed on a global level to further accelerate climate resilience in staple crops.
“An advantage of understanding abiotic stress at the level of plant physiology is that many of the same tools and methods can be applied across a range of crops that face similar problems,” said first author and CIMMYT wheat physiologist Matthew Reynolds.
Abiotic stresses such as temperature extremes and drought can have devastating impacts on plant growth and yields, posing a massive risk to food security.
Harnessing research across a global wheat improvement network for climate resilience: research gaps, interactive goals, and outcomes.
Addressing research gaps
The authors identified nine key research gaps in efforts to boost climate resilience in wheat, including limited genetic diversity for climate resilience, a need for smarter strategies for stacking traits and addressing the bottleneck between basic plant research and its application in breeding.
Based on a combination of the latest research advances and tried-and-tested breeding methods, the scientists are developing strategies to address these gaps. These include:
Using big data analysis to better understand stress profiles in target environments and design wheat lines with appropriate heat and drought adaptive traits.
Exploring wheat genetic resources for discovery of novel traits and genes and their use in breeding.
Accelerating genetic gains through selection techniques that combine phenomics with genomics.
Crowd-sourcing new ideas and technologies from academia and testing them in real-life breeding situations.
These strategies will be thoroughly tested at the Heat and Drought Wheat Improvement Network (HeDWIC) Hub under realistic breeding conditions and then disseminated to other wheat breeding programs around the world facing similar challenges.
One factor that strongly influences the success and acceleration of climate resilience technologies, according to Reynolds, is the gap between theoretical discovery research and crop improvement in the field.
“Many great ideas on how to improve climate-resilience of crops pile up in the literature, but often remain ‘on the shelf’ because the research space between theory and practice falls between the radar of academia on the one hand, and that of plant breeders on the other,” Reynolds explained.
Translational research — efforts to convert basic research knowledge about plants into practical applications in crop improvement — represents a necessary link between the world of fundamental discovery and farmers’ fields and aims to bridge this gap.
Main research steps involved in translating promising technologies into genetic gains (graphical abstract, adapted from Reynolds and Langridge, 2016). Reprinted under licence CC BY-NC-ND.
The impacts of this research, conducted under HeDWIC — a project led by CIMMYT in partnership with experts around the world — will be validated on a global scale through the International Wheat Improvement Network (IWIN), with the potential to reach at least half of the world’s wheat-growing area.
The results will benefit breeders and researchers but, most importantly, farmers and consumers around the world who rely on wheat for their livelihoods and their diets. Wheat accounts for about 20% of all human calories and protein, making it a pillar of food security. For about 1.5 billion resource-poor people, wheat is their main daily staple food.
With the world population projected to rise to almost ten billion by 2050, demand for food is predicted to increase with it. This is especially so for wheat, being a versatile crop both in terms of where it can grow and its many culinary and industrial uses. However, current wheat yield gains will not meet 2050 demand unless serious action is taken. Translational research and strategic breeding are crucial elements in ensuring that research is translated into higher and stable yields to meet these challenges.
CGIAR turned 50 in 2021. To mark this anniversary, two independent and highly reputed experts have authored a history of CGIAR maize research from 1970 to 2020.
The authors, Derek Byerlee and Greg Edmeades, focused on four major issues running through the five decades of CGIAR maize research: the diversity of maize-growing target environments, the role of the public and private sectors in maize research in the tropics, the approaches adopted in reaching smallholder farmers in stress-prone rainfed tropical environments with improved technologies, and the need for maintaining strong financial support for international maize research efforts under the CGIAR.
The work of the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA) and the CGIAR Research Program on Maize (MAIZE) and its partners features prominently in this account. The authors also reviewed the history of maize policy research undertaken by the International Food Policy Research Institute (IFPRI).
The authors bring a unique perspective to the challenging task of tracing the evolution of maize research in CGIAR as both “insiders” and “outsiders.” While they worked as CIMMYT researchers in the 1990s, and later on as reviewers of various projects/programs, both are currently unaffiliated with CIMMYT. Byerlee is affiliated with the School of Foreign Service at Georgetown University, Washington DC, USA, and Edmeades is an independent scholar based in New Zealand.
“A clear-eyed and unbiased appreciation of our past — both successes and missteps — can only enrich our efforts, make better progress, and effectively meet the challenges of the present and the future,” wrote B.M. Prasanna, director of CIMMYT’s Global Maize Program and of the CGIAR Research Program MAIZE , in the foreword.
According to Prasanna, “The challenges to the maize-dependent smallholders in the tropics are far from over. Optimal, stable and long-term investment in international maize improvement efforts is critical.”
Disclaimer: The CGIAR Research Program MAIZE supported only the review, formatting, and online publication of this document. The findings and conclusions are completely of the authors, and do not necessarily represent the institutional views of CIMMYT, IITA, IFPRI or CGIAR and its partners.
Popular starchy staples maize and wheat provide more than simple dietary energy, but they are often found at the center of debates around the excessive consumption of carbohydrates.
While the nutrient contribution of whole grains is commonly emphasized in dietary guidelines, the milling and subsequent processing of cereal products tends to reduce or remove much of the important protein, fat, vitamin and mineral content, and in recent years there has been increasing concern about the ultra-processing of cereal-based food products containing noxious dietary components that exacerbate the occurrence of non-communicable diseases.
For these reasons — and because of the focus on energy content — maize and wheat are not often considered to be among the categories of “nutrient-rich” foods that can contribute to reducing micronutrient malnutrition. Consequently, it is unsurprising that a popular perception that cereals make a limited contribution to nutritious diets persists. This view has not been successfully challenged by a necessarily nuanced understanding of the complex role of cereals, and particularly the carbohydrate fractions, in human nutrition.
“In addition to the hidden micronutrients, there is sound scientific and popular awareness of the importance of some dietary components such as dietary fiber,” says Nigel Poole, Emeritus Professor of International Development at the School of Oriental and African Studies (SOAS).
“Though there is as yet imperfect scientific understanding and public awareness of the carbohydrates which make up dietary fiber,” he explains, “biomedical research continues to highlight the importance of carbohydrates in health and well-being. Moreover, there is a need for further knowledge on the nature and roles of many other bioactive food components that are not usually considered to be nutrients.”
These bioactives are substances such as carotenoids, flavonoids, and polyphenols. Most of the beneficial effects of the consumption of whole grain cereals on non-communicable diseases are currently attributed to the bioactive components of dietary fiber and the wide variety of phytochemicals.
A growing body of evidence from cereal chemistry, food science and metabolic studies shows that the bioactives in cereals are important for nutrition, health and well-being. In a new working paper authored in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), Poole demonstrates that there is considerable potential for plant breeding strategies to improve these elements of grain composition. This could be done through exploiting natural variation, genetic and genomic selection methods, and mutagenesis and transgenesis in order to modify cell wall polysaccharides, and specifically to improve the starch composition and structure in breeding material through natural and induced mutations.
Rebalancing the agri-nutrition research agenda, Poole argues, is necessary in order to explore, explain and exploit the contribution to diets of hitherto less-researched nutrient-dense crops and other foods. Nevertheless, because of the quantities in which cereals are consumed, the nutritional contribution of cereals in addition to energy complements the consumption of micronutrient-rich fruits, vegetables, nuts and pulses in diverse diets.
To leverage the bioactive content of cereals — including dietary fiber — as well as the macro- and micronutrient content, a comprehensive approach to food and nutrition systems from farm to metabolism is needed, spanning research disciplines and food systems’ stakeholders throughout the agri-food industries, and embracing policy makers, nutrition advocacy, and consumer education and behavior change.
Field workers in Ethiopia weight the grain. (Photo: Hailemariam Ayalew/CIMMYT)
Quantifying agricultural productivity relies on measures of crop production and land area. Those measures need to be accurate, but it is often difficult to source reliable data. Inaccurate measurements affect our understanding of the relationship between agricultural productivity and land area.
Researchers examined the sensitivity of empirical assessments of this relationship to alternative measurement protocols. Scientists from the International Maize and Wheat Improvement Center (CIMMYT), Trinity College Dublin and the International Food Policy Research Institute (IFPRI) analyzed different methods of plot-level production and area measurement.
The study, to be published, is said to be the first to evaluate errors along the two dimensions —production and area — in all available measurement techniques.
Researchers found that errors from both production and area measurements explain the estimated inverse productivity-size relationship. When using a combination of the most accurate measures for yield and area — full plot harvest and total station — the inverse relationship vanishes. Consistent with previous studies, the study also shows that addressing one of the other sources of error — for example, either production or area estimates — does not eliminate the bias associated with measurement error.
For this study, the research team collected and used a unique dataset on maize production from Ethiopia, addressing measurement issues commonly found in other datasets that hinder accurate estimation of the size-productivity relationship. Specifically, the researchers considered six alternative land area measures: farmers’ self-reported estimates; estimates from low-cost old generation consumer-grade dedicated GPS receivers that have frequently been used in field data collection by research organizations over the past decade; estimates from single- and dual-frequency mobile phone GPS receivers; compass-and-rope estimates; and total station theodolite measurement.
An enumerator in Ethiopia measures grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
Most cost-effective measurement methods
The study also provides a cost-effectiveness analysis of the different measurement methods. According to the researchers, the most expensive combination to use is full harvest yield with total station measurement. The cost is potentially prohibitively high for traditional surveys involving large samples.
It concludes that the optimal combination is crop-cut random quadrant measurements coupled with GPS measurement. This offers the best value for money of all the methods considered, since the results for the productivity-size regressions are like what is found when the gold-standard for yield and area measurement protocols are used.
Musa Hasani Mtambo and his family in their conservation agriculture plot in Hai, Tanzania. (Photo: Peter Lowe/CIMMYT)
Between 1995-2015, nearly 60% of all maize varieties released in 18 African countries were CGIAR-related. At the end of this period, in 2015, almost half of the maize area in these countries grew CGIAR-related maize varieties. All that was accomplished through modest, maximum yearly investment of about $30 million, which showed high returns: in 2015, the aggregate yearly economic benefits for using CGIAR-related maize varieties released after 1994 were estimated to be between $660 million and $1.05 billion.
Since its introduction to Africa in the 16th century, maize has become one of the most important food crops in the continent.
It accounts for almost a third of the calories consumed in sub-Saharan Africa. And it’s grown on over 38 million hectares in the region, mostly by rainfall-dependent smallholder farmers.
Climate change poses an existential threat to the millions who depend on the crop for their livelihood or for their next meal. Already 65% of the maize growing areas in sub-Saharan Africa face some level of drought stress.
Long-term commitment
Through the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), CGIAR has been working alongside countless regional partners since 1980s to develop and deploy climate-smart maize varieties in Africa.
This work builds on various investments including Drought-Tolerant Maize for Africa (DTMA) and Stress Tolerant Maize for Africa (STMA). Support for this game-changing work has generated massive impacts for smallholder farmers, maize consumers, and seed markets in the region. Throughout, the determination to strengthen the climate resilience of maize agri-food systems in Africa has remained the same.
To understand the impact of their work — and how to build on it in the coming years — researchers at CIMMYT and IITA took a deep dive into two decades’ worth of this work across 18 countries in sub-Saharan Africa. These findings add to our understanding of the impact of work that today benefits an estimated 8.6 million farmers in the region.
Big challenges remain. But with the right partnerships, know-how and resources we can have an outsize impact on meeting those challenges head on.
On November 13, 2020, researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Bangladesh Wheat and Maize Research Institute (BWMRI) held a virtual meeting to update Bangladesh’s Minister for Agriculture Md Abdur Razzaque on their organizations’ ongoing research activities regarding the development of sustainable, cereal-based farming systems.
The purpose of this event was to inform influential stakeholders of the implications of the impending transition to One CGIAR for collaborative research activities in Bangladesh and how CIMMYT will continue its support to the its partners in the country, including the government and other CGIAR centers. The event was chaired by CIMMYT’s Director General Martin Kropff, who called-in from CIMMYT’s headquarters in Mexico, and Razzaque, who attended the event as a special guest. Around 21 participants from various government offices including the Department of Agricultural Extension (DAE) and the Bangladesh Agricultural Research Council (BARC) were in attendance.
Speaking at the event, Razzaque thanked CIMMYT for its support in increasing maize and wheat production in Bangladesh — as the main source of germplasm for these two crops — which has been crucial for assuring food and income security and helping the country reach towards the Sustainable Development Goals. He expressed his gratitude for CIMMYT’s help in mitigating the threats posed by pests and diseases, and supporting climate information services which have enabled farmers to avoid crop losses in mung bean, and he requested that CIMMYT to intensify its research on cropping systems, heat- and disease-tolerant wheat varieties, and the introduction of technologies and farming practices to sustainably increase production and reduce wheat imports.
Martin Kropff gives an overview of CIMMYT research in Bangladesh during a virtual meeting with stakeholders. (Photo: CIMMYT)
Timothy J. Krupnik, CIMMYT’s country representative for Bangladesh, guided participants through the history of CIMMYT’s engagement in Bangladesh from the 1960s to the present and outlined the organization’s plan for future collaboration with the government. In addition developing wheat blast-resistant varieties, exchanging germplasm and seed multiplication programs for disease-resistant varieties, Krupnik described collaborative efforts to fight back against fall armyworm, research in systems agronomy to boost crop intensity and the use of advanced simulation models and remote sensing to assist in increasing production while reducing farm drudgery, expensive inputs, water and fuel use, and mitigating greenhouse gas emissions.
He also highlighted efforts to create a skilled work force, pointing to CIMMYT’s collaboration with the Bangladesh Agricultural Research Institute (BARI) on appropriate agricultural mechanization and USAID-supported work with over 50 machinery manufacturers across the country.
“This historical legacy, alongside world-class scientists and committed staff, germplasm collection, global impact in farmer’s fields, next generation research and global network of partners have made CIMMYT unique,” explained Kropff during his closing remarks, which focused on the organization’s research and collaboration on climate-smart and conservation agriculture, high-yielding, stress- and disease-tolerant maize and wheat variety development, value chain enhancement, market development, precision agronomy and farm mechanization in Bangladesh.
He expressed his gratitude towards the Government of Bangladesh for supporting CIMMYT as an international public organization in the country, thus enabling it to continue delivering impact, and for recognizing the benefits of the transition to a more integrated network of international research centers through One CGIAR, under which CIMMYT and other centers will strengthen their support to the government to help Bangladesh achieve zero hunger.