Skip to main content

Tag: precision agriculture

Less water for better crops

In India, nearly one-sixth of groundwater reserves has been overexploited and almost one-fifth of them is either in critical or semi-critical condition. For a country that relies heavily on groundwater for drinking and irrigation, these statistics are close to a death sentence.

India’s water crisis, however, is not unique in the region. Population growth, coupled with increasing urbanization and industrialization, has made South Asia, one of the most heavily irrigated areas on earth, highly vulnerable to water stress. Moreover, as the effects of climate change are increasingly felt in those countries, agricultural production, even at the current level, may not be sustainable.

Against this background, ensuring that water resources are used efficiently and sustainably is key to meet the world’s growing demand. Over the last decades, traditional systems of irrigation have given way to more efficient drip irrigation systems that deliver the right amount of water and nutrients to the plant’s root zone. But as farm labor shortages become more severe, investing in automated irrigation systems — which promise increased production rates and product quality — will be the only way to ensure the sustainability of agricultural production systems worldwide.

A new article co-authored by a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Thapar Institute of Engineering and Technology synthesizes the available information related to the automation of drip irrigation systems and explores recent advances in the science of wireless sensor networks (WSN), the internet of things (IoT) and other communication technologies that increase production capacity while reducing costs.

“Bundling both elements — drip irrigation and automation — in water application can lead to large savings in irrigation and boost water efficiency, especially in high water-consuming, cereal-based systems like the Indo-Gangetic Plains,” explained M.L. Jat, a principal scientist at CIMMYT and one of the authors of the review.

Investing in data and youth

Smart irrigation technologies, including sensors and the IoT, allow farmers to take informed decisions to improve the quality and quantity of their crops, providing them with site-specific data on factors like soil moisture, nutrient status, weed pressure or soil acidity.

However, this information is still limited to certain soil types and crops. “To upgrade drip irrigation systems elsewhere, especially in ‘water-stressed’ regions, we need additional agricultural background data in those areas,” Jat pointed out. “That’s the only way we can effectively customize innovations to each scenario, as one size does not fit all.”

Making this data available to and readable by farmers is also essential. Here, young people can become very good allies, as they tend to be more technologically savvy and used to working with large volumes of information. “Not only are they more skilled to integrate agricultural data into decision-making, but they can also help older farmers adopt and trust intelligent irrigation systems,” Jat concluded.

Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)
Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)

Incentives against subsidies

With increasing water shortages worldwide, making the most out of every drop becomes an urgent priority. But in countries where irrigation systems are highly subsidized, farmers may struggle to see this urgency. India, for instance, subsidizes the cost of energy to pump water for farming, thus encouraging smallholders to extract more than they need.

How do we incentivize farmers in these countries to embrace water-efficient technologies?

According to Jat, using the “scientific card” can work with smallholders who, after having farmed for decades, may not change their minds automatically. “These people may be reluctant to accept incentives for water-efficient mechanisms at first, but they will surely be interested in more scientific approaches,” Jat explained, stressing that “the emphasis must be on the science, not on the technology.”

Designing profitable business models can also incentivize producers to embrace more efficient mechanisms. Farmers who have enjoyed irrigation subsidies for decades may not see any profit in trying out new technologies — but what if they are given the chance to become champions or ambassadors of these agricultural innovations? “That brings in a whole new perspective,” Jat said.

Apart from incentivizing farmers, good business models can also draw the attention of large companies, which would bring investment to boost research and innovation in drip irrigation. “More and more businesses are getting interested in smart agriculture and low emission farming, and their inputs can help conceptualize the future of this field,” he observed.

New tools guide interventions against acid soils in Africa using lime

Researchers visit maize fields in Ethiopia's Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)
Researchers visit maize fields in Ethiopia’s Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)

One major reason why maize productivity in sub-Saharan Africa is very low is poor soil health. Soil acidity is often mentioned because of its impact on crop yields and the extent of acid soils in the region. A recent soil mapping exercise, conducted by the Ethiopian Soil Information System (EthioSIS) under the administration of the Ethiopian Agricultural Transformation Agency (ATA), estimated that 43% of arable lands were affected by acid soils and that 3.6 million people, about 10% of the total rural population, live in areas with acidic soils.

Very acid soils — those with a pH below 5.5, roughly one hundred times more acidic than neutral soils — are associated with certain toxicities, like aluminum and iron excess, and some nutrient deficiencies. Soil acidity pushes soil nutrients out of reach of the plant, leading to stunting of root system and plant. As a result, the plant becomes also less tolerant to drought.

Soil acidification depends on soil nature, agroecology and farming systems. It happens through natural leaching of CO2 after rainfall and excess application of nitrogenous fertilizer or organic matter, for instance.

As a result, soil acidity significantly affects maize yields. In Ethiopia, studies have revealed substantial impacts on crop productivity related to acid soils and the importance of acid soil management for Ethiopia’s food security. The Ethiopian Institute of Agricultural Research (EIAR) estimated that soil acidity on wheat production alone costed the country over 9 billion Ethiopian Birr, about $300 million per year.

Acidic soils in the limelight

Preliminary analysis led by the International Food Policy Research Institute (IFPRI) suggests that yields of major cereal crops, such as wheat and barley, could increase by 20 to 40% with the application of lime in acidic areas of the country.

While these preliminary results are significant, we need to know more about local farmers’ experience with acidic soil and their mitigation strategies. Such impact assessments are however typically determined at either the national or experimental plot level and do not map where mitigating against acid soils would be the most profitable.

To improve acid soils, farmers may apply lime on their fields to raise the pH, a practice known as liming. How much lime to apply will depend on the crop, soil type but also on the quality of lime available. Liming has multiple beneficial effects like improving nitrogen fixation of legume nodules, boosting yields of legume crops.

But liming has a cost. It can quickly become a very bulky affair as we need to apply 3 to 4 tons per hectare for sandy soils and up to 8 tons per hectare for clay and humifere soils.

Furthermore, existing lime markets are quite limited or even non-existent in many areas, even those where acidic soils are prevalent. Developing supply chains from scratch is difficult and costly. Understanding the costs and potential returns to such investments is important. There are many questions to ask at different levels, from the farm and farming system to the lime supply chain. What are the available lime sources — calcitic, dolomite or blend — and lime quality? Where are the lime processing units and how could you assess the transport cost to the farms? What could be the crop yield response depending on the lime application?

User-friendly and scalable dashboard

IFPRI, in collaboration with EIAR, the International Maize and Wheat Improvement Center (CIMMYT) and the German aid agency GIZ, developed a pilot in Ethiopia’s Amhara region to help better target lime interventions for a greater impact. Amhara region was chosen because of the importance of acid soils, and access to extensive soil data.

Combination of several spatial datasets on soil quality, agroecological, weather, long-term agronomic trials and crop modelling tools enabled to generate at scale, georeferenced estimates of crop yield responses for different lime applications. Calibration of this spatial model for wheat estimated a yield increase of approximately 30% increasing the pH from 5.5 to 6.5, which is relatively consistent with general research data and expert opinion.

Mapped estimates of the grain prices and the delivered costs of lime, based on the location of the lime crushers in the region and transport costs, enables then to map out the spatial profitability of lime operations.

Initial calculations revealed a great variability of lime costs at the farmgate, with transportation representing at least half of total lime costs. It showed also that farmers often do not use the most cost-effective combination of inputs to tackle soil acidity.

Another possible application is to determine maize growing areas where lime benefits outweigh the costs, which would be ideal sites for demonstrating to farmers the positive impact lime applications could have to their livelihoods.

This Amhara lime dashboard prototype demonstrated its scalability. A national dashboard is currently being developed, which includes lime sources GPS location, grain prices and district-level soil quality mapping. This approach is tested also in Tanzania.

CIMMYT and its partners plan to package such tool in a user-friendly open-access web version that can be rapidly updated and customized depending on the area of intervention, for instance integrating a new lime source, and applied for different crops, and across the Eastern African region. Such dashboards will help development organizations and government make better informed decisions regarding lime investments.

Precision planters boost maize yields in Pakistan

A farmer uses a tractor-operated precision maize planter. (Photo: Kashif Syed/CIMMYT)
A farmer uses a tractor-operated precision maize planter. (Photo: Kashif Syed/CIMMYT)

In the northwestern province of Pakistan, near the Afghan border, the International Maize and Wheat Improvement Center (CIMMYT) is helping connect farmers with precision planters to support higher maize yields and incomes. Maize is one of the most important cereals in Pakistan, but in the province of Khyber Pakhtunkhwa yields are significantly lower than the national average. The majority of maize farmers in this province have less than five acres of land and limited access to resources, including high-quality maize seed and mechanization.

Under the Agricultural Innovation Program (AIP) for Pakistan, CIMMYT introduced push row planters in 2016 to help farmers to get a uniform crop stand and save labor costs and time as compared to traditional planting practices. CIMMYT has since then partnered with Greenland Engineering to import tractor-operated precision maize planters. These precision planters allow farmers to plant two rows of maize in one pass and evenly distribute both seeds and fertilizer.

“Optimum planting density in combination with nutrient supply is key to getting the maximum maize yield,” says Muhammad Asim, a senior researcher with the Cereal Crops Research Institute (CCRI). “The precision planter helps farmers achieve this while also getting a uniform crop stand and uniform cobs.”

Maize farmer Jalees Ahmed (right) operates his push row planter. (Photo: Kashif Syed/CIMMYT)
Maize farmer Jalees Ahmed (right) operates his push row planter. (Photo: Kashif Syed/CIMMYT)

Jalees Ahmed, a smallholder maize farmer from the Nowshera district, Khyber Pakhtunkhwa, received a push row planter through CIMMYT’s AIP program. He used to hire six laborers to plant one acre of maize, but with the push row planter, Jalees only needs to hire one laborer and benefits from a more uniform crop.

Raham Dil, another farmer in the Mardan district, recently purchased a push row planter for his farm which he also rents to fellow farmers in the area.

Maize farmer Raham Dil stands for a portrait with his push row planter. (Photo: Kashif Syed/CIMMYT)
Maize farmer Raham Dil stands for a portrait with his push row planter. (Photo: Kashif Syed/CIMMYT)

Both Ahmed and Dil say these planters have made it easier to support their families financially. Interest in precision planters continues to grow.

Last fall, more than 80 farmers attended a field day in the Nowshera district where CIMMYT researchers demonstrated how to use the precision planter to sow maize. CIMMYT’s country representative for Pakistan, Imtiaz Muhammad, highlighted the importance of mechanized maize planting for farmers and CIMMYT’s commitment to improve maize-based system productivity in less developed regions of the country.

Farmers in Nowshera district attend a demonstration on how to use the tractor-operated precision maize planter. (Photo: Kashif Syed/CIMMYT)
Farmers in Nowshera district attend a demonstration on how to use the tractor-operated precision maize planter. (Photo: Kashif Syed/CIMMYT)

The Agricultural Innovation Program for Pakistan is led by CIMMYT and funded by USAID. This project seeks to increase productivity and incomes by testing and promoting modern practices for agriculture’s major sub-sectors in the country.