Skip to main content

Tag: plant diseases

Fast-tracked adoption of second-generation resistant maize varieties key to managing maize lethal necrosis in Africa

Scientists are calling for accelerated adoption of new hybrid maize varieties with resistance to maize lethal necrosis (MLN) disease in sub-Saharan Africa. In combination with recommended integrated pest management practices, adopting these new varieties is an important step towards safeguarding smallholder farmers against this devastating viral disease.

A new publication in Virus Research shows that these second-generation MLN-resistant hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) offer better yields and increased resilience against MLN and other stresses. The report warns that the disease remains a key threat to food security in eastern Africa and that, should containment efforts slacken, it could yet spread to new regions in sub-Saharan Africa.

The publication was co-authored by researchers at the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO), the Alliance for a Green Revolution in Africa (AGRA), the African Agricultural Technology Foundation (AATF) and Aarhus University in Denmark.

CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)
CIMMYT technician Janet Kimunye (right) shows visitors a plant with MLN symptoms at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

Stemming the panic

The first reported outbreak of MLN in Bomet County, Kenya in 2011 threw the maize sector into a panic. The disease caused up to 100% yield loss. Nearly all elite commercial maize varieties on the market at the time were susceptible, whether under natural of artificial conditions. Since 2012, CIMMYT, in partnership with KALRO, national plant protection organizations and commercial seed companies, has led multi-stakeholder, multi-disciplinary efforts to curb MLN’s spread across sub-Saharan Africa. Other partners in this endeavor include the International Institute of Tropical Agriculture (IITA), non-government organizations such as AGRA and AATF, and advanced research institutions in the United States and Europe.

In 2013 CIMMYT established an MLN screening facility in Naivasha. Researchers developed an MLN-severity scale, ranging from 1 to 9, to compare varieties’ resistance or susceptibility to the disease. A score of 1 represents a highly resistant variety with no visible symptoms of the disease, while a score of 9 signifies extreme susceptibility. Trials at this facility demonstrated that some of CIMMYT’s pre-commercial hybrids exhibited moderate MLN-tolerance, with a score of 5 on the MLN-severity scale. CIMMYT then provided seed and detailed information to partners for evaluation under accelerated National Performance Trials (NPTs) for varietal release and commercialization in Kenya, Tanzania and Uganda.

Between 2013 and 2014, four CIMMYT-derived MLN-tolerant hybrid varieties were released by public and private sector partners in East Africa. With an average MLN severity score of 5-6, these varieties outperformed commercial MLN-sensitive hybrids, which averaged MLN severity scores above 7. Later, CIMMYT breeders developed second-generation MLN-resistant hybrids with MLN severity scores of 3–4. These second-generation hybrids were evaluated under national performance trials. This led to the release of several hybrids, especially in Kenya, over the course of a five-year period starting in 2013. They were earmarked for commercialization in East Africa beginning in 2020.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

Widespread adoption critical

The last known outbreak of MLN was reported in 2014 in Ethiopia, marking an important break in the virus’s spread across the continent. Up to that point, the virus had affected the Democratic Republic of the Congo, Kenya, Rwanda, Tanzania and Uganda. However, much remains to be done to minimize the possibility of future outbreaks.

“Due to its complex and multi-faceted nature, effectively combating the incidence, spread and adverse effects of MLN in Africa requires vigorous and well-coordinated efforts by multiple institutions,” said B.M. Prasanna, primary author of the report and director of the Global Maize Program at CIMMYT and of the CGIAR Research Program on Maize (MAIZE). Prasanna also warns that most commercial maize varieties being cultivated in eastern Africa are still MLN-susceptible. They also serve as “reservoirs” for MLN-causing viruses, especially the maize chlorotic mottle virus (MCMV), which combines with other viruses from the Potyviridae family to cause MLN.

“This is why it is very important to adopt an integrated disease management approach, which encompasses extensive adoption of improved MLN-resistant maize varieties, especially second-generation, not just in MLN-prevalent countries but also in the non-endemic ones in sub-Saharan Africa,” Prasanna noted.

The report outlines other important prevention and control measures including: the production and exchange of “clean” commercial maize seed with no contamination by MLN-causing viruses; avoiding maize monocultures and continuous maize cropping; practicing maize crop rotation with compatible crops, especially legumes, which do not serve as hosts for MCMV; and continued MLN disease monitoring and surveillance.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

Noteworthy wins

In addition to the development of MLN-resistant varieties, the fight against MLN has delivered important wins for both farmers and their families and for seed companies. In the early years of the outbreak, most local and regional seed companies did not understand the disease well enough to produce MLN-pathogen free seed. Since then, CIMMYT and its partners developed standard operating procedures and checklists for MLN pathogen-free seed production along the seed value chain. Today over 30 seed companies in Ethiopia, Kenya, Uganda, Rwanda and Tanzania are implementing these protocols on a voluntary basis.

“MLN represents a good example where a successful, large-scale surveillance system for an emerging transboundary disease has been developed as part of a rapid response mechanism led by a CGIAR center,” Prasanna said.

Yet, he noted, significant effort and resources are still required to keep the maize fields of endemic countries free of MLN-causing viruses. Sustaining these efforts is critical to the “food security, income and livelihoods of resource-poor smallholder farmers.

To keep up with the disease’s changing dynamics, CIMMYT and its partners are moving ahead with novel techniques to achieve MLN resistance more quickly and cheaply. Some of these innovative techniques include genomic selection, molecular markers, marker-assisted backcrossing, and gene editing. These techniques will be instrumental in developing elite hybrids equipped not only to resist MLN but also to tolerate rapidly changing climatic conditions.

Read the full report on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Cover photo: Researchers and visitors listen to explanations during a tour of infected maize fields at the MLN screening facility in Naivasha, Kenya. (Photo: CIMMYT)

“Let there be food to eat”

“We want to feed the people, we don’t want them to go hungry. We have to do something to make sure there is food on the table. That is where my motivation is… Let there be food to eat.”

— Ruth Wanyera, 2019

The International Maize and Wheat Improvement Center (CIMMYT) has long attributed its widespread impact and reach to strong collaborations with national agricultural research systems (NARS) around the world. Today, CIMMYT — and especially the Global Wheat Program and the CGIAR Research Program on Wheat — wish to honor one long-term collaborator whose work and dedication to wheat research has had abiding positive effects beyond her home region of sub-Saharan Africa.

Ruth Wanyera, national wheat research program coordinator at the Kenya Agricultural and Livestock Research Organization (KALRO), has spent her more than 30-year career dedicated to plant protection research, fueled by her motivation to “feed the people.” She was one of the first scientists to recognize stem rust in east Africa and has been one of CIMMYT’s strongest allies in fighting the devastating wheat disease, stem rust Ug99.

Wanyera recently won both the Norman Borlaug Lifetime Achievement Award from the Borlaug Global Rust Initiative and the Kenya Agricultural Research (KARA) Award at the High Panel Conference on Agricultural Research in Kenya. Wanyera’s team at KALRO has also been recognized with the prestigious Borlaug Global Rust Initiative (BGRI) Gene Stewardship Award.

National Wheat Coordinator Ruth Wanyera (third from right) gives a lesson to pathology interns in the field of a fungicide efficiency trial at KALRO Njoro Research Station, Nakuru, Kenya.
National Wheat Coordinator Ruth Wanyera (third from right) gives a lesson to pathology interns in the field of a fungicide efficiency trial at KALRO Njoro Research Station, Nakuru, Kenya. (Photo:CIMMYT)

A long-term relationship with CIMMYT

Sridhar Bhavani, senior scientist and head of Rust Pathology and Molecular Genetics at CIMMYT has worked closely with Wanyera and her team since the mid-2000s.

“Ruth is a passionate researcher who has tirelessly dedicated her entire career to cereal pathology, and as a team, we coordinated the stem rust phenotyping platform for over a decade and had great successes on multiple international projects,” he said.

CIMMYT’s relationship with Wanyera’s team strengthened when Nobel Prize Laureate Norman Borlaug visited the Kenyan research facility to observe the emerging threat of stem rust. Upon witnessing how serious the outbreak had become, Borlaug organized an emergency summit in Nairobi in 2005, famously “sounding the alarm” for swift and concerted action on stem rust, and ultimately leading to the establishment of the BGRI.

“Ruth and her team of dedicated scientists from KALRO have not only made Kenya proud but have also made a remarkable contribution to the global wheat community in mitigating the threat of stem rust Ug99,” says Bhavani. “Ruth has mentored master’s and PhD students who are now leading researchers at KALRO. She has elevated the research capacity of KALRO to international repute.”

Two recent wheat breeding projects helped extend the CIMMYT-KALRO partnership beyond Kenya. The Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects brought in a partnership with the Ethiopia Institute for Agricultural Research (EIAR) to establish and operate stem rust phenotyping platforms that addressed the global threat of Ug99 and other serious stem rust races, and helped provide solutions for the region. Thanks to KALRO’s screening efforts at the CIMMYT-KALRO Stem Rust Screening Platform in Njoro, Kenya, CIMMYT-derived rust-resistant varieties now cover more than 90% of the wheat farming area in Kenya and Ethiopia.

Ruth Wanyera receives the Kenya Agricultural Research Award (KARA), during the High Panel Conference on Agricultural Research in Kenya. (Photo: CIMMYT)
Ruth Wanyera receives the Kenya Agricultural Research Award (KARA), during the High Panel Conference on Agricultural Research in Kenya. (Photo: CIMMYT)

The partnership continues to grow

Continued collaboration with Ruth’s team at KALRO will be essential in the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project. AGG — which aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious wheat varieties in in sub-Saharan Africa and South Asia — has a particular focus on enhanced collaboration with national partners such as KALRO.

Its success is also closely tied to the Njoro Stem Rust Screening Platform — which, since its establishment in 2008, has conducted crucial screening for over 600,000 wheat lines, varieties, varietal candidates, germplasm bank accessions and mapping populations. Wanyera’s leadership in the Platform, alongside that of CIMMYT wheat scientist Mandeep Randhawa,  plays a major role in screening, monitoring, and clearing seed in time for sowing.

As Hans Braun, former director of the CIMMYT Global Wheat Program said, “Without our national agriculture research system partnerships, CIMMYT would become obsolete.”

Indeed, the unparalleled wealth of knowledge, skills, and research facilities of the CGIAR as a whole would not be so uniquely impactful if it weren’t for the 3000+ partnerships with national governments, academic institutions, enthusiastic farmers, private companies and NGOs that help carry out this work.

CIMMYT’s historic and continued impact depends on close international partnerships with scientists and leaders like Ruth Wanyera, and we congratulate her on her numerous awards, thank her for her collaboration, and wish her a pleasant retirement.

Wheat disease common to South America jumps to Africa

Pawan Kumar Singh, head, wheat pathology, International Maize and Wheat Improvement Center (CIMMYT) says that the fast-acting and devastating fungal disease known as wheat blast was first spotted in Africa in the Zambian rainfed wheat production system in the 2017-2018 crop cycle.

Read more here: https://www.scidev.net/sub-saharan-africa/agriculture/news/wheat-disease-common-to-asia-jumps-to-africa.html

Wheat blast has made the intercontinental jump to Africa

For the first time, wheat blast, a fast-acting and devastating fungal disease, has been reported on the African continent, according to a new article published by scientists from the Zambian Agricultural Research Institute (ZARI), the International Maize and Wheat Improvement Center (CIMMYT) and the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS).

Read more: https://www.rural21.com/english/scientific-world/detail/article/wheat-blast-has-made-the-intercontinental-jump-to-africa.html

Scientists find genomic regions associated with wheat blast resistance in CIMMYT nurseries

Wheat spike damaged by wheat blast.
Wheat blast damages wheat spikes. (Photo: Xinyao He / CIMMYT)

In an article published in Nature Scientific Reports, a team of scientists led by wheat breeder Philomin Juliana from the International Wheat and Maize Improvement Center (CIMMYT) conducted a large genome-wide association study to look for genomic regions that could also be associated with resistance to wheat blast.

Juliana and fellow scientists found 36 significant markers on chromosome 2AS, 3BL, 4AL and 7BL that appeared to be consistently associated with blast resistance across different environments. Among these, 20 markers were found to be in the position of the 2NS translocation, a chromosomal segment transferred to wheat from a wild relative, Aegilops ventricosa, that has very strong and effective resistance to wheat blast.

The team also gained excellent insights into the blast resistance of the globally-distributed CIMMYT germplasm by genomic fingerprinting a panel over 4,000 wheat lines for the presence of the 2NS translocation, and found that it was present in 94.1% of lines from International Bread Wheat Screening Nurseries (IBWSNs) and 93.7% of lines from Semi-Arid Wheat Screening Nurseries (SAWSNs). Although it is reassuring that such a high percentage of CIMMYT wheat lines already have the 2NS translocation and implied blast resistance, finding other novel resistance genes will be instrumental in building widespread, global resilience to wheat blast outbreaks in the long-term.

The researchers used data collected over the last two years from CIMMYT’s IBWSNs and SAWSNs by collaborators at the Bangladesh Wheat and Maize Research Institute (BWMRI) and Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF).

Devastating fungal disease

Wheat blast, caused by the fungus Magnaporthe oryzae pathotype Triticum, was first identified in 1985 in South America, but has been seen in Bangladesh in recent years. The expansion of the disease is a great concern for regions of similar environmental conditions in South Asia, and other regions globally.

Although management of the disease using fungicide is possible, it is not completely effective for multiple reasons, including inefficiency during high disease pressure, resistance of the fungal populations to some classes of fungicides, and the affordability of fungicide to resource-poor farmers. Scientists see the development and deployment of wheat with genetic resistance to blast as the most sustainable and farmer-friendly approach to preventing devastating outbreaks around the world.

This work was made possible by the generous support of the Delivering Genetic Gains in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation, the U.K. Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University, the U.S. Agency for International Development’s Feed the Future initiative, the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), The Swedish Research Council (Vetenskapsråd), and the Australian Centre for International Agricultural Research (ACIAR).

Read the full article:
Genome‑wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Wheat blast has made the intercontinental jump to Africa

Scientists observe wheat blast in Zambia's Mpika district. (Photo: Batiseba Tembo/ZARI)
Scientists observe wheat blast in Zambia’s Mpika district. (Photo: Batiseba Tembo/ZARI)

Wheat blast, a fast-acting and devastating fungal disease, has been reported for the first time on the African continent. In an article published in the scientific journal PLoS One, a team of scientists confirmed that symptoms of wheat blast first appeared in Zambia during the 2018 rainy season, in experimental plots and small-scale farms in the Mpika district, Muchinga province.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT), the US Department of Agriculture – Foreign Disease Weed Science Research Unit (USDA-ARS) and the Zambian Agricultural Research Institute (ZARI) participated in this study.

Wheat blast poses a serious threat to rain-fed wheat production in Zambia and raises the alarm for surrounding regions and countries on the African continent with similar environmental conditions. Worldwide, 2.5 billion consumers depend on wheat as a staple food and, in recent years, several African countries have been actively working towards reducing dependence on wheat imports.

“This presents yet another challenging biotic constraint to rain-fed wheat production in Zambia,” said Batiseba Tembo, wheat breeder at ZARI and lead scientist on the study.

A difficult diagnosis

Researchers from ZARI check for wheat blast in experimental plots. (Photo: Batiseba Tembo/ZARI)
Researchers from ZARI check for wheat blast in experimental plots. (Photo: Batiseba Tembo/ZARI)

“The first occurrence of the disease was very distressing. This happened at the spike stage, and caused significant losses,” Tembo said. “Nothing of this nature has happened before in Zambia.”

Researchers were initially confused when symptoms of the disease were first reported in the fields of Mpika. Zambia has unique agro-climatic conditions, particularly in the rainfed wheat production system, and diseases such as spot blotch and Fusarium head blight are common.

“The crop had silvery white spikes and a green canopy, resulting in shriveled grains or no grains at all… Within the span of seven days, a whole field can be attacked,” Tembo explained. Samples were collected and analyzed in the ZARI laboratory, and suspicions grew among researchers that this may be a new disease entirely.

Tembo participated in the Basic Wheat Improvement Course at CIMMYT’s global headquarters in Mexico, where she discussed the new disease with Pawan Singh, head of Wheat Pathology at CIMMYT. Singh worked with Tembo to provide guidance and the molecular markers needed for the sample analysis in Zambia, and coordinated the analysis of the wheat disease samples at the USDA-ARS facility in Fort Detrick, Maryland, United States.

All experiments confirmed the presence of the fungus Magnaporthe oryzae pathotype Triticum (MoT), which causes the disease.

“This is a disaster which needs immediate attention,” Tembo said. “Otherwise, wheat blast has the potential to marginalize the growth of rain-fed wheat production in Zambia and may threaten wheat production in neighboring countries as well.”

Wheat blast spreads through infected seeds and crop residues, as well as by spores that can travel long distances in the air. The spread of blast within Zambia is indicated by both mechanisms of expansion.

Wheat blast has expanded rapidly since it was initially discovered in Brazil in 1985. (Map: Kai Sonder/CIMMYT)
Wheat blast has expanded rapidly since it was initially discovered in Brazil in 1985. (Map: Kai Sonder/CIMMYT)

A cause for innovation and collaboration

CIMMYT and the CGIAR Research Program on Wheat (WHEAT) are taking action on several fronts to combat wheat blast. Trainings and international courses invite participants to gain new technical skills and knowledge in blast diagnostics, treatment and mitigation strategies. WHEAT scientists and partners are also studying the genetic factors that increase resistance to the disease and developing early warning systems.

“A set of research outcomes, including the development of resistant varieties, identification of effective fungicides, agronomic measures, and new findings in the epidemiology of disease development will be helpful in mitigating wheat blast in Zambia,” Singh said.

“It is imperative that the regional and global scientific communities join hands to determine effective measures to halt further spread of this worrisome disease in Zambia and beyond,” Tembo expressed.


Read the study:

Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia

Interview opportunities:

Pawan Kumar Singh, Senior Scientist and Head of Wheat Pathology, International Maize and Wheat Improvement Center (CIMMYT)

Batiseba Tembo, Wheat Breeder, Zambian Agricultural Research Institute (ZARI)

For more information, or to arrange interviews, contact the media team:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements

Financial support for this research was provided by the Zambia Agriculture Research Institute (ZARI), the CGIAR Research Program on Wheat (WHEAT), the Australian Centre for International Agricultural Research (ACIAR), and the US Department of Agriculture’s Agricultural Research Service (USDA-ARS). 

The Basic Wheat Training Program and Wheat Blast Training is made possible by support from investors including the Australian Centre for International Agricultural Research (ACIAR), WHEAT, the Indian Council of Agricultural Research (ICAR), Krishi Gobeshona Foundation (KGF), the Swedish Research Council (SRC) and the United States Agency for International Development (USAID).

The Accelerating Genetic Gains in Maize and Wheat (AGG) project is funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

About CIMMYT

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

Building resistance in wheat: International collaboration fights Septoria tritici blotch disease

Phenotypic selection of resistant lines (Ms. H. Kouki Field technician and consultant A. Yahyaoui) at the Septoria Precision Phenotyping Platform at Kodia/INGC. (Photo: Septoria Precision Phenotyping Platform)

Tunisia has been a major durum wheat producer and consumer since Roman times, a crop used now for couscous, bread and pasta dishes throughout North Africa and the Mediterranean Basin.

However, a persistent disease known as Septoria tritici blotch (STB) has been threatening durum wheat harvests across the country thanks to its increasing resistance to fungicides and adaptability to harsher climatic conditions. The disease, which is caused by the fungus Zymoseptoria tritici, thrives under humid conditions and can cause up to 60% yield loss in farmers’ fields.

To help fight this disease, the International Maize and Wheat Improvement Center (CIMMYT) established the Septoria Precision Phenotyping Platform in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) in Tunisia in 2015.

The platform aims to accelerate the transfer of STB resistance genes into elite durum wheat lines from national and international breeding programs, particularly CIMMYT and ICARDA breeding programs. Researchers at the platform have tested an impressive diversity of durum wheat lines for resistance to the disease from research institutes across Tunisia, Morocco, Algeria, Mexico, France, Italy, the UK, USA and Canada.

STB field reactions showing typical necrotic symptoms containing pycnidia on an infected adult plant leaf of wheat. (Photo: Septoria Precision Phenotyping Platform)

“New and more virulent strains of the pathogen are constantly emerging, which results in previously resistant wheat varieties becoming more susceptible,” said Sarrah Ben M’Barek, head of the laboratory at the Septoria Precision Phenotyping platform.

Field phenotyping – the use of field-testing to identify desired plant traits — is the heart of the platform. Scientists can test as many as 30,000 plots each year for STB resistance.

Evaluations are conducted at two main field research stations managed by the Regional Field Crop Center (CRRGC) and the National Institute of Field Crops (INGC), based at two major hotspots for the disease in Beja and Kodia. This work is complemented by laboratory research at the National Agronomic Institute of Tunisia (INAT) at Tunis.

“The platform plays a critical role in identifying STB resistant wheat germplasm and characterizing the resistance genes they possess. These resistant sources be can further utilized in hybridization schemes by durum wheat breeders worldwide to develop durable resistant varieties,” explained CIMMYT consultant and platform coordinator Amor Yahyaoui.

With the help of data from the platform, breeders hope to combine multiple resistance genes in an individual variety to create a genetically complex “lock” whose combination the fungus will not easily break.

According to Ben M’Barek, the huge genetic diversity in wheat and its ancestors has helped breeders to develop new varieties for almost a century. However, the adoption of new varieties has typically been slow.

Farmers in Tunisia traditionally rely on fungicides to manage the disease. However, with the pathogen recently becoming more resistant to fungicides and more adaptive to harsher climatic conditions, interest in STB resistant varieties is increasing.

Field disease reactions of a susceptible wheat cultivar. (Photo: Septoria Precision Phenotyping Platform)

A hub for training and collaboration

The platform is also a hub for training and capacity development for national and international scientists, field research and lab. assistants, students and farmers. It brings together research staff and technicians from different institutions within Tunisia including the CRRGC, INGC, the National Institute of Agricultural Research of Tunisia (INRAT), INAT and the University of Jendouba.

Farmer’s organizations and regional extension services, as well as private organizations such as Comptoir Multiservices Agricoles (CMA), seed and chemical companies also collaborate with the platform. The result is a team effort that has generated a tremendous wealth of data, made only possible through the dedication of Yahyaoui, said Ben M’Barek.

“Spending a few days at the platform each year is a like a crash course on STB resistance. All subjects are covered and great experts around the world come together to discuss all details of this host-pathogen interaction,” said Filippo Bassi, senior durum wheat breeder at ICARDA.

“Sending young scientists to spend some time at the platform ensures that they learn all about the mechanisms of resistance and take them back to their home country to deploy them in their own breeding programs. It is like a true university for STB.”

Yet, the platform still has a lot of work to do, according to Ben M’Barek. Scientists at the platform are now working on raising awareness on crop and pest management such as integrated management approaches amongst farming communities, setting up on-farm field trials and developing disease early warning surveillance.

Next year the platform will provide a unique podium for students, academics and researchers to exchange ideas and research findings on cereal leaf blight diseases. The International Symposium on Cereal Leaf Blights will take place on May 19-21, 2021 in Tunisia. Details can be found here.

The Septoria Precision Phenotyping Platform is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the Institution of Agricultural Research and Higher Education of Tunisia (IRESA) and the International Center for Agricultural Research in the Dry Areas (ICARDA) and is supported by the CGIAR Research Program in Wheat (WHEAT).

Septoria Precision Phenotyping Platform at Oued Béja (CRRGC). (Photo: Gert Kema/Wageningen University)

Agency unveils seed resistant to disease

For more than a decade, Maize Lethal Necrosis Disease (MLND) has ravaged crops causing farmers to incur huge losses and threatening food security.

Kenya Seed Company (KSC) researchers through partnerships have developed a superior maize variety that can withstand the disease.

Read more here:

https://www.standardmedia.co.ke/farmkenya/article/2001382769/agency-unveils-seed-resistant-to-disease

Battling devastating viral diseases, also in plants

When a maize lethal necrosis (MLN) outbreak happened in Kenya in 2011, scientists knew they needed to act fast. This viral disease, new to Kenya, was decimating maize fields. Within a few years, the viral disease spread rapidly in eastern Africa, through both insect vectors and contaminated seeds. If the virus were to spread into southern or West Africa, it would spell disaster for the smallholder farmers across the continent who depended on maize as a staple crop and for their family’s income and livelihoods.

The International Maize and Wheat Improvement Center (CIMMYT) and its partners immediately took action to impose a strict seed quarantine and restrict the movement of seed between eastern Africa and other regions in Africa. In addition, they worked intensively on developing and disseminating improved maize cultivars with tolerance or resistance to MLN, undertook extensive surveillance efforts, and sensitized partners on the importance of producing and commercializing MLN-free seed.

Due to these efforts, in the last nine years MLN has not been reported in sub-Saharan Africa outside of eastern Africa.

On the occasion of a recent publication on Virus Research about how MLN was contained, we interviewed B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE), to discuss the MLN success story, the global COVID-19 crisis, and the similarities in the challenge to tackle plant and human viral diseases.

B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)
B.M. Prasanna, Director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE). (Photo: Alfonso Cortés/CIMMYT)

What were some of the extreme measures CIMMYT had to take to stop the spread of MLN?

The first step that we had to take in the fight against MLN was to rigorously analyze seed for any possible contamination with MLN-causing viruses and restrict movement of seed from eastern Africa to southern Africa.

The second most important step was to sensitize the national partners and the commercial seed sector about the danger of seed contamination with MLN-causing viruses, and how seed contamination can lead to the proliferation or spread of the disease.

The third important step was to build a new MLN quarantine facility in Zimbabwe, in partnership with the National Plant Quarantine Institute. Only when that quarantine facility was functional in 2017, we reinitiated transfer of research material from CIMMYT’s breeding hub in Kenya to CIMMYT in Zimbabwe. Only when the materials were certified to be MLN-free both in Kenya and Zimbabwe, through plant-by-plant analysis using immunodiagnostic kits, the seed was multiplied and further distributed to partners. So, the principle of containment and effective management is extremely important, whether it is a plant viral disease or a human viral disease.

We must note here that in terms of scale and intensity, as well as global effects and implications, any plant disease, including MLN, cannot be compared with a pandemic like COVID-19, which has affected every aspect of our lives.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

How do you think the COVID-19 pandemic is going to impact our food systems?

We are indeed in a grim situation. The pandemic will undoubtedly have a serious effect on food security.

Many countries which do not have enough food reserves or those where the food systems are vulnerable to shocks like this are suffering. The people’s capacity to procure inputs for agriculture, including seed, is going to be affected too, as the markets are affected. This is really a serious situation that we all should be concerned about. The CGIAR has an important role to play, in terms of working closely with national partners and mitigating the impact of COVID-19 on agriculture.

We should be particularly worried about farmers, especially smallholder farmers, who are quite vulnerable to the ongoing challenge. Even without COVID-19, agriculture in many developing countries worldwide has been already under distress. Small and marginal farmers were often unable to find a market for their produce and earn sufficient income to support their families. Their livelihoods are fragile, and vulnerable to climate change and volatile market prices. The ongoing COVID-19 crisis is unfortunately compounding the crisis.

L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)
L.M. Suresh (center-right), Maize Pathologist at CIMMYT and Head of the MLN Screening Facility, facilitates a training on MLN with national partners. (Photo: CIMMYT)

What lessons can agricultural research learn from this pandemic?

What do these pandemics or epidemics teach us? They remind us that systems need to be in place to prevent the proliferation of such diseases, whether it is plant diseases or animal diseases or human diseases. No country can be considered completely safe, and such diseases do not discriminate between a developed and a developing country, or the rich and the poor.

The second most important lesson is emergency preparedness. Whenever such devastating transboundary viral diseases show up, how quickly the country can respond — containing that infected area and not allowing the disease to spread, and then mitigating the damage systematically and quickly — is key. This is not the first time that a disease like MLN has emerged. There could be more serious viral or fungal diseases that could emerge in the future due to various reasons, including changing climates, international trade, movement of human beings, air currents, etc.  There are multiple ways that diseases can go across continents, across countries within a continent, and within countries. Therefore, the key is how well we can capacitate the national systems to be able to proactively prevent, detect, and intervene very fast.

Another big lesson here for agricultural systems is that a problem that happens in some other continent cannot be ignored because you work in a different continent. What COVID-19 shows is that the world is far more connected than we think.

CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT team members check for traces of the maize chlorotic mottle virus (MCMV) in maize plants during a visit to the MLN screening facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

For you, what is the biggest takeaway from the MLN success story?

I won’t say it is still a complete success. Through intensive partnerships and efforts, we were able to prevent the disease from devastating maize production in millions of smallholder farmers’ fields in sub-Saharan Africa. Since 2014, there has been no new country in Africa — outside eastern Africa — that has reported an outbreak of MLN. That, to me, is a tremendous success.

The work is still not over. The journey has to continue. And we still need to make sure that countries are continuously protected from devastating diseases like MLN. MLN is still not eradicated from eastern Africa. It may not be even possible to completely eradicate this disease, as the two viruses that together cause it can survive not just on maize but on multiple grasses. We can however contain the disease and limit its impact through continued efforts, like what we have done for the past 7 or 8 years. But if we lower our guard, there is a very high likelihood that the disease can still spread to other countries in sub-Saharan Africa, especially the major maize-growing countries in southern Africa or West Africa. Efforts need to continue. So, let us continue to maintain a high vigil to protect the smallholders in Africa from transboundary diseases like MLN.

Read the full article on Virus Research:
Maize lethal necrosis (MLN): Efforts toward containing the spread and impact of a devastating transboundary disease in sub-Saharan Africa

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Safeguarding biodiversity is essential to prevent the next COVID-19

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

While the world’s attention is focused on controlling COVID-19, evidence points at the biodiversity crisis as a leading factor in its emergence. At first glance, the two issues might seem unrelated, but disease outbreaks and degraded ecosystems are deeply connected. Frédéric Baudron, systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and Florian Liégeois, virologist at the Institut de Recherche pour le Développement (IRD) share their insights on the current COVID-19 crisis and the link between biodiversity loss and emerging infectious diseases.

What trends are we seeing with infectious diseases like COVID-19?

We see that outbreaks of infectious diseases are becoming more frequent, even when we account for the so-called “reporting bias”: surveillance of such events becoming better with time and surveillance being better funded in the North than in the South.

60% of infectious diseases are zoonotic, meaning that they are spread from animals to humans and 72% of these zoonoses originate from wildlife. COVID-19 is just the last in a long list of zoonoses originating from wildlife. Other recent outbreaks include SARS, Ebola, avian influenza and swine influenza. As human activities continue to disturb ecosystems worldwide, we are likely to see more pathogens crossing from wildlife to humans in the future. This should serve as a call to better manage our relationship with nature in general, and wildlife in particular.

Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)
Researchers in Zimbabwe enter the cave dwelling of insectivorous bats (Hipposideros caffer) to conduct fecal sampling for viral research. (Photo: Florian Liégeois/IRD)

Why are we seeing more cases of diseases crossing from animals to humans? Where are they coming from?

Evidence points to bushmeat trade and consumption as the likely driver for the emergence of COVID-19. The emergence of SARS and Ebola was also driven by bushmeat consumption and trade. However, when looking at past outbreaks of zoonoses caused by a pathogen with a wildlife origin, land use changes, generally due to changes in agricultural practices, has been the leading driver.

Pathogens tends to emerge in well known “disease hotspots,” which tend to be areas where high wildlife biodiversity overlaps with high population density. These hotspots also tend to be at lower latitude. Interestingly, many of these are located in regions where CIMMYT’s activities are concentrated: Central America, East Africa and South Asia. This, in addition to the fact that agricultural changes are a major driver of the emergence of zoonoses, means that CIMMYT researchers may have a role to play in preventing the next global pandemic.

Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)
Smallholders clear forests for agriculture, but they also have an impact on forests through livestock grazing and fuelwood harvesting, as on this picture in Munesa forest, Ethiopia. (Photo: Frederic Baudron/CIMMYT)

How exactly does biodiversity loss and land use change cause an increase in zoonotic diseases?

There are at least three mechanisms at play. First, increased contact between wildlife and humans and their livestock because of encroachment in ecosystems. Second, selection of wildlife species most able to infect humans and/or their livestock — often rodents and bats — because they thrive in human-dominated landscapes. Third, more pathogens being carried by these surviving wildlife species in simplified ecosystems. Pathogens tend to be “diluted” in complex, undisturbed, ecosystems.

The fast increase in the population of humans and their livestock means that they are interacting more and more frequently with wildlife species and the pathogens they carry. Today, 7.8 billion humans exploit almost each and every ecosystem of the planet. Livestock have followed humans in most of these ecosystems and are now far more numerous than wild vertebrates: there are 4.7 billion cattle, pigs, sheep and goats and 23.7 billion chickens on Earth! We live on an increasingly “cultivated planet,” with new species assemblages and new opportunities for pathogens to move from one species to another.

Wildlife trade and bushmeat consumption have received a lot of attention as primary causes of the spread of these viruses. Why has there been so little discussion on the connection with biodiversity loss?

The problem of biodiversity loss as a driver of the emergence of zoonoses is a complex one: it doesn’t have a simple solution, such as banning wet markets in China. It’s difficult to communicate this issue effectively to the public. It’s easy to find support for ending bushmeat trade and consumption because it’s easy for the public to understand how these can lead to the emergence of zoonoses, and sources of bushmeat include emblematic species with public appeal, like apes and pangolins. Bushmeat trafficking and consumption also gives the public an easy way to shift the blame: this is a local, rather than global, issue and for most of us, a distant one.

There is an inconvenient truth in the biodiversity crisis: we all drive it through our consumption patterns. Think of your annual consumption of coffee, tea, chocolate, sugar, textiles, fish, etc. But the biodiversity crisis is often not perceived as a global issue, nor as a pressing one. Media coverage for the biodiversity crisis is eight times lower than for the climate crisis.

The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)
The Unamat forest in Puerto Maldonado, Madre de Dios department, Peru. (Photo: Marco Simola/CIFOR)

Agriculture is a major cause of land use change and biodiversity loss. What can farmers do to preserve biodiversity, without losing out on crop yields?

Farming practices that reduce the impact of agriculture on biodiversity are well known and form the foundation of sustainable intensification, for which CIMMYT has an entire program. A better question might be what we can do collectively to support them in doing so. Supportive policies, like replacing subsidies by incentives that promote sustainable intensification, and supportive markets, for example using certification and labeling, are part of the solution.

But these measures are likely to be insufficient alone, as a large share of the global food doesn’t enter the market, but is rather consumed by the small-scale family farmers who produce it.

Reducing the negative impact of food production on biodiversity is likely to require a global, concerted effort similar to the Paris Agreements for climate. As the COVID-19 pandemic is shocking the world, strong measures are likely to be taken globally to avoid the next pandemic. There is a risk that some of these measures will go too far and end up threatening rural livelihoods, especially the most vulnerable ones. For example, recommending “land sparing” — segregating human activities from nature by maximizing yield on areas as small as possible —  is tempting to reduce the possibility of pathogen spillover from wildlife species to humans and livestock. But food production depends on ecosystem services supported by biodiversity, like soil fertility maintenance, pest control and pollination. These services are particularly important for small-scale family farmers who tend to use few external inputs.

How can we prevent pandemics like COVID-19 from happening again in the future?

There is little doubt that new pathogens will emerge. First and foremost, we need to be able to control emerging infectious diseases as early as possible. This requires increased investment in disease surveillance and in the health systems of the countries where the next infectious disease is most likely to emerge. In parallel, we also need to reduce the frequency of these outbreaks by conserving and restoring biodiversity globally, most crucially in disease hotspots.

Farming tends to be a major driver of biodiversity loss in these areas but is also a main source of livelihoods. The burden of reducing the impact of agriculture on biodiversity in disease hotspots cannot be left to local farmers, who tend to be poor small-scale farmers: it will have to be shared with the rest of us.

Cover photo: Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Crossing boundaries

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Daily life as we know it has grinded to a halt and crop scientists are pondering next steps in face of the global COVID-19 crisis. Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, joins us for a virtual chat to discuss the need for increased investment in crop disease research as the world risks a food security crisis.

What have you learned from your work on contagious wheat diseases that we can take away during this time?

Wheat epidemics go back to biblical times. Wheat scientists now believe Egypt’s “seven bad years” of harvest referenced in the Bible were due to a stem rust outbreak.

So, we know what happens when we have a crop epidemic: diseases can completely wipe out a harvest. I have seen subsistence farmers stand in front of their swaying, golden wheat fields, but there is not a single grain inside the spikes. All because of wheat blast.

There are a lot of parallel issues that I see with COVID-19.

The epidemiology models for humans which we see now have a lot in common with plant epidemiology. For example, if you take a wheat field sown with a variety which is rust-resistant and then you get a spore which mutates and overcomes the resistance — like COVID-19 overcomes the human immune system — it then takes about two weeks for it to sporulate again and produce millions of these mutated spores. They sporulate once more and then you have billions and trillions of spores — then the wheat fields at the local, national and, in the worst case, regional level are severely damaged and in worst case are going to die.

The problem is that since we cannot quarantine wheat, if the weather is favorable these spores will fly everywhere and — just like with COVID-19 — they don’t need a passport to travel.

Could you elaborate on that? How can wheat diseases go global?

Usually it takes around 5 years, sometimes less, until a mutation in a rust spore can overcome the resistance of a wheat variety. Every so often, we see rust epidemics which cover an entire region. To monitor this movement, the Borlaug Global Rust Initiative of Cornell University and CIMMYT, funded by the Bill & Melinda Gates Foundation and DFID, established a global rust monitoring system that provides live data on spore movements.

For example, if you have a new race of stem rust in Yemen — and in Yemen wheat matures early — and then farmers burn the straw, their action “pushes” the spores up into the air, thus allowing them to enter the jet stream and cover 2,000 to 5,000 kilometers in a short period of time. Spores can also be carried on clothes or shoes by people who walked into an infected wheat field. Take Australia, for example, which has very strict quarantine laws. It is surrounded by sea and still eventually they get the new rust races which fly around or come with travelers. One just cannot prevent it.

Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)
Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)

Could climate change exacerbate the spreading of crop diseases?

Yes, the climate and its variability have a lot to do with it. For example, in the case of yellow rust, what’s extremely important is the time it takes from sporulation to sporulation. Take a rust spore. It germinates, then it grows, it multiplies and then once it is ready it will disperse and infect wheat plants. From one dispersal to the next it takes about two weeks.

In the last decades, in particular for yellow rust, new races are better adapted to high temperature and are multiplying faster. In a Nature paper, we showed that 30 years ago yellow rust was not present in the Great Plains in the US. Today, it is the most important wheat disease there. So there really is something going on and changing and that’s why we are so concerned about new wheat disease races when they come up.

What could an epidemiologist specialized in human viruses take from this?

Well, I think human epidemiologists know very well what happens in a case like COVID-19. Ordinary citizens now also start to understand what a pandemic is and what its related exponential growth means.

Maybe you should ask what policymakers can learn from COVID-19 in order to prevent plant epidemics. When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity. While in developed countries farmers can use chemicals to control plant diseases, resource-poor farmers do not have this option, due to lack to access or if the plant protective has not been registered in their country.

In addition to this, our lines of work share a sense of urgency. If “doomsday” happens, it will be too late to react. At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.

What other lessons can policymakers and other stakeholders take away from the current crisis?

The world needs to learn that we cannot use economics as the basis for disease research. We need to better foresee what could happen.

Let’s take the example of wheat blast, a devastating disease that can destroy the wheat spike and was initially confined to South America. The disease arrived in Bangladesh in 2016 and caused small economic damage, maybe 30,000 tons loss in a small geographic area — a small fraction of the national production but a disaster for the smallholder farmer, who thus would have lost her entire wheat harvest. The disease is now controlled with chemicals. But what if chemical resistance is developed and the disease spreads to the 10 million hectares in the Indo-Gangetic Plains of India and the south of Pakistan. Unlikely? But what if it happens?

Agriculture accounts for 30% of the global GDP and the research money [going to agriculture] in comparison to other areas is small. Globally only 5% of R&D is invested in research for development related to agriculture. Such a discrepancy! A million U.S. dollars invested in wheat blast research goes a long way and if you don’t do it, you risk a disaster.

If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants.

A Lloyd’s report concluded that a global food crisis could be caused by governments taking isolating actions to protect their own countries in response to a breadbasket failure elsewhere. I’m concerned that as the COVID-19 crisis continues, governments will stop exports as some did during the 2008 food price crisis, and then, even if there is enough food around, the 2008 scenario might happen again and food prices will go through the roof, with disastrous impact on the lives of the poorest.

This article was originally published by the CGIAR Research Program on Wheat (WHEAT):
Crossing boundaries: looking at wheat diseases in times of the COVID-19 crisis.

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Pests and diseases and climate change: Is there a connection?

Responsible for 80% of the food we eat and 98% of the oxygen we breathe, plants are a pillar of life on earth. But they are under threat. Up to 40 percent of food crops are lost to plant pests and diseases each year according to the FAO.

When disease outbreaks occur, the impacts can be devastating. In the 1840s, the Irish potato famine, caused by the fungal disease late blight, killed around one million people and caused another million to emigrate.

The recent invasion of desert locusts throughout the horn of Africa – the worst in decades – shows how vulnerable crops are to pests as well.

The desert locust is one of the most destructive pests in the world, with one small swarm covering one square kilometer eating the same amount of food per day as 35,000 people. The outbreak could even provoke a humanitarian crisis, according to the FAO.

How does climate change affect pests and diseases?

Climate change is one factor driving the spread of pests and diseases, along with increasing global trade.  Climate change can affect the population size, survival rate and geographical distribution of pests; and the intensity, development and geographical distribution of diseases.

Temperature and rainfall are the big drivers of shifts in how and where pests and diseases spread, according to experts.

“In general, an increase in temperature and precipitation levels favors the growth and distribution of most pest species by providing a warm and humid environment and providing necessary moisture for their growth,” says Tek Sapkota, agricultural systems and climate change scientist at the International Maize and Wheat Improvement Center (CIMMYT).

However, when temperatures and precipitation levels get too high, this can slow the growth and reproduction of some pest species and destroy them by washing their eggs and larvae off the host plant, he explains.

This would explain why many pests are moving away from the tropics towards more temperate areas. Pests like warmer temperatures – but up to a point. If it is too hot or too cold, populations grow more slowly. Since temperate regions are not currently at the optimal temperature for pests, populations are expected to grow more quickly in these areas as they warm up.

Crop diseases are following a similar pattern, particularly when it comes to pathogens like fungi.

Movement towards the earth’s poles

Research shows that since 1960, crop pests and diseases have been moving at an average of 3 km a year in the direction of the earth’s north and south poles as temperatures increase.

Tar spot, a fungal disease native to Latin America, which can cause up to 50% of yield losses in maize, was detected for the first time in the US in 2015. Normally prevalent in tropical climates, the disease has started emerging in non-tropical regions, including highland areas of Central Mexico and many counties in the US.

Maize-producing counties in the USA vulnerable to tar spot complex (TSC) calculated based on climate similarity. Khondoker Mottaleb et al. 2018

The southern pine beetle, one of the most destructive insects invading North America, is moving north as temperatures rise and is likely to spread throughout northeastern United States and into southeastern Canada by 2050.

Wheat stem rust was reported by the Greeks and Romans, and the latter sacrificed to the gods to avoid disease outbreaks on their wheat crops. Photo: CIMMYT/Petr Kosina

Wheat rusts, which are among the greatest threats to wheat production around the world, are also adapting to warmer climates and becoming more aggressive in nature, says Mandeep Randhawa, CIMMYT wheat breeder and wheat rust pathologist.

“As temperatures rise, larger quantities of spores are produced that can cause further infection and could potentially result in pathogenic changes through faster rate of their evolution.”

Scientists recently reported that stem rust had emerged in the UK for the first time in 60 years. Climate changes over the past 25 years are likely to have encouraged conditions for infection, according to the study.

Rising CO2 levels

Rising carbon dioxide (CO2) levels could also affect pests indirectly, by changing the architecture of their host plant and weakening its defenses.

“Elevated CO2 concentrations, as a result of human activity and influence on climate change, will most likely influence pests indirectly through the modification in plant chemistry, physiology and nutritional content,” says Leonardo Crespo, CIMMYT wheat breeder.

Rising CO2 concentrations and temperatures could also provide a more favorable environment for pathogens like fungi, reports the International Panel on Climate Change (IPCC).

Despite high confidence among scientists that climate change will cause an increase in pests and diseases, predicting exactly when and where pests and diseases will spread is no easy task. There is significant variation between different species of pests and types of pathogens, and climate models can only provide estimates of where infection or outbreaks might occur.

Keeping pests and disease pandemics at bay

To address these uncertainties, experts increasingly recognize the need to monitor pest and disease outbreaks and have called for a global surveillance system to monitor these and improve responses.

Recent technological tools like the suitcase-sized mobile lab MARPLE, which tests pathogens such as wheat rust in near real-time and gives results within 48 hours, allow for early detection. Early warning systems are also crucial tools to warn farmers, researchers and policy makers of potential outbreaks.

Breeding pest- and disease-resistant varieties is another environmentally friendly solution, since it reduces the need for pesticides and fungicides. Collaborating with scientists worldwide, CIMMYT works on developing wheat and maize varieties resistant to diseases, including Fusarium Head Blight (FHB), wheat rust, wheat blast for wheat and maize lethal necrosis (MLN) for maize.

A ladybug (or ladybird) beetle sits on a wheat spike of an improved variety growing in the field in Islamabad, Pakistan. Photo credit: A. Yaqub/CIMMYT.

Beneficial insects can also act as a natural pest control for crops. Ladybugs, spiders and dragonflies act as natural predators for pests like aphids, caterpillars and stem borers. Other solutions include mechanical control measures such as light traps, pheromone traps and sticky traps, as well as farming practice controls such as crop rotation.

The United Nations has declared this year as the International Year of Plant Health, emphasizing the importance of raising global awareness on how “protecting plant health can help end hunger, reduce poverty, protect biodiversity and the environment, and boost economic development.”

As part of this initiative, CIMMYT will host the 24th Biannual International Plant Resistance to Insects (IPRI) conference from March 2-4. The conference will cover topics including plant-insect interactions, breeding for resistance, and phenotyping technologies for predicting pest resistant traits in plants.

Cover photo: A locust swarm in north-east Kenya. The UN Food and Agriculture Organization has warned that the swarms already seen in Somalia, Kenya and Ethiopia could range further afield. Photograph: Sven Torfinn/FAO