Skip to main content

Tag: plant diseases

Soybean rust threatens soybean production in Malawi and Zambia

Healthy soybean fields. (Photo: Peter Setimela/CIMMYT)

Soybeans are a significant source of oil and protein, and soybean demand has been increasing over the last decade in Malawi and Zambia. Soybean contributes to human nutrition, is used in producing animal feed, and fetches a higher price per unit than maize, thus serving as a cash crop for smallholder farmers. These are among the main factors contributing to the growing adoption of soybean among smallholder producers. In addition, soybean is a vital soil-fertility improvement crop used in crop rotations because of its ability to fix atmospheric nitrogen. To a large extent, soybean demand outweighs supply, with the deficit covered by imports.

Soybean production in sub-Saharan Africa is expected to grow by over 2% per annum to meet the increasing demand. However, as production increases, significant challenges caused by diseases, pests, declining soil fertility, and other abiotic factors remain. According to official government statistics, Zambia produces about 450,000 tonnes of soybean per annum, with an estimated annual growth of 14%. According to FAOSTAT, this makes Zambia the second largest soybean producer in the southern African region. Although soybean was traditionally grown by large commercial farmers in Zambia, smallholders now account for over 60% of the total annual soybean production.

Production trends show that smallholder soybean production increased rapidly in the 2015–2016 season, a period that coincided with increased demand from local processing facilities. As smallholder production continued to increase, in 2020, total output by smallholder farmers outpaced that of large-scale farmers for the first time and has remained dominant over the last two seasons (Fig 1). However, soybean yields among smallholder farmers have remained low at around 1 MT/HA.

Figure 1. Soybean production trends by smallholders and large-scale farmers. (Photo: Hambulo Ngoma/Zambia Ministry of Agriculture, Crop Forecast Survey)

Soybean production in the region is threatened by soybean rust caused by the fungus Phakopsora pachyrhizi. The rust became prevalent in Africa in 1996; it was first confirmed in Uganda on experimental plots and subsequently on farmers’ fields throughout the country. Monitoring efforts in the U.S. have saved the soybean industry millions of dollars in fungicide costs due to the availability of accurate disease forecasting based on pathogen surveillance and environmental data.

Soybean rust disease is spread rapidly and easily by wind, and most available varieties grown by farmers are susceptible. The above-normal rainfall during the 2022–2023 season was conducive to the spread of the fungus. A recent survey of over 1,000 farm households shows that 55% and 39% of farmers in Zambia and Malawi, respectively, were affected by soybean rust during the 2022–2023 season. The lack of rust-tolerant varieties makes production expensive for smallholder farmers who cannot afford to purchase fungicides to control the pathogens. It is estimated that soybean rust can cause large yield losses of up to 90%, depending on crop stage and disease severity. Symptoms due to soybean rust infection may be observed at any developmental stage of the plant, but losses are mostly associated with infection from the flowering stage to the pod-filling stage.

Soybean plants affected by soy rust. (Photo: Peter Setimela)

Mitigation measures using resistant or tolerant varieties have been challenging because the fungus mutates very rapidly, creating genetic variability. Although a variety of fungicides effective against soybean rust are available, the use of such fungicides is limited due to the high cost of the product and its application, as well as to environmental concerns. Due to this restricted use of fungicide, an early monitoring system for detecting rust threats for steering fungicide might only be relevant for large-scale producers in eastern and southern Africa. With the massive increase in the area under soybean production, soybean rust is an important disease that cannot be ignored. Host-plant resistance provides a cheaper, more environmentally friendly, and much more sustainable approach for managing soybean rust in smallholder agriculture that characterizes the agricultural landscape of eastern and southern Africa.

To advance the use of rust-tolerant varieties, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is presently concluding surveys to assess farmers’ demand and willingness to pay for rust-tolerant varieties in Malawi and Zambia. The results from this assessment will be valuable to seed companies and last-mile delivery partners to gain a better understanding of what farmers need and to better serve the farmers.  This coming season AID-I will include rust tolerant varieties in the mega-demonstrations to create awareness about new varieties that show some tolerance to rust.

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

CGIAR Initiative: Plant Health

Effective plant health management is critical for improving the productivity, profitability, sustainability and resilience of agrifood systems. Yet, farming communities, especially in low- and middle-income countries, struggle to contain existing and emerging plant pests and diseases. Each year, these threats cause on average 10–40% losses to major food crops, costing the global economy around US$220 billion. The highest losses are associated with food-deficit regions with fast-growing populations. 

Increasing international trade and travel, coupled with weak phytosanitary systems, are accelerating the global spread of pests and diseases. The situation is exacerbated by climate change, with agricultural intensification and diversification driving the emergence of new threats. These burdens fall disproportionately on poorly resourced communities, especially women and youth in rural areas. 

Diagnostic capacity, global-scale surveillance data, risk prediction/forecasting and rapid response and management systems for major pests and diseases are still lacking. Inadequate information and knowledge of and access to climate-smart control options leave smallholders and marginalized communities ill-equipped to respond to biotic threats. Environmental and health effects of toxic pesticides, exposure to mycotoxins and acute unintentional pesticide poisoning are major concerns.

Objective

This Initiative aims to protect agriculture-based economies of low- and middle-income countries in Africa, Asia and Latin America from devastating crop pest incursions and disease outbreaks by developing, validating and deploying inclusive innovations, and by leveraging and building viable networks across an array of national, regional and global institutions.

Activities

This objective will be achieved by:

  • Bridging knowledge gaps and networks for plant health threat identification and characterization, focusing on strengthening the diagnostic and surveillance capacity of national plant protection organizations and national agricultural research and extension systems, and facilitating knowledge exchange on pests and diseases. 
  • Building capability of relevant national stakeholders for risk assessment, and data management and guiding preparedness for rapid response, focusing on controlling the introduction and spread of pests and diseases by developing and enhancing tools, standards and policies. 
  • Improving integrated pest and disease management, focusing on designing and deploying approaches against prioritized plant health threats in targeted crops and cropping systems. 
  • Designing and deploying tools and processes for protecting food chains from contamination, specifically, through innovations for reducing mycotoxin contamination to protect health, increase food/feed safety, enhance trade, diversify end-use and boost income. 
  • Promoting gender-equitable and socially inclusive scaling of plant health innovations to achieve impacts through multistakeholder partnerships, inter-disciplinary research, effective communications and capacity development.

Is uptake of rust-resistant wheat linked to gender equality?

Sieg Snapp presents research on agroecological approaches to maize farming in Malawi and Zimbabwe at Tropentag 2022. (Photo: Ramiro Ortega Landa/CIMMYT)

Farmers, development practitioners and scientists gathered at Tropentag 2022 between September 14-16 to answer a question that will affect all our futures: can agroecological farming feed the world?

Tropentag is an annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development, jointly organized by nine European universities and the Council for Tropical and Subtropical Agricultural Research (ATSAF e.V), in cooperation with the GIZ Fund International Agricultural Research (FIA).

This year’s event explored the potential of agroecology to contribute to improved nutrition, enhanced natural resource management and farm incomes.

Sieg Snapp, Director of the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) presented on agroecology approaches to enhance learning in a changing world based on experiences with maize-based cropping systems in southern Africa. Snapp suggested that accelerated learning and adaptative capacity are key to the local generation of suitable solutions to agricultural problems, and proposed agroecology as a foundational approach that emphasizes understanding principles, harnessing biological processes, and enhancing local capacity.

Snapp shared how an agroecology living laboratory in Malawi has supported farmer agency around soil health, crop diversification and sustainable intensification since 2013, while living labs are being established in “food territories” in Zimbabwe to support innovation and strategies for evaluating the benefits of farm-scale agroecology approaches. She also explored solutions for pest management, inclusive financing modalities and collaborative innovation generation between farmers and researchers.

Gender and disease-resistant varieties

Michael Euler, Agricultural Resource Economist at CIMMYT, presented in the conference session on technology adoption and dissemination for smallholder farms, which included contributions on the adoption and impact of improved forage production, use of biogas facilities, agroecological management practices, improved wheat seeds, and access to and use genetic diversity in gene banks.

Based on data from CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project in Ethiopia, Euler presented a study on how intra-household decision-making dynamics influence the adoption of rust-resistant wheat varieties.

By using questionnaires that were addressed separately to male and female spouses in the household, researchers obtained insights on perceived individual roles in decision-making and agreements. The study found that an increase in the role of the female spouse in household farming decisions is positively associated with the uptake of rust-resistant varieties.

Additional sessions from the event focused on crops and cropping systems, animal production systems, food security and nutrition, agroecology, and food processing and quality.

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

Weather data and crop disease simulations can power predictions of wheat blast outbreaks, new study shows

Cutting-edge models for crops and crop diseases, boosted by high-resolution climate datasets, could propel the development of early warning systems for wheat blast in Asia, helping to safeguard farmers’ grain supplies and livelihoods from this deadly and mysterious crop disease, according to a recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT).

Originally from the Americas, wheat blast shocked farmers and experts in 2016 by striking 15,000 hectares of Bangladesh wheat fields, laying waste to a third of the crops. The complex interactions of wheat and the fungus, Magnaporthe oryzae pathotype Triticum (MoT), which causes blast, are not fully understood. Few current wheat varieties carry genetic resistance to it and fungicides only partly control it. Warm temperatures and high humidity favor MoT spore production and spores can fly far on winds and high-altitude currents.

Mean potential wheat blast disease infections (NPI) across Asia, based on disease and crop infection model simulations using air temperature and humidity data from 1980-2019. Black dots represent wheat growing areas with presumably unsuitable climates for wheat blast. The x and y axes indicate longitude and latitude.

“Using a wheat blast infection model with data for Asia air temperatures and humidity during 1980-2019, we found high potential for blast on wheat crops in Bangladesh, Myanmar, and areas of India, whereas the cooler and drier weather in countries such as Afghanistan and Pakistan appear to render their wheat crops as unlikely for MoT establishment,” said Carlo Montes, a CIMMYT agricultural climatologist and first author of the paper, published in the International Journal of Biometeorology. “Our findings and approach are directly relevant for work to strengthen monitoring and forecasting tools for wheat blast and other crop diseases, as well as building farmers’ and agronomists’ disease control capacity.”

Montes emphasized the urgency of those efforts, noting that some 13 million hectares in South Asia are sown to wheat in rotation with rice and nearly all the region’s wheat varieties are susceptible to wheat blast.

Read the full study: Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: Results from a continental‑scale modeling approach

Cover photo: Researchers take part in a wheat blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

Drought-tolerant maize and use of forecasting in agriculture praised by the Bill & Melinda Gates Foundation

The work of maize and wheat scientists at CGIAR and the International Maize and Wheat Improvement Center (CIMMYT) has been featured in the latest Goalkeepers report from the Bill & Melinda Gates Foundation, which launches with the Global Goals Awards on September 20 and an open-to-all live-streamed event on September 21. 

In analysis of why the Ukraine crisis is heavily impacting Africa, the report’s introduction from Bill Gates delves into reasons behind reliance on crop imports. Most farmers in Africa are smallholders with small plots of land and have limited capacity to use fertilizers or have access to irrigation. This means that any shock to the food system, such as the disruption to the global supply chain caused by the Ukraine conflict, hugely impacts the yield levels, threatening food and nutritional security.

Conflict is not the only risk to food systems in Africa. Climate change is the most prominent challenge that the continent’s smallholder farmers continue to face.

Developed through support from the Bill & Melinda Gates Foundation, DroughtTego, a CIMMYT-derived hybrid maize with increased resistance to hotter, drier climates, produces an average of 66% more grain per acre in Kenya. Scaled through public-private partnerships, DroughtTego seeds can increase farmer income by providing more than enough to feed a family of six for an entire year, enabling them to invest the additional money in sending their children to school or building new homes.

CIMMYT and CGIAR scientists have also been using predictive modeling to speed up plant breeding and develop new varieties that can perform well even in drought stress-prone environments of Africa. Artificial intelligence helps in processing the genomic information of crops alongside the environmental data, such as soil samples and satellite imagery. The results create a vision of what farms will need to look like in the future, enabling scientists to determine which type of crop varieties can better succeed in specific locations.

Predictive epidemiological modeling can highlight where plant diseases, such as wheat rust, may possibly spread. An early warning system, developed by a partnership between CIMMYT, the University of Cambridge, the UK Met Office, the Ethiopian Agricultural Research Institute (EIAR), the Agricultural Transformation Institute (ATI) and the Ethiopian Ministry of Agriculture, successfully alerted farmers in Ethiopia to an outbreak of the disease so that they could take preventive measures. The resulting outcome was the country’s largest wheat harvest ever recorded, instead of a devastating rust epidemic.

A LinkedIn post from Bill Gates also emphasized CIMMYT’s research, asking which crop accounts for around 30% of calorie intake for people in sub-Saharan Africa — the answer being “maize”.

Inclusion in this report highlights the global impact of CIMMYT’s work on farmers and world food systems, which is only possible through successful partnerships with organizations like the Bill & Melinda Gates Foundation.

Cover photo: A farmer in Zaka District, Zimbabwe, experiences a drought that could affect crop yields. (Photo: Johnson Siamachira/CIMMYT) 

Greenhouse upgrades at BWMRI for wheat blast research

Md. Sayedul Islam inaugurated the greenhouse complex along with Golam Faruq and Md. Benojir Alam. (Credit: Timothy J. Krupnik/CIMMYT)

A new greenhouse complex, built with financial support from the International Maize and Wheat Improvement Center (CIMMYT), at the Bangladesh Wheat and Maize Research Institute (BWMRI) was inaugurated on 13 August 2022. The greenhouse was built at BWMRI’s headquarters in Dinajpur, Bangladesh.

This complex has a room for generator, a sample preparation room and space for a small laboratory. These upgrades will add new momentum for greenhouse activities and BWMRI and CIMMYT scientists designed the facility to accommodate wheat scientists from Bangladesh and other countries.

The BWMRI has been working to combat wheat blast disease since 2016, with financial and technical support from CIMMYT and other investors. CIMMYT has also assisted the Government of Bangladesh in developing an early warning system for wheat blast.

Because of the challenging phenology of synthetic wheat and introductions from winter and facultative wheat zones, field condition evaluation of these germplasm is difficult and the greenhouse will help ease this hurdle. Additionally, several pathological experiments investigating the biology of wheat blast will now be able to be performed in the new greenhouse facility.

Supplementary activities at the greenhouse include disease screening and research into unlocking the genetics of host resistance. The installation of a diesel generator will keep the greenhouse running in case of power outages.

Visitors to the newly constructed greenhouse at the Bangladesh Wheat and Maize Research Institute. (Credit: Rezaul Kabir/BWMRI)

Md. Sayedul Islam, Secretary of the Ministry of Agriculture, inaugurated the greenhouse complex. Additional attendees at the opening included Shaikh Mohammad Bokhtiar, Executive Chairman of the Bangladesh Agricultural Research Council (BARC), Golam Faruq, Director General of BWMRI, Mirza Mofazzal Islam, Director General of the Bangladesh Institute of Nuclear Agriculture (BINA), Debasish Sarker, Director General of the Bangladesh Agricultural Research Institute (BARI), Md. Benojir Alam, Director General of the Department of Agricultural Extension (DAE), and Md. Abdul Wadud, Executive Director and Additional Secretary at the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN). Timothy J. Krupnik, country representative of CIMMYT in Bangladesh, was also present.

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

Managing Wheat Blast in Bangladesh

The Managing Wheat Blast in Bangladesh: Identification and Introgression of Wheat Blast Resistance for Rapid Varietal Development and Dissemination project aims to characterize novel sources of wheat blast resistance, identification, and molecular mapping of resistance loci/gene(s) and their introgression into varietal development pipelines for rapid dissemination of resistant varieties in Bangladesh.

Objectives

  • Validate the effects of genes Rmg1, Rmg8 and RmgGR119 in field experiments
  • Identify novel wheat blast resistant sources and generating the corresponding genetic materials for investigating the resistance Quantitative Trait Loci (QTL)/genes
  • Monitor the adoption of resistant varieties BARI Gom 33 and WMRI Gom 3 by women and men farmers to learn the drivers and obstacles that are involved in the process, to inform the design of a farmer-preferred product profile, and factors in impact pathway
  • Build the capacity of the Bangladesh Wheat and Maize Research Institute (BWMRI) to operate major infrastructure in Jashore and Dinajpur at the individual and institutional levels
  • Enhance collaboration between Bangladesh and other countries showing interest on wheat blast
  • Train young wheat researchers and breeders in Jashore Precision Phenotyping Platform (PPP)

Two approaches better than one: identifying spot blotch resistance in wheat varieties

Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.

Genomic selection

The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.

Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.

“This finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendous”, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.

The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.

Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Index selection

One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. “The latter, unfortunately, is often the case in South Asia”, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.

A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.

This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.

Read the full study:
Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height

Cover photo: Bipolaris sorokiniana, the fungus causing spot blotch in wheat. (Photo: Xinyao He and Pawan Singh/CIMMYT)

CIMMYT scientists identify novel genomic regions associated with spot blotch resistance

Spot blotch, caused by the fungus Biopolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions globally, affecting more than 25 million hectares and resulting in huge yield losses.

Chemical control approaches, including seed treatment and fungicides, have provided acceptable spot blotch control. However, their use is unaffordable to resource-poor farmers and poses a hazard to health and the environment. In addition, “abiotic stresses like heat and drought that are widely prevalent in South Asia compound the problem, making varietal genetic resistance the last resort of farmers to combat this disease,” according to Pawan Singh, Head of Wheat Pathology at the International Maize and Wheat Improvement Center (CIMMYT). Therefore, one of CIMMYT’s wheat research focus areas is developing wheat varieties that carry genetic resistance to the disease.

Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)
Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)

Previously, only four spot blotch resistance genes in bread wheat had been identified. Through a new study, CIMMYT scientists have identified novel genomic regions associated with spot blotch resistance using the genome-wide association mapping approach with 6,736 advanced breeding lines from different years (2013 to 2020), evaluated at CIMMYT’s spot blotch screening platform in Agua Fría, in Mexico’s state of Morelos.

The study’s results are positive and confirmed that:

  • Many advanced CIMMYT breeding lines have moderate to high resistance to spot blotch.
  • Resistance to the disease is conferred quantitatively by several minor genomic regions that act together in an additive manner to confer resistance.
  • There is an association of the 2NS translocation from the wild species Aegilops ventricosa with spot blotch resistance.
  • There is also an association of the spot blotch favorable alleles at the 2NS translocation, and two markers on the telomeric end of chromosome 3BS with grain yield evaluated in multiple environments, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance.

“Considering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease, identify novel sources of resistance by screening different germplasm, and selecting for genomic regions with minor effects using selection tools like genomic selection is essential,” explained Philomin Juliana, Molecular Breeder and Quantitative Geneticist at CIMMYT.

Read the full study:
Genome-Wide Association Mapping Indicates Quantitative Genetic Control of Spot Blotch Resistance in Bread Wheat and the Favorable Effects of Some Spot Blotch Loci on Grain Yield

Cover photo: Researchers evaluate wheat for spot blotch at CIMMYT’s experimental station in Agua Fría, Jiutepec, Morelos state, Mexico. (Photo: Xinyao He and Pawan Singh/CIMMYT)

MARPLE reaches South Asia

Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)
Workshop participants stand for a group photo. (Photo: Danny Ward/John Innes Centre)

On April 26–29, 2022, researchers from Nepal participated in a workshop on the use of MARPLE Diagnostics, the most advanced genetic testing methodology for strain-level diagnostics of the deadly wheat yellow rust fungus. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre trained 21 researchers from the Nepal Agricultural Research Council (NARC) and one from iDE. The workshop took place at NARC’s National Plant Pathology Research Centre in Khumaltar, outside the capital Kathmandu.

“The need for new diagnostic technologies like MARPLE and the critical timing of the workshop was highlighted by the severe yellow rust outbreak observed this season in the western areas of Nepal,” commented Dave Hodson, Senior Scientist at CIMMYT and project co-lead. “Having national capacity to detect the increasing threats from yellow rust using MARPLE will be an important tool to help combat wheat rusts in Nepal”.

The yellow rust fungus can cause grain yield losses of 30–80 % to wheat, Nepal’s third most important food crop.

Current diagnostic methods for wheat rust used in Nepal are slow, typically taking months between collecting the sample and final strain identification. They are also costly and reliant on sending samples overseas to highly specialized labs for analysis.

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is the first method to place strain-level genetic diagnostics capability directly into the hands of Nepali researchers, generating data in-country in near-real time, for immediate integration into early warning systems and disease management decisions.

“This is a fantastic opportunity to bring the latest innovations in plant disease diagnostics for the wheat rust pathogens to where they are needed most, in the hands of researchers in the field working tirelessly to combat these devastating diseases,” commented Diane Saunders, Group Leader at the John Innes Centre and project co-lead.

Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)
Diane Saunders (left), Group Leader at the John Innes Centre and project co-lead, observes workshop participants during the use of MARPLE. (Photo: Danny Ward/John Innes Centre)

Suraj Baidya senior scientist and chief of the National Plant Pathology Research Centre at NARC noted the worrying recent geographical expansion of yellow rust in Nepal. “Due to global warming, yellow rust has now moved into the plain and river basin area likely due to evolution of heat tolerant pathotypes. MARPLE Diagnostics now gives us the rapid diagnostics needed to help identify and manage these changes in the rust pathogen population diversity,” he said.

The highly innovative MARPLE Diagnostics approach uses the hand-held MinION nanopore sequencer, built by Oxford Nanopore, to generate genetic data to type strains of the yellow rust fungus directly from field samples.

Beyond MARPLE Diagnostics, Saunders noted that “the workshop has also opened up exciting new possibilities for researchers in Nepal, by providing local genome-sequencing capacity that is currently absent.”

MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab kit. It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmers’ fields. (Photo: Danny Ward/John Innes Centre)

What’s next for MARPLE Diagnostics in Nepal?

Following the successful workshop, Nepali researchers will be supported by CIMMYT and the John Innes Centre to undertake MARPLE Diagnostics on field samples collected by NARC. “The current plan includes monitoring of yellow rust on the summer wheat crop planted at high hill areas and then early sampling in the 2022/23 wheat season,” Hodson noted.

“We were struck by the enthusiasm and dedication of our colleagues to embrace the potential offered by MARPLE Diagnostics. Looking forward, we are excited to continue working with our Nepali colleagues towards our united goal of embedding this methodology in their national surveillance program for wheat rusts,” Saunders remarked.

MARPLE Diagnostics is supported by the Feed the Future Innovation Lab for Current and Emerging Threats to Crops, funded by the United States Agency for International Development (USAID), the UK Biotechnology and Biological Sciences Research Council (BBSRC) Innovator of the Year Award, the CGIAR Big Data Platform Inspire Challenge, the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth and Development Office.

This article was originally published on the JIC website.

MAIZE partners announce a new manual for effectively managing maize lethal necrosis (MLN) disease

For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.

When the disease was first reported in Kenya 2011 it spread panic among stakeholders. Scientists soon realized that almost all commercial maize varieties in Africa were susceptible. What followed was a superlative effort coordinated by the CGIAR Research Program on Maize (MAIZE) to mobilize “stakeholders, resources and knowledge” that was recently highlighted in an external review of program.

The publication of Maize Lethal Necrosis (MLN): A Technical Manual for Disease Management builds on the partnerships and expertise accrued over the course of this effort to provide a comprehensive “guide on best practices and protocols for sustainable management of the MLN.”

The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.

“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.

Adaptation, Demonstration and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat)

Wheat is the second most important staple crop in Ethiopia and a major pillar for food security. Based on fingerprinting analysis from 2018, about 87% of all wheat varieties grown in Ethiopia are CIMMYT-derived.

Domestic wheat production and productivity has nearly doubled over the past 15 years, due to improved farmer access to better varieties, agronomic practice recommendations and conducive marketing and supply chain policies. Nevertheless, due to population growth, higher incomes and accelerated urbanization, the demand for wheat in Ethiopia is increasing faster than productivity, with the demand for an additional 1.5 million tons of wheat per year satisfied through imports.

In 2018, the Government of Ethiopia set a policy to achieve wheat national self-sufficiency by 2023. Additional production would come primarily from the irrigated lowlands of the Awash valley, in the Afar and Oromia regions, where the current cotton mono-culture would be converted to a cotton-wheat rotation.

Preliminary yield trials conducted by Werer Agricultural Research Center and based on experiences in Sudan where climate conditions are similar, on-farm wheat grain yields of 4 tons per hectare can be achieved. The potential area for irrigated wheat-cotton is at present around 500,000 hectares, which, when fully implemented, has the potential to make Ethiopia self-sufficient for wheat production.

The challenges to develop the current lowland into productive farming systems are significant and include identifying high yielding, early maturing, heat-tolerant, rust-resistant wheat varieties with appropriate end-use quality.

Appropriate mechanization will be required to allow farmers to facilitate rapid preparation of fields for wheat sowing after harvesting cotton, as well as for mechanized harvesting. Tested packages of agronomic and land management practices will be needed to optimize the production systems while mitigating against soil salinization.

In coordination with the national research and extension systems, this project will evaluate and pilot wheat technologies and packages of practices to reach 1,000 smallholders and medium commercial farmers in the Awash valley, and enable them to use these technologies and practices on 10,000 hectares of irrigated land in the first year, following the conclusion of this project.

Objectives

  • Capacity of research and development practitioners working on irrigated lowland wheat developed.
  • Improved wheat elite lines evaluated, and pre-release seed multiplication initiated of variety candidates.
  • Tested package of agronomic practices are ready for scaling.
  • Demonstration and piloting of appropriate machineries (modern mechanization) for irrigated wheat production.