Skip to main content

Tag: pests

Mexico safeguards agriculture against invasive pests, diseases

In 2023, Mexico, with CIMMYT’s support, rejected 1,463 risky agricultural shipments, preventing 258 quarantine-worthy pests from entering the country. CIMMYT highlighted climate change’s role in pest spread, emphasizing Mexico’s commitment to safeguarding food production and ensuring global food security.

Read the full story.

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

Taking Aim Against the Dire Threat of Fall Army Worm

Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.

Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.

An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.

Read the original article: Taking Aim Against the Dire Threat of Fall Army Worm

A renewed CGIAR can better support South Asia to determine its food future

In this article, Temina Lalani-Shariff, Regional Director of South Asia at CGIAR, explores the evolution of CGIAR to meet changing global needs, such as the critical challenge of ending hunger, poverty and inequality across South Asia by 2030 while reaching the climate goals of each country. “A reinvented CGIAR can offer greater flexibility and leadership in three key areas to accelerate the region’s agricultural development and its multiplier benefits for livelihoods, health and climate action,” said Lalani-Shariff.

Highlighting work by the International Maize and Wheat Improvement Center (CIMMYT) to target the spread of crop pests and diseases in Kenya, Lalani-Shariff explains how this success can transfer to fighting fall armyworm (FAW) in South Asia. She cites CGIAR’s experience in scaling innovations and solutions in a variety of agroecologies and environments in partnership with national research institutes, as well as examples from the Seeds Without Borders Initiative and climate-smart villages.

Lalani-Shariff explains the purpose of CGIAR’s Regional Integrated Initiative Transforming Agrifood Systems in South Asia (TAFSSA), which is combining efforts in South Asia to achieve agrifood systems that are more productive and environmentally sound, and support equitable access to sustainable, nutritious diets. Collaboration between CGIAR research centers on Initiatives like this offers opportunities to build effective networks and partnerships for addressing future challenges.

Read the original article: A renewed CGIAR can better support South Asia to determine its food future

Young CIMMYT scientist receives 2022 Japan Award for global research to combat wheat aphids

“To meet expected wheat demand for 2050, production will need to double, which means increasing harvests nearly 70 kilograms per hectare each year,” said Leonardo Crespo-Herrera, CIMMYT wheat scientist and 2022 Japan Award recipient. “Breeding will be a major contributor, but better agronomic practices and policies will also be critical.” (Photo: CIMMYT)

International science to save wheat — a crucial food grain for 2.5 billion of the world’s poor — from a rising tide of insect pests known as aphids was lauded on November 22 with the 2022 Japan International Award for Young Agricultural Researchers (the Japan Award).

The 2022 Japan Award recognized novel breeding approaches to identify and select for genetic resistance in wheat to two species of aphids that cause wheat grain losses reaching 20% and whose rapid spread is propelled by rising temperatures.

Aphid resistant wheat can contribute to more sustainable food production, protecting farmers’ harvests and profits, while reducing the need to use costly and harmful insecticides, said Leonardo Crespo-Herrera, bread wheat improvement specialist for the International Maize and Wheat Improvement Center (CIMMYT) and one of the three 2022 Japan Award recipients.

“In addition to genetic yield potential, CIMMYT wheat breeding focuses on yield stability, disease resistance, and nutritional and end-use quality,” Crespo-Herrera explained. “Adding another target trait — aphid resistance — makes wheat breeding much more challenging.”

Efficient and effective field testing to confirm the genetics

Crespo-Herrera and his CIMMYT colleagues managed to identify and characterize genome segments responsible for aphid resistance in wheat and its near relatives, as well as running innovative field tests for a set of elite wheat breeding lines that were predicted to carry that resistance.

“With the aphid species called the greenbug, its feeding causes yellowing and necrotic spots on wheat, so we could actually measure and score wheat plants in plots that we deliberately infested with the aphids, keeping the resistant lines and throwing out the susceptible ones,” said Crespo-Herrera.

For the other species, the bird cherry-oat aphid, the only visible feeding damage is when the plants become stunted and die, so Crespo-Herrera and colleagues instead measured biomass loss and reduced growth in 1,000 artificially infested wheat lines, identifying a number of lines that had low scores for those measurements. Given that the lines tested came from a set that had already shown resistance to the greenbug, some of the successful lines feature resistance to both aphid species.

For the bird cherry-oat aphid, in two years of additional field tests, Crespo-Herrera and his team found that aphid populations were lower in plots sown with resistant wheat lines. “The experiments included remote sensing measurements that identified certain spectral signatures correlated with aphid populations; this may help us to assess resistance in future field trials.”

The researchers also found that a cutting-edge approach known as “genomic prediction” provided good estimations regarding promising, aphid-resistant wheat breeding lines.

Motivating young researchers in research and development

Established in 2007, the Japan Award is an annual prize organized by the Agriculture, Forestry and Fisheries Research Council (AFFRC) of Japan’s Ministry of Agriculture, Forestry and Fisheries (MAFF) and supported by the Japan International Research Center for Agricultural Sciences (JIRCAS). Awardees receive a $5,000 cash prize.

In an excerpt of an official note regarding Crespo-Herrera’s research, those agencies said  “…This study has been highly evaluated for developing (wheat) lines that have been distributed worldwide for use in wheat breeding, and the methods of this study have been applied to develop varieties with resistance mechanisms against various kinds of insects, not only aphids.”

Crespo-Herrera thanked JIRCAS and MAFF for the award. “I feel honored to have been selected.”

Kenya: Scientists team up to control fall army worms

The Government of Kenya is working with the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO) and the International Centre of Insect Physiology and Ecology (ICIPE) to develop eco-friendly pest management technology and contain the fall armyworm (FAW) pest.

Since the outbreak of FAW was reported in 2016, maize yields have dropped by between 30-50 percent, increasing the country’s challenges for food security.

Prasanna Boddupalli, Director of the Global Maize Program at CIMMYT, said, ″We want farmers to dissociate from application of synthetic toxic pesticides and chemicals but revert to use of combined approaches like use of resistant varieties, bio-pesticides and related biological control methods that are environmentally friendly.”

Preliminary assessment of the viability of naturally tolerant maize varieties from Mexico suggests that at least two or three resistant varieties may be approved after certification from the regulator.

Read the original article: Kenya: Scientists team up to control fall army worms

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Refresher webinar on fall armyworm management in South Asia

Banner for the refresher webinar on fall armyworm management in South Asia. (Photo: CIMMYT)

The fall armyworm is a destructive polyphagous pest that feeds on more than 300 crop species, with a particular appetite for maize. The pest was first reported in Asia in 2018 and has been spreading in the region since then, especially in maize-producing countries of South Asia.

Several campaigns on identifying and managing fall armyworm have been conducted in South Asia, yet the challenge to control the pest remains. The damage caused by fall armyworm to farmers’ fields was reported widely during the 2022 spring maize season in Pakistan and Nepal’s Terai region. Many maize farmers complained about the current economic downturn, price hike of agricultural commodities and the unavailability of safe pesticides to reduce crop losses.

On 21 July 2022, the International Maize and Wheat Improvement Center (CIMMYT) initiated a refresher webinar to share the latest scientific advances and best practices for identifying and managing fall armyworm in South Asia. The platform extended an opportunity for the participants to understand and learn about effective integrated pest management (IPM) approaches being practiced in the region. It also addressed the importance of enabling policies that are crucial to foster innovations to reduce crop yield loss and save the environment from hazardous effects of toxic pesticides.

The Nepal Seed and Fertilizer Project (NSAF) team, supported by the United States Agency for International Development (USAID) and implemented by CIMMYT, organized the virtual event in collaboration with Nepal’s Plant Quarantine and Pesticide Management Center, the Nepal Agricultural Research Council, Nepal’s National Maize Research Program, the Maize and Millet Research Institute in Pakistan, the University of Agriculture Faisalabad and CGIAR’s Plant Health Initiative.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development and Jason Seuc, director of the Economic Growth Office at USAID Nepal, delivered their opening remarks during the inaugural session. The Secretary emphasized the use of safer methods, including but not limited to mass rearing and releasing of natural enemies of fall armyworm and the deployment of fall armyworm tolerant maize varieties.

“USAID will continue working with partners to advocate and promote IPM practices till the pest becomes of non-economic importance,” said Seuc.

BM Prasanna, director of CIMMYT’s Global Maize Program and OneCGIAR Plant Health Initiative lead emphasized the importance of IPM practices to manage the pest. Prasanna discussed the global efforts to control the pest and shared the progress of fall armyworm tolerant maize seeds which are being released and deployed by CIMMYT partners to help resource poor farmers, especially in Africa.

AbduRahman Beshir, NSAF’s seed systems lead, emphasized the importance of the event and acknowledged the participation of approximately 525 attendees from public and private research institutions, academicians, civil society, private sector, policy decision-makers, CGIAR centers and USAID Nepal. The webinar gathered attendees from 15 countries, including Nepal, India, Bangladesh, Pakistan, Thailand, Myanmar, Sri Lanka and China.

Experts from South Asia presented on a range of topics including the status of fall armyworm and its management in Nepal, Pakistan, Bangladesh and the Pacific Region, IPM practices and experience of using safe pesticides, breeding for native genetic resistance to fall armyworm, and biological control and push-pull strategies. The experts emphasized on the need for collective efforts to strengthen national and international coordination, favorable policies, deployment of fall armyworm tolerant maize varieties, and best response interventions to help farmers battle the fall armyworm and limit its spread.

Efforts to mitigate the impact of fall armyworm attacks are still ongoing. CIMMYT is continuously working to alert farmers and stakeholders on the IPM practices of fall armyworm in the region.

Partnerships crucial for protecting plant health

Prasanna Boddupalli presents at the International Plant Health Conference, September 2022. (Photo: International Plant Health Conference)

CGIAR research centers involved in the One CGIAR Plant Health Initiative joined forces at the International Plant Health Conference in London on September 21-23, 2022 to highlight the importance of global partnerships in effectively preventing and managing devastating pest and disease outbreaks in the Global South.

In an interactive side event on Plant Health Management in the Global South through Partnerships on September 21, the Plant Health Initiative team presented on and discussed: global diagnostic and surveillance systems against plant pests and diseases; risk assessment and preparedness for proactive response; integrated pest and disease management; mycotoxin mitigation strategy; and gender and social inclusion.

The CGIAR Plant Health Initiative, launched in January 2022, aims to protect agriculture-based economies of low and middle-income countries in Africa, Asia and Latin America from pest and disease outbreaks in major crops by leveraging and building viable networks across an array of national, regional, and international institutions.

Building on a track record of more than 50 years of impactful research, the Plant Health Initiative aims to develop and deploy solutions through partnerships, and to achieve impacts that contribute towards several Sustainable Development Goals (SDGs).

Healthy crops for a healthy planet

Showing the strength of partnerships in action, researchers from the International Maize and Wheat Improvement Center (CIMMYT), Alliance Bioversity-CIAT (ABC), the International Institute of Tropical Agriculture (IITA), the International Potato Center (CIP), and the International Food Policy Research Institute (IFPRI) highlighted the Initiative’s activities and sought feedback from the plant health experts participating in the session.

Martin Kropff, CGIAR Science Director of Resilient Agrifood Systems, welcomed the participants to the session. Prasanna Boddupalli, CGIAR Plant Health Initiative Lead & Director of CIMMYT’s Global Maize Program, introduced the Initiative and its scope, emphasizing the inclusive partnerships. This was followed by presentations from Monica Carvajal (ABC), Lava Kumar (IITA), Alejandro Ortega-Beltran (IITA), Nozomi Kawarazuka (CIP), and Yanyan Liu (IFPRI).

Time was dedicated to engaging participants through Mentimeter polling on specific questions related to plant health management. Participants also shared their views on plant health research coordination, capacity strengthening, and knowledge exchange between the Global North and Global South, with a focus on improving food security and livelihoods of smallholders.

The event was successful not only in generating greater understanding of the Initiative amongst the participants, but also in developing significant interest from the participants to contribute to the Initiative’s goals with collective actions, all for the benefit of smallholders in the low- and middle-income countries of Africa, Asia, and Latin America.

Establishing wider networks for plant health

The Plant Health Initiative team, together with Kropff, also had a productive discussion on September 22 with Osama El-Lissy, International Plant Protection Convention (IPPC) Secretary, on opportunities for joint actions on plant health management in the Global South by IPPC and the CGIAR Plant Health Initiative, together with national partners.

Boddupalli also participated in a workshop on September 20 organized by Euphresco, a network of organizations that fund research projects and coordinate national research in the phytosanitary area, at the Department of Environment, Food & Rural Affairs (DEFRA) in the United Kingdom, on shaping global plant health research coordination. The workshop participants discussed and endorsed several actions for advancing global plant health research coordination.

Participants of a workshop by Euphresco endorsed actions to advance research coordination for global plant health. (Photo: Euphresco)

AGG-Maize project registers impressive progress

Participants of the AGG Maize Mid-Term Review and Planning Meeting at CIMMYT’s Maize Lethal Necrosis Screening Facility in Naivasha, Kenya. (Photo: Dokta Jonte Photography)

The Accelerating Genetic Gains in Maize and Wheat (AGG) Project, which is halfway through its implementation, continues to register impressive achievements. At a meeting focusing on the project’s Maize component, held in Nairobi during July 25-28, B.M. Prasanna, Director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT), highlighted the project’s major achievements in the opening session.

“One of the most important achievements of this project is increasing use of powerful tools and technologies to increase genetic gains in maize breeding pipelines in Africa,” said Prasanna. He noted that the AGG partners are showing keen interest in doubled haploid-based maize breeding. Prasanna pointed out that currently work is ongoing to produce third-generation tropicalized haploid inducers which, in combination with molecular markers, will support accelerated development of improved maize germplasm, a key objective of the AGG Project.

Prasanna also pointed out a significant increase in adoption of stress-tolerant maize in Africa – from less than half a million hectares cultivated under stress tolerant maize varieties in 2010, to 7.2 million hectares currently in 13 African countries, benefitting 44.5 million people. He explained that drought-tolerant maize is not only a productivity enhancing tool but also an innovation for improving the welfare of farmers. “It reduces the probability of crop failure by 30 percent and provides an extra income to farmers at a rate of approximately $240 USD per hectare, equivalent to about nine months of food for a family at no additional cost,” he said, adding that the essence of research is taking improved genetics to farmers and impacting their lives.

He noted there is remarkable progress in maize varietal turnover in sub-Saharan Africa, pointing out particularly efforts in Ethiopia, Uganda, Zambia and Zimbabwe, where old maize varieties, some dating as far back as 1988, have been replaced with newer climate-resilient varieties. Prasanna highlighted the need to engage with policy makers to put in place appropriate legislation that can accelerate replacement of old or obsolete varieties with improved genetics.

Prasanna stressed on the importance of rapid response to transboundary diseases and insect-pests. CIMMYT has established fall armyworm (FAW) screening facility at Kiboko, Kenya, and that more than 10,000 maize germplasm entries have been screened over the last three years. He applauded South Sudan for being the first country in sub-Saharan Africa to recently release three CIMMYT-developed FAW-tolerant hybrids. He said CIMMYT’s FAW-tolerant inbred lines have been shared with 92 institutions, both public and private, in 34 countries globally since 2018.

Kevin Pixley, CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, encouraged the participants to continuously reflect on making innovative contributions through the AGG project, to serve smallholder farmers and other stakeholders, and to offer sustainable solutions to  the food crisis that plagues the world.

B.M. Prasanna addresses partners at the KALRO Kiboko Research station in Kenya during an AGG field visit. (Photo: Dokta Jonte Photography)

Synergies across crops and teams

Pixley pointed out that though the meeting’s focus was on maize, the AGG Project has both maize and wheat components, and the potential for learning between the maize and wheat teams would benefit many, especially with the innovative strides in research from both teams.

Pixley referenced a recent meeting in Ethiopia with colleagues from the International Institute of Tropical Agriculture (IITA), the International Center for Tropical Agriculture (CIAT) and CIMMYT, where discussions explored collaboration among CGIAR centers and other stakeholders in strengthening work on cowpea, chickpea, beans, sorghum, millet and groundnut crops. He noted that maize, wheat and the aforementioned crops are all critical in achieving the mission of CGIAR.

“CIMMYT has been requested, since August of last year, by CGIAR to initiate research projects on sorghum, millet and groundnut because these crops are critical to the success of achieving the mission of CGIAR,” said Pixley. “So, we have recently initiated work on the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project together with partners. This is the first step towards OneCGIAR. It’s about synergies across crops and teams.”

Collaborative research commended

The meeting’s Chief Guest, Felister Makini, Deputy Director General – Crops of the Kenya Agricultural and Livestock Research Organisation (KALRO), commended the collaborative research undertaken by CIMMYT and other CGIAR partners. She noted that the partnerships continue to build on synergies that strengthen institutional financial, physical and human resources. She attested that collaboration between KALRO and CGIAR dates back to the 1980s, beginning with training in maize breeding, and then subsequent collaboration on developing climate-adaptive improved maize varieties and training of KALRO technicians in maize lethal necrosis (MLN) screening and management among other areas.

Maize and wheat are staple food sources in Kenya and sub-Saharan Africa and as the population increases, new methods and approaches must be found to accelerate development and deployment of improved maize and wheat varieties. She challenged the partners to intensify research and come out with high-yielding varieties that are resistant or tolerant to a wide range of biotic and abiotic stresses.

The Inaugural Session also featured remarks from the representatives of the AGG funders – Gary Atlin from the Bill & Melinda Gates Foundation, Jonna Davis from the Foundation for Food and Agriculture Research (FFAR), and John Derera from IITA, an AGG project partner.

A total of 116 participants, including representatives from National Agricultural Research Systems (NARS) in 13 AGG-Maize partner countries in Africa and seed companies, participated in the meeting. Participants also visited the KALRO-CIMMYT MLN Screening Facility at Naivasha, and KALRO-CIMMYT maize experiments at Kiboko, Kenya, including the work being done at the maize doubled haploid and FAW facilities.

Waging war against the fall armyworm

The fall armyworm is an invasive pest that eats more than 80 different crops, but has a particular preference for maize.

It is native to the Americas. It was first reported in Africa in 2016, and quickly spread throughout the continent. It reached India in 2018. It has since been reported in many other countries across Asia and the Pacific, and it reached Australia in 2020.

Millions of families in these regions are highly dependent on maize for their income and their livelihoods. If the fall armyworm keeps spreading, it will have disastrous consequences for them.

Scientists at CIMMYT have been working hard to find solutions to help farmers fight fall armyworm. Researchers have developed manuals for farmers, with guidelines on how to manage this pest. They have also formed an international research consortium, where experts from diverse institutions are sharing knowledge and best practices. Consortium members share updates on progress in finding new ways to tackle this global challenge. Scientists are now working on developing new maize varieties that are resistant to fall armyworm.

The fall armyworm can’t be eradicated — it is here to stay. CIMMYT and its partners worldwide will continue to work on this complex challenge, so millions of smallholder farmers can protect their crops and feed their families.

For more information on the fall armyworm and CIMMYT’s work, please visit staging.cimmyt.org/fallarmyworm.

How do we sustainably manage transboundary diseases and crop pests?

In our hyper-connected world, it should come as no surprise that recent years have shown a major uptick in the spread of transboundary pests and diseases. Integrated approaches have been effective in sustainably managing these border-jumping threats to farmers’ livelihoods and food security.

But a truly integrated approach accounts for not just the “cure,” but also how it can be sustainably incorporated into the agri-food system and social landscape.  For example, how do we know if the farmers who adopt disease- and pest-resistant seed will be able to derive better incomes? And how do we ensure that incentives are aligning with community norms and values to enable better adoption of integrated disease or pest management approaches?

Experts from across the CGIAR research system and its partners weighed in on this topic in the recent webinar on Integrated Pest and Disease Management, the third in the International Year of Plant Health Webinar series. Panelists shared valuable perspectives on the science of outbreaks, the social dimensions of crop pest and disease control, zoonotic disease risk, and how national, regional and global organizations can better coordinate their responses.

“The combination of science, global partnerships and knowledge helps all of us be better prepared to avoid the losses we’ve seen. . . Today, we’re going to see what this looks like in practice,” said Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at USAID, and moderator of the event.

Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)
Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)

Understanding the sources

Wheat and maize, the key crops studied at the International Maize and Wheat Improvement Center (CIMMYT) are no stranger to destructive  diseases or pests, with fall armyworm, wheat blast, or maize lethal necrosis topping the list. But other staple crops and their respective economies are suffering as well — from infestations of cassava brown streak, potato cyst nematode, taro blight, desert locusts, and fusarium wilt, just to name a few.

What are the reasons for the expansion of these outbreaks? B.M. Prasanna, director of CIMMYT’s Global Maize Program explained that there are several: “Infected seed or planting material, vector movement, strong migratory capacity, contaminated field equipment, improper crop production commercialization practices, and global air and sea traffic” are all major causes.

Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)
Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)

Preventing outbreaks is always better than scrambling to find a cure, but as Prasanna pointed out, this requires a holistic, multi-institutional strategy including surveillance and early warning, quarantine and phytosanitary regulations, and technological solutions. Better access to monitoring and surveillance data, and sensitive, easy-to-use and affordable diagnostic equipment are essential, as is the proactive deployment of resistant crop varieties.

Building awareness about integrated disease and pest management is just as important, he told the attendees. “We must remember that IPM is not just Integrated Pest Management, but also ‘Integrating People’s Mindsets.’ That remains a major challenge. We need to think beyond our narrow disciplines and institutions and really come together to put IPM solutions into farmers’ fields,” Prasanna said.

Not all outbreaks are the same, but lessons can be shared

Regina Eddy, coordinator for the Fall Armyworm Interagency Task Force at USAID, works closely with the complex issue of scaling when it comes to disaster response and the roles of national, regional and global organizations.

“We need to develop inclusive partner stakeholder platforms, not designed ‘for them,’ but ‘with them,’” said Eddy. “We cannot tackle food security issues alone. Full stop.”

Closing the gap between social and biophysical science

Nozomi Kawarazuka, social anthropologist at the International Potato Center (CIP) explained how researchers can improve the uptake of their new seed, innovation, or agronomic practice by involving social scientists to understand the gender norms and social landscape at the beginning of the project — in the initial assessment phase.

Kawarazuka highlighted how involving women experts and extension workers in sectors that are typically male-dominated helps reduce bias and works towards changing perceptions.

“In South Asia, women farmers hesitate to engage with male government extension workers,” she said. “Women experts and extension workers reduce this barrier. Gender and social diversity in the plant health sector is an entry point to develop innovations that are acceptable to women as well as men and helps scale up adoption of innovations in the community.

Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)
Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)

The world is watching agriculture and livestock

Zoonotic diseases, or zoonoses, are caused by pathogens spread between animals and people. Understanding zoonotic disease risk is an essential and timely topic in the discussion of integrated pest management. Poor livestock management practices, lack of general knowledge on diseases and unsafe yet common food handling practices put populations at risk.

“It’s especially timely, [to have this] zoonosis discussion in our COVID-plagued planet. The whole world is going to be looking to the food and agricultural sectors to do better,” Bertram said.

Annet Mulema, a gender and social scientist at the International Livestock Research Institute (ILRI) described results of a study showing how community conversations transformed gender relations and zoonotic disease risk in rural Ethiopia, where 80% of the population depends on agriculture and has direct contact with livestock.

“There were noticeable changes in attitude and practices among men and women regarding unsafe handling of animals and consumption of animal-source foods,” Mulema explained. “Community conversations give men and women involved a voice, it allows for a variety of ideas to be expressed and discussed, leads to community ownership of conclusions and action plans, and opens communication channels among local service providers and community members.”

Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)
Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)

Local to global, and global to local

Panelists agreed that improving capacity is the most powerful lever to advance approaches for integrated pest management and plant health, while connected and inclusive partnerships along the value chain make the whole system more resilient. The amount of scientific knowledge on ways to combat plant pests and diseases is increasing, and we have new tools to connect the global with the local and bring this knowledge to the community level.

The fourth and final CGIAR webinar on plant health is scheduled for March 31 and will focus on a the intersectional health of people, animals, plants and their environments in a “One Health” approach.

CGIAR webinar unleashes multidisciplinary approach to climate change and plant health

Evidence of enormity and immediacy of the challenges climate change poses for life on earth seems to pour in daily. But important gaps in our knowledge of all the downstream effects of this complex process remain. And the global response to these challenges is still far from adequate to the job ahead. Bold, multi-stakeholder, multidisciplinary action is urgent.

Mindful of this, the first event in Unleashing the Potential of Plant Health, a CGIAR webinar series in celebration of the UN-designated International Year of Plant Health, tackled the complicated nexus between climate change and plant health. The webinar, titled “Climate change and plant health: impact, implications and the role of research for adaptation and mitigation,” convened a diverse panel of researchers from across the CGIAR system and over 900 audience members and participants.

In addition to exploring the important challenges climate changes poses for plant health, the event explored the implications for the wellbeing and livelihoods of smallholder farming communities in low- and middle- income countries, paying special attention to the gender dimension of both the challenges and proposed solutions.

The event was co-organized by researchers at the International Rice Research Institute (IRRI) and the International Centre of Insect Physiology and Ecology (icipe).

The overall webinar series is hosted by the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Food Policy Research Institute (IFPRI), the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI). It is sponsored by the CGIAR Research Program on Agriculture for Nutrition (A4NH), the CGIAR Gender Platform and the CGIAR Research Program on Roots, Tubers and Bananas (RTB).

This is important

The stakes for the conversation were forcefully articulated by Shenggen Fan, chair professor and dean of the Academy of Global Food Economics and Policy at China Agricultural University and member of the CGIAR System Board. “Because of diseases and pests, we lose about 20-40% of our food crops. Can you imagine how much food we have lost? How many people we could feed with that lost food? Climate change will make this even worse,” Fan said.

Such impacts, of course, will not be evenly felt across geographic and social divides, notably gender. According to Jemimah Njuki, director for Africa at IFPRI, gender and household relationships shape how people respond to and are impacted by climate change. “One of the things we have evidence of is that in times of crises, women’s assets are often first to be sold and it takes even longer for them to be recovered,” Njuki said.

The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)
The desert locust has been around since biblical times. Climate change has contributed to its reemergence as a major pest. (Photo: David Nunn)

Shifting risks

When it comes to understanding the impact of climate change on plant health “one of our big challenges is to understand where risk will change,” said Karen Garrett, preeminent professor of plant pathology at the University of Florida,

This point was powerfully exemplified by Henri Tonnang, head of Data Management, Modelling and Geo-information Unit at icipe, who referred to the “unprecedented and massive outbreak” of desert locusts in 2020. The pest — known since biblical times — has reemerged as a major threat due to extreme weather events driven by sea level rise.

Researchers highlighted exciting advancements in mapping, modelling and big data techniques that can help us understand these evolving risks. At the same time, they stressed the need to strengthen cooperation not only among the research community, but among all the stakeholders for any given research agenda.

“The international research community needs to transform the way it does research,” said Ana María Loboguerrero, research director for Climate Action at the Alliance of Bioversity International and CIAT. “We’re working in a very fragmented way, sometime inefficiently and with duplications, sometimes acting under silos… It is difficult to deliver end-to-end sustainable and scalable solutions.”

Time for a new strategy

Such injunctions are timely and reaffirm CGIAR’s new strategic orientation. According to Sonja Vermeulen, the event moderator and the director of programs for the CGIAR System Management Organization, this strategy recognizes that stand-alone solutions — however brilliant — aren’t enough to make food systems resilient. We need whole system solutions that consider plants, animals, ecosystems and people together.

Echoing Fan’s earlier rallying cry, Vermeulen said, “This is important. Unless we do something fast and ambitious, we are not going to meet the Sustainable Development Goals.”

Register for the other webinars in the series

Cover photo: All farmers are susceptible to extreme weather events, and many are already feeling the effects of climate change. (Photo: N. Palmer/CIAT)

Announcing CIMMYT-derived fall armyworm tolerant elite maize hybrids for eastern and southern Africa

A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.
A collage of maize images accompanies a CIMMYT announcement about fall armyworm-tolerant maize hybrids for Africa.

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the successful development of three CIMMYT-derived fall armyworm-tolerant elite maize hybrids for eastern and southern Africa.

Fall armyworm (Spodoptera frugiperda) emerged as a serious threat to maize production in Africa in 2016 before spreading to Asia in 2018. Host plant resistance is an important component of integrated pest management (IPM). By leveraging tropical insect-resistant maize germplasm developed in Mexico, coupled with elite stress-resilient maize germplasm developed in sub-Saharan Africa, CIMMYT worked intensively over the past three years to identify and validate sources of native genetic resistance to fall armyworm in Africa. This included screening over 3,500 hybrids in 2018 and 2019.

Based on the results of on-station screenhouse trials for fall armyworm tolerance (under artificial infestation) conducted at Kiboko during 2017-2019, CIMMYT researchers evaluated in 2020 a set of eight test hybrids (four early-maturing and four intermediate-maturing) ) against four widely used commercial hybrids (two early- and two intermediate-maturing) as checks. The trials conducted were:

  • “No choice” trial under fall armyworm artificial infestation in screenhouses in Kiboko, Kenya: Each entry was planted in 40 rows in a separate screenhouse compartment (“no-choice”), and each plant infested with seven fall armyworm neonates 14 days after planting. Foliar damage was assessed 7, 14 and 21 days after infestation. Ear damage and percent ear damage were also recorded, in addition to grain yield and other agronomic parameters.
  • On-station trials in eastern Africa: The trials, including the eight test entries and four commercial checks, were conducted at six locations in Kenya during the maize cropping season in 2020. Entries were evaluated for their performance under managed drought stress, managed low nitrogen stress, and under artificial inoculation for Turcicum leaf blight (TLB) and Gray leaf spot (GLS) diseases. The three-way cross CIMMYT test hybrids and their parents were also characterized on-station for their seed producibility, including maximum flowering time difference between parents, and single-cross female parent seed yield.

The eight test entries with fall armyworm tolerance were also included in the regional on-station trials (comprising a total of 58 entries) evaluated at 28 locations in Kenya and Tanzania. The purpose of these regional trials was to collect data on agronomic performance.

  • On-farm trials in Kenya: The eight test hybrids and four commercial checks were evaluated under farmers’ management conditions (without any insecticide spray) at 16 on-farm sites in Kenya. Each entry was planted in 20-row plots, and data was recorded on natural fall armyworm infestation. Foliar damage was assessed 7, 14, 21, 28 and 35 days after germination together with insect incidence. Ear damage and percent ear damage were also recorded, besides grain yield and other agronomic parameters.
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).
Figure 1. Responses of CIMMYT-derived fall armyworm tolerant hybrids versus susceptible commercial checks at the vegetative stage (A & B) and at reproductive stage (C & D), respectively, after fall armyworm artificial infestation under “no choice” trial in screenhouses at Kiboko, Kenya. Note the difference in the harvest of a FAWTH hybrid (E) versus one of the commercial susceptible hybrid checks (F), besides the extent of damage caused by fall armyworm to the ears of the susceptible check (visible as blackish spots with no grains in the ears).

Summary of the data

  • “No-choice” trials in screenhouses at Kiboko: Significant differences were observed between the three selected fall armyworm tolerant hybrids (FAWTH2001-2003) and the commercial benchmark hybrid checks at the vegetative and grain filling stages and at harvest (Figure 1). In the fall armyworm artificial infestation trial, the three selected FAWTH hybrids yielded 7.05 to 8.59 t/ha while the commercial checks yielded 0.94-1.03 t/ha (Table 1).
  • On-station trials: No significant differences were observed between the three selected FAWTH hybrids and the commercial checks for grain yield and other important traits evaluated under optimum, managed drought stress, low nitrogen stress, TLB and GLS diseases (Table 1). The three FAWTH hybrids recorded excellent synchrony in terms of flowering between the female and male parents, and very good female parent seed yield (Table 1).
  • On-farm trials: There were significant differences in terms of foliar damage ratings between the FAWTH hybrids and the commercial checks. For ear damage, the differences were not statistically significant. The grain yields did not vary significantly under natural infestation in the on-farm trials because of the very low incidence of fall armyworm at most sites.

Native genetic resistance to fall armyworm in maize is partial, though quite significant in terms of yield protection under severe fall armyworm infestation, as compared to the susceptible commercial checks. Sustainable control of fall armyworm is best achieved when farmers use host plant resistance in combination with other components of integrated pest management, including good agronomic management, biological control and environmentally safer pesticides.

Next Steps

Together with national agricultural research system (NARS) partners, CIMMYT will nominate these FAWTH hybrids for varietal release in target countries in sub-Saharan Africa, especially in eastern and southern Africa.  After national performance trials (NPTs) and varietal release and registration, the hybrids will be sublicensed to seed company partners on a non-exclusive, royalty-free basis for accelerated seed scaling and deployment for the benefit of farming communities.

Acknowledgements

This work was implemented with funding support from the CGIAR Research Program on Maize (MAIZE), the U.S. Agency for International Development (USAID) Feed the Future initiative, and the Bill & Melinda Gates Foundation. MAIZE receives Windows 1&2 funding support from the World Bank and the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK and USA. The support extended by the Kenya Agriculture & Livestock Research Organization (KALRO) for implementation of this work through the fall armyworm mass rearing facility at Katumani and the maize research facilities managed by CIMMYT at Kiboko is gratefully acknowledged.

For further information, please contact:

B.M. Prasanna, Director of the Global Maize Program, CIMMYT and the CGIAR Research Program on Maize. b.m.prasanna@cgiar.org