Skip to main content

Tag: partnerships

East Africa partners welcome “new era” in wheat breeding collaboration

Representatives from ministries of agriculture and national agricultural research systems (NARS) in Ethiopia and Kenya recently joined funder representatives and technical experts from the International Maize and Wheat Improvement Center (CIMMYT) to renew a long-standing collaboration under the auspices of an ambitious new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG).

AGG is a 5-year project that brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops. Funded by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth, and Development Office (FCDO), the U.S. Agency for International Development (USAID) and the Foundation for Food and Agriculture Research (FFAR), AGG fuses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, highly nutritious, and targeted to farmers’ specific needs.

Ethiopia and Kenya: CIMMYT’s longstanding partners

The inception meeting for the wheat component of AGG in East Africa drew more than 70 stakeholders from Ethiopia and Kenya: the region’s primary target countries for wheat breeding. These two countries have long-standing relationships with CIMMYT that continue to deliver important impacts. Ninety percent of all wheat in Ethiopia is derived from CIMMYT varieties, and CIMMYT is a key supporter of the Ethiopian government’s goal for wheat self-sufficiency. Kenya has worked with CIMMYT for more than 40 years, and hosts the world’s biggest screening facilities for wheat rust diseases, with up to 40,000 accessions tested each year.

AGG builds on these successes and on the foundations built by previous projects, notably Delivering Genetic Gain in Wheat, led by Cornell University. The wheat component of AGG works in parallel with a USAID-funded “zinc mainstreaming” project, meeting the demand for increased nutritional quality as well as yield and resilience.

CIMMYT Director General Martin Kropff gave key remarks at the stakeholder gathering, which took place Thursday, August 20.

“Cooperation between CIMMYT and Ethiopia and Kenya – as in all the countries where CIMMYT works – has had tremendous impact,” he said. “We are proud, not for ourselves, but for the people we work for: the hundreds of millions of poor people and smallholders who rely on wheat and maize for their daily food and incomes.”

“AGG will raise this spirit of global cooperation to a new level.”

AGG Project Leader and CIMMYT Interim Deputy Director General for Research Kevin Pixley introduced the new project as a “unique and important” project that challenges every stakeholder to grow.

“What we would like to achieve is a step change for all of us, he told the stakeholders. “Each of us has the opportunity and the challenge to make a difference and that’s what we’re striving to do.”

Representatives from the agricultural research communities of both target countries emphasized the significance of their long collaboration with CIMMYT and their support for the project.

The Honorable Mandefro Nigussie, Ethiopia’s State Minister of Agriculture, confirmed the ongoing achievements of CIMMYT collaboration in his country.

“Our partnership with CIMMYT […] has yielded several improved varieties that increased productivity twofold over the last 20 years. He referred to Ethiopia’s campaign to achieve self-sufficiency in wheat. “AGG will make an immense contribution to this. The immediate and intermediate results can help achieve the country’s ambitious targets.”

A holistic and gender-informed approach

Deputy Director of Crops at the Kenya Agriculture and Livestock Organization (KALRO) Felister Makini, representing the KALRO Director General Eliud Kireger, noted the project’s strong emphasis on gender-intentional variety development and gender-informed analysis to ensure female farmers have access to varieties that meet their needs and the information to successfully adopt them.

“The goal of this new project will indeed address KALRO’s objective of enhancing food security and nutrition in Kenya,” she said. “This is because AGG not only brings together wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, which will be pivotal to our envisaged strategy to achieve socioeconomic change.”

Funding partners keen for AGG to address future threats

Before CIMMYT wheat experts took the virtual floor to describe specific workplans and opportunities for partner involvement, a number of funder representatives shared candid and inspiring thoughts.

“We are interested in delivery,” said Alan Tollervey of FCDO, formerly the UK Department for International Development. “That is why we support AGG, because it is about streamlining and modernizing the delivery of products […] directly relevant to both the immediate demands of poor farmers in developing countries and the global demand for food – but also addressing the future threats that we see coming.”

Hailu Wordofa, Agricultural Technology Specialist at the Bureau for Resilience and Food Security at USAID highlighted the importance of global partnerships for past success and reiterated the ambitious targets of the current project.

“We expect to see genetic gains increase and varieties […] replaced by farmer-preferred varieties,” he reminded stakeholders. “To make this happen, we expect CIMMYT’s global breeding program to use optimal breeding approaches and develop strong and truly collaborative relationships with NARS partners throughout the entire process.”

“Wheat continues to be a critical staple crop for global food security and supporting CIMMYT’s wheat breeding program remains a high priority for USAID,” he assured the attendees.

He also expressed hope that AGG would collaborate other projects working in parallel, including the Feed the Future Innovation Lab for Applied Wheat Genomics at Kansas State University, and the International Wheat Yield Partnership.

FFAR Scientific Program Director Jeff Rosichan called AGG a “really ambitious project that takes a comprehensive look at the research gaps and challenges and how to translate that research into farmers’ fields.”

Agriculture prevails even under COVID-19

The global COVID-19 pandemic was not ignored as one of several challenges during this time of change and transition.

“As we speak today, despite the challenge that we have with the COVID-19, I am proud to say that work on the nurseries is on-going. We are able to apply [our] skills and deliver world-class science,” said Godwin Macharia, center director at KALRO-Njoro.

“This COVID-19 pandemic has shown us that there is a great need globally to focus on food equity. I think this project allows that to happen,” said Jeff Rosichan from FFAR.

Transformations are also happening at the research organization and funding level. CIMMYT Director General Martin Kropff noted that “demand-driven solutions” for “affordable, efficient and healthy diets produced within planetary boundaries” are an important part of the strategy for One CGIAR, the ongoing transformation of CGIAR, the world’s largest public research network on food systems, of which CIMMYT is a member.

Hans Braun, director of CIMMYT’s Global Wheat Program reminded attendees that, despite these changes, one important fact remains. “The demand for wheat will continue to grow for many years to come, and we must meet it.”

Cover photo: Harvesting golden spikes of wheat in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Collaborating to accelerate genetic gains in maize and wheat

Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.

The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the world’s most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

Tackling current and emerging threats

Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR),  acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. “We are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,” he said.

AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.

Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYT’s global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, “from the development of product profiles to breeding, field trials and line advancement.”

Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. “The technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,” he said.

Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)

Symbiotic partnerships with great impact

“From the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,” said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. “We see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.”

Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYT’s maize and wheat programs and national programs in countries where CIMMYT works. “A wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that – not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,” he said.

Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. “I believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.”

He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, “because farmers are very risk averse and to change their habits requires a great deal of effort.”

On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.

“We expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,” he said.

Challenges and opportunities in a time of crisis

Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries – and the global demand for food generally – but also to address foreseen threats.

“We are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,” he said.

Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, “which will be crucial to our envisioned strategy to achieve socioeconomic change.”

Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.

In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.

Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

Breaking Ground: Erick Ortiz Hernández innovates regional solutions for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) operates 11 hubs — nodes of innovation — in Mexico, supported by a portfolio of projects including MasAgro. These hubs are perfectly defined by the agro-ecological conditions of the territory in which they are located, and their main aim is innovation management focused on sustainable and resilient agri-food systems.

The Bajío Hub — which includes the central states of Guanajuato, Michoacán and Querétaro — is directed by Erick Ortiz Hernández, who through integrated management, seeks to improve farmers’ livelihoods working hand in hand with a large network of stakeholders, promoting and validating sustainable and scalable technologies.

Ortiz Hernández joined CIMMYT in 2010 as a collaborator in the state of Michoacán, where he trained and certified technicians, and managed the first modules and platforms of the MasAgro project. That experience allowed him to become the manager of the Yucatan Peninsula Hub, in southeastern Mexico, in 2015. After three years of serving in the state of Guanajuato, he has recently taken a management position at the Bajío Hub.

Growing up in a rural community of less than a thousand people in the state of Puebla, Ortiz Hernández was familiar with agriculture from a young age. However, he considers that his decision to pursue a career in agronomy was unplanned. It was when he got into the agronomy-engineering program at the Chapingo Autonomous University — one of the most prestigious institutions in agricultural studies in Mexico — that he realized how drawn he was to plant production, choosing it as his specialty.

“As a Chapingo student, you know that CIMMYT is one of the most relevant research institutions not only in Mexico, but internationally,” says Ortiz Hernández. “To be honest, when I graduated, I would never have imagined that I could be part of this great team.”

Tailored sustainability

Currently, he coordinates and manages the operation of different projects at the Bajío Hub, working with both the public and private sectors. All of them operate under the same objectives: to monitor and address activities in the value chain to improve production systems, produce more with less through conservation agriculture and precision farming practices, and achieve a successful association with the market.

One of these projects is Cultivando un México Mejor [Cultivating a Better Mexico], in partnership with Heineken Mexico. Through CIMMYT’s research and the implementation of improved management practices, experts explore the requirements for the sustainable management of water used in the daily cultivation process.

These actions are of utmost importance, since every year the region’s water tables are affected by the excessive use of water. Around 80% of the consumption of this natural resource is used for farming activities.

Ortiz Hernández explains that the production of 2.2 pounds of wheat in the region can require 1,500 liters of water on average. However, he and his team have shown that water consumption can be reduced by 30-50% by implementing practices that save water without decreasing yields and, ideally, with low production costs.

Ortiz Hernández in a wheat field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco Alarcón/CIMMYT)
Ortiz Hernández in a barley field in Guanajuato where sustainable and climate-smart practices are implemented. (Photo: Francisco Alarcón/CIMMYT)

Linking for success

The Bajío Hub also manages MasAgro Guanajuato, a collaboration project between the government of state of Guanajuato and CIMMYT. Its aim is to support the technological improvement of conventional agri-food production, in order to implement actions of diagnosis, design, validation, demonstration and induction to the use of sustainable technological innovations.

One of the current situations faced by this program is that farmers in the area either broadcast or leave the fertilizer on the surface, resulting in an inefficient use. The technical team identified this problem and the possibility of mitigating it, by creating collaborative links with leading companies in the manufacture of agricultural machinery in the state, to design and produce a tool that meets this purpose.

“By working on a territorial innovation management approach, we get stakeholders to provide what is needed for farmers to access and adopt appropriate technology,” explains Ortiz Hernández. “What we expect from this type of project is not only to benefit the 500 or 1,000 farmers with whom we work directly, but to scale up and multiply those numbers generating an impact in the region through partnerships and alliances.”

Ortiz Hernández sees his management role as a strategic one, in which he has the flexibility to innovate by working with his team to generate efficient models, processes and tools. He can also propose and manage activities with different stakeholders in the region, so they can join in or align common objectives.

“There is no better moment than when farmers are harvesting and you see a smile on their faces due to the good results. When you know you contributed, even a little, you feel good and you come home happy,” says Ortiz Hernández.

One of his personal goals, and something he tries to incorporate into any project, is to create awareness of farmers’ major role in global food security. “We have to see farmers for what they really are: the people who ensure that food reaches our tables and who guarantee its quantity and quality. It is vital to recognize their daily efforts.”

New project to ramp up genetic gains in maize for better livelihoods

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID) and the U.S. Agency for International Development (USAID).

Read more here: http://www.therwandan.com/new-project-to-ramp-up-genetic-gains-in-maize-for-better-livelihoods/

New project to ramp up genetic gains in maize for better livelihoods

Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)
Drought tolerant maize route out of poverty for community-based seed producer, Kenya. (Photo: Anne Wangalachi/CIMMYT)

As plant pests and diseases continue to evolve, with stresses like drought and heat intensifying, a major priority for breeders and partners is developing better stress tolerant and higher yielding varieties faster and more cost effectively.

A new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG), seeks to achieve these results by speeding up genetic gains in maize and wheat breeding to deliver improved, stress resilient, nutritious seed to smallholders in 13 countries in sub-Saharan Africa (SSA) and four in South Asia. The 5-year AGG project is funded by the Bill & Melinda Gates Foundation, the UK Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).

The maize component of the project brings together diverse partners, including the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA) as co-implementers; national agricultural research systems (NARS); and small and medium-sized (SME) seed companies.

Ambitious targets

At the inception meeting of the maize component of AGG on July 10, 2020, project leaders, partners and funders lauded the ambitious targets that aim to bolster the resilience and better the livelihoods, food and nutritional security of millions of smallholder farmers in SSA. At least 150,000 metric tons of certified seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares by 2024 and benefiting 64 million people.

“We are developing climate resilient, nutritious, efficient, productive maize varieties for the farming community in sub-Saharan Africa. We will continue to work closely with our partners to develop product profiles, which are centered on the varieties that are really needed,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

AGG draws a solid foundation from previous projects such as Drought Tolerant Maize for Africa (DTMA), Improved Maize for Africa Soils (IMAS), Water Efficient Maize for Africa (WEMA) and Stress Tolerant Maize for Africa (STMA). Several high-yielding maize varieties that tolerate and/or resist diseases such as maize lethal necrosis (MLN), gray leaf spot (GLS), northern corn leaf blight, maize streak virus (MSV), turcicum leaf blight (TLB) and are drought-tolerant (DT), were developed and released to farmers across SSA. Varieties with nutritional traits such as nitrogen use efficiency (NUE) and quality protein maize (QPM) were also developed in the preceding initiatives.

Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)
Drought Tolerant Maize for Africa (DTMA) project monitoring and evaluation takes place in Tanzania. (Photo: Florence Sipalla/CIMMYT)

A matter of “life or death”

“When farmers are confronted by aggressive farming challenges, they want products that address those challenges at the earliest opportunity. Waiting for years could mean the difference between life and death,” remarked David Chikoye, the director of Southern Africa Hub at IITA.

A key focus of AGG is to incorporate gender-intentionality – special attention to the needs of women farmers and consumers – from the traits bred into new varieties, through the communication and technology deployment strategies.

“AGG provides an excellent opportunity to reorient our maize breeding, seed scaling and delivery strategies for greater impact on the livelihoods of smallholder farmers, especially women and the disadvantaged communities that are not well reached so far,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize. “Our vision is to accelerate genetic gains to 1.5-2 percent annually across different breeding pipelines in the 13 participating countries in SSA and to reach over 10 million households with improved varieties.”

AGG will strengthen the capacity of partners to achieve and sustain accelerated variety replacement — or turnover — and increase genetic gains in farmers’ fields.

Old vs new

Many improved varieties have been released in the past decade. However, the turnover of old and obsolete varieties with new and improved ones is not happening as quickly as anticipated.

“We are producing good products and getting them out, but not at the speed that farmers need. How do we make it possible and profitable for seed companies to quickly introduce new hybrids?” posed Gary Atlin, program officer at the Bill & Melinda Gates Foundation. “We need to move towards a breeding and seed system where we know that we can develop a new product in 4 or 5 years and then get it to the farmers much more quickly. This is a complex problem.”

To enhance AGG’s ability to identify new products that perform well for farmers under their challenging circumstances, on-farm testing will be scaled up significantly.

Guest of honor, Ethiopia’s Minister of State for Agriculture Mandefro Nigussie, lauded CIMMYT’s support in improving the resilience and productivity of maize and wheat in the country. He observed that this has helped improve maize productivity in Ethiopia from around 2 tons/ha to about 4 tons/ha over the past two decades.

“We consider such a huge accomplishment as a combination of efforts in germplasm development and breeding efforts of CIMMYT and the Ethiopian national programs. That partnership will flourish further in this new project,” he said.

New fall armyworm portal launched to help facilitate greater research collaboration

A fall armyworm eats a maize leaf. (Photo: CABI)

A new Fall Armyworm Research Collaboration Portal has been launched to facilitate global research collaboration to help fight the devastating crop pest fall armyworm.

Developed by CABI in partnership with leading researchers and institutions, the portal is a free-to-access platform that enables the sharing of research data, insights and outputs, and includes a range of key features such as posting research updates, identifying collaborators, and posting questions to the community.

The Research Collaboration Portal is the official platform for the Fall Armyworm R4D International Consortium. B. M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) and co-chair of the portal steering committee commented, “The fall armyworm research collaboration portal will serve as an effective platform for communicating on research actions of the Fall Armyworm R4D International Consortium, led by CIMMYT and IITA. We encourage all the members of the Fall Armyworm R4D International Consortium to actively contribute to the portal.”

Fall armyworm (Spodoptera frugiperda) is an invasive insect pest that feeds on more than 80 plant species, causing major damage to maize, rice, sorghum, sugarcane but also other vegetable crops and cotton.

The pest is native to tropical and subtropical regions of the Americas. However, in 2016 it was reported for the first time in Africa, where it is causing significant damage to maize crops and has great potential for further spread and economic damage.

Fall armyworm has since spread to the Near East and Asia and, according to the Food and Agriculture Organization of the United Nations (FAO), it will likely soon be present in southern Europe. The FAO says that once fall armyworm is a resident pest in a country, it is there to stay and farmers need significant support to manage it sustainably in their cropping systems through integrated pest management activities.

The Fall Armyworm Research Collaboration Portal, funded by the UK Department for International Development (DFID) and the Directorate-General for International Cooperation (DGIS) of the Netherlands under the Action on Invasives program, will also encourage researchers to post preprints of research articles to the new agriRxiv, which offers researchers and students access to preprints across agriculture and allied sciences.

The portal will help reduce the duplication of research into fall armyworm prevention and management, provide a route for the rapid sharing of results and highlight opportunities for collaboration – encouraging rapid, iterative experimentation and global teamwork to address the spread and impact of fall armyworm.

Visit the Fall Armyworm Research Collaboration Portal.

CABI’s Fall Armyworm Portal contains a selection of news, research, practical extension materials, videos and other resources on fall armyworm.

This story was first published by CABI: 
CABI launches new portal to help facilitate greater collaboration on fall armyworm research

The many colors of maize, the material of life

Tonahuixtla, a small town located in Mexico’s state of Puebla, had suffered extreme environmental degradation due to deforestation and erosion. Agricultural land was in poor condition and the town had stopped producing many of their heirloom maize varieties, a loss to both biodiversity in the region and local culture. Poverty had increased, forcing many to migrate to bigger cities or to the United States for work. Those who were left behind, most of them women, had few ways to generate income to support their families.

Today, the story of Tonahuixtla is different. The town actively participates in reforestation and erosion-prevention activities. Landrace maize production is increasing, preserving the town and region’s biodiversity and customs. The residents have job opportunities that allow them to stay in their town and not migrate, all while preserving local biodiversity and protecting the environment.

What caused this change?

Corn husks.

Long considered a waste product, corn husks have been given a new lease on life through the Totomoxtle project. Named for the traditional indigenous Nahuatl word for corn husk, Totomoxtle turns the husks of native maize, found in a variety of colors, into a beautiful and sustainable veneer for furniture and walls. Founded by Mexican graphic designer Fernando Laposse, Totomoxtle has given farmers an incentive to plant native maize again, preserving invaluable biodiversity for future generations.

When Denise Costich, head of the maize collection of the germplasm bank at the International Maize and Wheat Improvement Center (CIMMYT), heard about the Totomoxtle project she knew she wanted to help. Passionate about preserving native maize, she and her team identified 16 landrace varieties from the CIMMYT maize collection that would produce husks in interesting colors and could grow well in the altitude and climate conditions of Tonahuixtla. She invited Laposse and project members to come visit the genebank and learn about CIMMYT’s work, and provided them with seed of the landraces they had identified.

“This is what we normally do in our work at the germplasm bank, we give people seed,” Costich said. “But this turned into a closer collaboration.”

In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)
In the dry and mountainous terrain surrounding the village of Tonahuixtla, native maize preservation and reforestation efforts have been key in protecting the local environment and culture. (Photo: Denise Costich/CIMMYT)

Colorful collaboration

The maize germplasm bank team arranged for Totomoxtle project members to receive training in how to make controlled pollinations in the native maize varieties, at one of CIMMYT’s experimental stations.

“The technicians at CIMMYT’s Agua Fria station loved meeting the project members from Tonahuixtla, and immediately became passionate about the Totomoxtle project,” Costich said. “To this day, the technicians still save all of the colored corn husks from CIMMYT maize trials and send them to Tonahuixtla to provide them with additional material for their project.”

In the village of Tonahuixtla, project members — many of them women — work to iron the corn husks flat and glue them on to a stiff backing, then send them via courier to Laposse’s workshop in London where he uses them to create beautiful furniture and wall panels. This work allows the residents of Tonahuixtla to stay in their village and not be forced to migrate, all while preserving maize biodiversity and protecting the environment.

“Part of what this project is doing is also helping to keep families together — providing livelihoods so that people can stay in their communities, so that they don’t have to send all of their young people off to Mexico City or to the United States. To me, it’s really all connected,” Costich said.

Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
Native maize tassels against a bright blue sky in Tonahuixtla. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
In the town of Tonahuixtla, Puebla, Mexico, a native maize field sits below a tree-covered hillside. The town has been active in reforestation efforts to control erosion. (Photo: Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents and members of the Totomoxtle project. (Photo: Provided by Denise Costich/CIMMYT)
Denise Costich (front right, sitting) poses for a photo with Tonahuixtla residents, members of the Totomoxtle project, and CIMMYT Germplasm Bank staff. (Photo: Provided by Denise Costich/CIMMYT)

The value of sustainability

The project also shows the intersection between biodiversity conservation and protecting the local environment. The maize husks used for the project are a sustainable and biodegradable material, and any residue from the maize husks that are not used for the Totomoxtle project are either fed to animals in the dry season or used to make fertilizer, which is then returned to the maize fields, a completely circular cycle in which nothing is wasted.

“I think that many of the communities that we work in really do understand the value and the importance of biodiversity,” Costich said. “In Tonahuixtla, the people are trying to reforest the hillsides in their region. They understand the connection between having no vegetation on the hills and having the rain water just roll right off the hills and into the temporary streams, thus losing that critically important resource. Over the years, as a result of the work they have done there, they have seen with their own eyes the improvement in the environment, not only that the hills are now covered with vegetation, but also they see a lot less runoff and erosion. I think that’s a really important lesson for everyone. I come from an ecology background, so I am always very excited to get involved in projects where it’s not just about maize, it’s about everything. It’s also about people’s lives, and nutrition, and the connections between them.”

Preserving local maize biodiversity is not just important for Tonahuixtla — it is important to all of humanity. Native maize varieties have adapted for thousands of years in farmers’ fields across Mesoamerica, developing natural resistance to local plant pests and diseases, as well as climatic conditions such as heat or drought. These native maize seeds, passed down generation to generation, could hold the key to developing improved maize varieties that can resist emerging maize diseases or extreme weather events related to climate change. If this biodiversity is lost, it represents a loss to global food security as a whole.

CIMMYT works to protect many of these native maize varieties in their germplasm bank, which is home to over 28,000 different collections of maize. Kept in cold storage under optimum conditions in the CIMMYT seed vault, these seeds are preserved for future generations and are available to anyone who needs them, including farmers such as those in Tonahuixtla, who had lost much of their native maize diversity.

“The biodiversity of cultivated plants is basically the guarantee for the future,” Costich said. “This is our security backup. Seed security is food security.”

Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Maize cobs and veneer made out of corn husks are on display at an exhibition of the Totomoxtle project in Mexico City. (Photo: Denise Costich/CIMMYT)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)
Members of the CIMMYT Germplasm Bank team stand for a photo with a variety of landraces at an exhibition of the Totomoxtle project in Mexico City. (Photo: Emilio Diaz)

Cover photo: Denise Costich (center, pink hat) stands with members of the Totomoxtle project and CIMMYT Germplasm Bank staff members near Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

Collective efforts to fight fall armyworm in Nepal

Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the government’s Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.

“I wasn’t able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,” said Pavitra, a farmer from Sindhupalchowk district, Nepal.

The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production — estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.

This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.

Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.

The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.

Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)

Gearing up to fight the very hungry caterpillar

In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.

In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.

In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.

“Before, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,” said Urmila Banjgayu, a lead farmer who participated in one of the trainings. “I am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.”

Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.

Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)

Fall armyworm awareness campaign

Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.

CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.

Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.

“Seamless collaboration is required among the major stakeholders in the country to collectively fight the pest,” said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. “The potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.”

Breaking Ground: Aparna Das leads efficient and demand-driven maize research

Getting a good maize harvest, or just enough to feed the family, has always been a challenge for maize small farmers in developing countries. Faced with variable rainfall, heat waves, insect attacks or diseases, they rarely yield more than two tons of maize per hectare, and sometimes lose their crops altogether. Climate change, invasive pests like fall armyworm or new diseases like maize lethal necrosis could jeopardize even further the livelihoods of maize farmers and trigger severe food crises.

In this scenario, the lives and income of maize farmers rely on good seeds: seeds that are climate-resilient, pest- and disease-resistant, and that grow and yield well under local conditions, often with minimum inputs.

“That is where the maize improvement research at the International Maize and Wheat Improvement Center (CIMMYT) plays a crucial role in this challenge of food security. You need to develop the right location-specific varieties that farmers want, that partner seed companies are willing to produce, in a cost- and time-efficient way,” says Aparna Das. She joined CIMMYT’s Global Maize research program in August 2018 as Technical Program Manager.

“My role is to work  with and guide the Breeding and Seed Systems team, so that our research is more client- and product-oriented, efficient, and so that there is a better coordination and monitoring, aligned with the available resources and skills within CIMMYT, and with our numerous public and private partners,” she explains.

Value-for-money farmer impact

An important activity Das coordinated recently is a series of collaborative product profiling workshops with CIMMYT’s partners. Integrating the priorities of the national agricultural research systems and partner seed companies, this exercise reviewed and redefined what maize traits and attributes research should focus on in years to come. After this consultation, partners not only pick up CIMMYT germplasm based on trial data, but they can also verify if it fits with their own profile, to make sure that the traits they want are there. It makes breeding much more targeted and efficient.

“Product profiling has already influenced our research. For instance, all partners mentioned husk cover as a ‘must-have’ trait, because you have less insect attacks and grain spoilage,” Das explains. “Although it was considered a base trait, the breeders did not consider it systematically during their maize line selection and product advancement. Now it is integrated,” she notes.

“Our impact should not be limited to the number of varieties released or the number of papers published, but also how many varieties are picked up by partners, adopted by farmers and scaled up,” Das points out.

Breeders and seed systems specialists have worked together to estimate and track the costs of delivering products. Teams responsible for product profiles can now, through simulation, test different solutions and see what costs could be reduced or adjusted to develop the hybrid.

Das enjoys this type of collaboration. “Managing behavioral change is a key part of my role, being able to work with different teams and cultures, which makes my job so interesting,” she says.

Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)
Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)

An out-of-the-book thinker in a men’s world

Plant breeding is a male-dominated world but Das is used to fitting in as a minority. Originally from West Bengal, she grew up in Ludhiana, another Indian state and a different culture. She learned genetics and plant breeding at Punjab Agricultural University (PAU) in Ludhiana. Discovering the new field of molecular breeding, at its infancy twenty-five years ago, was an exciting challenge.

At PAU, Das pursued crop improvement research, first in wheat and potato, and later in rice genetics. She received an award from India’s Department of Science and Technology under the Young Scientist Program for her work on jumping genes in basmati rice, aimed at creating shorter and more productive basmati varieties while maintaining the basmati aroma.

Later she joined the International Rice Research Institute (IRRI) to work on the development of Golden Rice, a provitamin A-rich variety, through genetic engineering.

“Being a woman in plant breeding, especially as a breeder, is not that common. Women are not expected to do plant breeding fieldwork, away from the lab and offices. But I did not back off. I did my rice fieldwork in the paddy fields, at 40 degrees, all on my own. I believe that women bring a level of precision that is very important in breeding.”

Bridging public and private sectors

After ten years of public research, she moved to the private seed sector, to learn how seed companies integrate farmers’ needs to their research pipeline, and then channel this research to deliver to millions of farmers. “A big lesson from corporations is the value for money at each stage of their research, and that market research is instrumental to really understand farmers’ needs and guide breeding,” she notes.

After a decade in the private sector, Das was keen to move on and use her experience in the nonprofit sector. Then she joined CIMMYT. “This opportunity of technical program manager was timely. I knew the strengths of CGIAR, having highly educated scientists and the great potential outreach of the research. I knew where crop research could be improved, in converting basic research into demand-driven research.”

“Since my time at IRRI a decade ago, I realized things had moved on in the CGIAR system. Seed systems, product profiling and value chain research are now fully integrated in the Global Maize program. It is a crucial time to be here at CIMMYT. With the CGIAR reform, with the climate emergency, and emerging pests and diseases, we have to be even more inventive and reactive to continue to deliver greater impact,” she concludes.

New project strengthens capacity to fight fall armyworm in Bangladesh

Hundreds of agricultural professionals in Bangladesh were trained in the latest fall armyworm management strategies as part of a new project that will strengthen efforts against this threat to farmers’ income, food security, and health. The new project, Fighting Back Against Fall Armyworm, is supported by USAID and the University of Michigan.

As part of the project, last November over 450 representatives from government, nonprofits and the private sector participated in three-day training to learn how to identify, monitor and apply integrated pest management approaches.

Fall armyworm presents an important threat to farmers’ income, food security and livelihoods as it continues to spread across the country, in addition to health risks if toxic insecticides are indiscriminately used, said Tim Krupnik, senior scientist and agronomist at the International Maize and Wheat Improvement Center (CIMMYT). It is anticipated the course participants will pass on knowledge about the pest and appropriate control practices to around 30,000 farmers in their respective localities.

“Participants were selected for their ability to reliably extend the strategies that can be sustainably implemented by maize farmers across the country,” explained Krupnik. “The immersive training saw participants on their hands and knees learning how to scout, monitor and collect data on fall armyworm,” he said. “They were also trained in alternatives to toxic chemical pesticides, and how and when to make decisions on biological control with parasitoids, bio-pesticides, and low-toxicity chemical pesticide use.”

Following its ferocious spread across Africa from the Americas, fall armyworm first attacked farms in Bangladesh during the winter 2018-2019 season. Combined with highly apparent damage to leaves, its resilience to most chemical control methods has panicked farmers and led researchers to promote integrated pest management strategies.

In this context, the 22-month Fighting Back Against Fall Armyworm project will build the capacity of the public and private sector for effective fall armyworm mitigation.

The hungry caterpillar feeds on more than 80 plant species, but its preferred host is maize — a crop whose acreage is expanding faster than any other cereal in Bangladesh. The pest presents a peculiar challenge as it can disperse over 200 kilometers during its adult stage, laying thousands of eggs along its way.

Once settled on a plant, larvae burrow inside maize whorls or hide under leaves, where they are partially protected from pesticides. In a bid to limit fall armyworm damage, farmers’ indiscriminate application of highly toxic and inappropriate insecticides can encourage the pest to develop resistance, while also presenting important risks to beneficial insects, farmers, and the environment.

Reaching every corner of the country

Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)
Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)

As part of the project, CIMMYT researchers supported Bangladesh’s national Fall Armyworm Task Force to develop an online resource to map the spread of fall armyworm. Scientists are working with the Ministry of Agriculture to digitally collect real-time incidents of its spread to build evidence and gain further insight into the pest.

“Working with farmers and agricultural agencies to collect information on pest population and incidence will assist agricultural development planners, extension agents, and farmers to make informed management decisions,” said Krupnik, who is leading the project.

A key objective is to support national partners to develop educational strategies to facilitate sustainable pest control while also addressing institutional issues needed for efficient response.

“In particular, the Government of Bangladesh has been extremely responsive about the fall armyworm infestation and outbreak. It developed and distributed two fact sheets — the first of which was done before fall armyworm arrived — in addition to arranging workshops throughout the country. Initiatives have been taken for quick registration of microbial pesticides and seed treatments,” commented Syed Nurul Alam, Entomologist and Senior Consultant with CIMMYT.

“It is imperative that governmental extension agents are educated on sustainable ways to control the pest. In general, it is important to advise against the indiscriminate use of pesticides without first implementing alternative control measures, as this pest can build a resistance rendering many chemicals poorly effective,” Krupnik pointed out.

To this end, the project also consciously engages members of the private sector — including pesticide and seed companies as well as agricultural dealers — to ensure they are able to best advise farmers on the nature of the pest and suggest sustainable and long-term solutions. To date, the project has advised over 755 agricultural dealers operating in impacted areas of Bangladesh, with another 1,000 being trained in January 2020.

Project researchers are also working alongside the private sector to trial seed treatment and biologically-based methods of pest control. Biocontrol sees researchers identify, release, and manage natural predators and parasitoids to the fall armyworm, while targeted and biologically-based pesticides are significantly less of a health risk for farmers, while also being effective.

The 22-month project, funded by USAID, has 6 key objectives:

  • Develop educational materials to aid in reaching audiences with information to improve understanding and management of fall armyworm.
  • Assist the Department of Agricultural Extension in deploying awareness raising and training campaigns.
  • Prepare the private sector for appropriate fall armyworm response.
  • Standing task force supported.
  • Generate data and evidence to guide integrated fall armyworm management.

The Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.

To achieve synergies and scale, the project will also be supported in part by in-kind staff time and activities, through linkages to the third phase of the USAID-supported Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Centre (CIMMYT). CSISA and CIMMYT staff work very closely with Bangladesh’s Department of Agricultural Extension and the Bangladesh Maize and Wheat Research Institute (BWMRI) in addition to other partners under the Ministry of Agriculture.

New international partnership to identify and develop resistance to dangerous wheat disease

CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.
CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.

The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), recently announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight, or FHB.

The new facility, based near the JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.

“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.

“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”

Fusarium head blight is one of the most dangerous wheat diseases. It can cause up to 50% yield loss and produce severe mycotoxin contamination in food and feed, which affects farmers in the form of increased health care and veterinary care costs, and reduced livestock production.

Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.

In China, the world’s largest wheat producer, Fusarium head blight is the most important biotic constraint to production.

The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa — partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.

“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.

The new collaborative effort will target Fusarium head blight research but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.

Although the platform is new, the two institutions have a longstanding relationship. The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for Fusarium head blight resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to Fusarium head blight, and helped JAAS improve wheat rust resistance.

Currently, JAAS and CIMMYT are working on Fusarium head blight under a project funded by the National Natural Science Foundation of China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.

This research is supported by CGIAR Fund Donors.


INTERVIEW OPPORTUNITIES:

Xinyao He, Wheat Pathologist and Geneticist, Global Wheat Program, CIMMYT. x.he@cgiar.org, +52 55 5804 2004 ext. 2218

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat. m.macneil@cgiar.org, +52 55 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 55 5804 2004 ext. 1167.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT JAAS:

Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.

Harnessing research for climate-resilient wheat

This month, the world’s eyes are upon global leaders gathered in Madrid for COP25 to negotiate collective action to slow the devastating impacts of climate change.

According to the UN, the world is heading for a 3.2 degrees Celsius global temperature rise over pre-industrial levels, leading to a host of destructive climate impacts, including hotter and drier environments and more extreme weather events. Under these conditions, the world’s staple food crops are under threat.

A new video highlights the work of the Heat and Drought Wheat Improvement Network (HeDWIC), a global research and capacity development network under the Wheat Initiative, that harnesses the latest technologies in crop physiology, genetics and breeding to help create new climate-resilient wheat varieties. With the help of collaborators and supporters from around the world, HeDWIC takes wheat research from the theoretical to the practical by incorporating the best science into real-life breeding scenarios.

US Under Secretary of Agriculture ready for further cooperation with CIMMYT

The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)
The US delegation stands for a group photo next to the sculpture of Norman Borlaug at the global headquarters of CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The existence of the International Maize and Wheat Improvement Center (CIMMYT) marks one of the longest and strongest bilateral relationships between Mexico and the United States of America. Beginning with a pilot program sponsored by the Mexican government and the Rockefeller Foundation in the 1940s, it would officially become CIMMYT in 1966, with many examples of strong collaboration between both countries throughout over 50 years of history.

United States Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs Ted McKinney and dozens of other U.S representatives were officially introduced to this legacy when they visited CIMMYT on November 8, 2019.

The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (left), gives a tour of the recently remodelled Germplasm Bank museum to US Under Secretary McKinney (second from left). (Photo: Eleusis Llanderal/CIMMYT)

“This is a place I’ve wanted to visit for a very long time,” McKinney stated as he first laid eyes on the CIMMYT offices, “the historical CIMMYT.”

After photos and a quick tour of the museum, McKinney talked to CIMMYT Director General Martin Kropff over Skype. They bonded over their respect for Norman Borlaug and his legacy, especially as McKinney had known him and later his granddaughter Julie personally while the two men worked at Dow Agrosciences.

Kropff gave a presentation on CIMMYT’s impact on agriculture in the United States. McKinney was amazed at how much of CIMMYT’s wheat research benefits farmers in the United States, and expressed enthusiasm for further cooperation. “We’re ready, willing and able to help in any way,” he stated.

The director of the Integrated Development program and regional representative for the Americas, Bram Govaerts, presented on CIMMYT’s work with the United States. Mark Rhoda-Reis, Bureau Director of the Wisconsin Department of Agriculture, was pleased to learn that CIMMYT has been working with the University of Wisconsin-Madison on drought-tolerant maize.

The US Under Secretary of Agriculture for Trade and Foreign Agricultural Affairs, Ted McKinney (center), speaks during one of the sessions at CIMMYT. (Photo: Eleusis Llanderal/CIMMYT)

The group then split off into two groups for tours of the wheat fields and the CIMMYT germplasm bank.  The delegation participated in a series of roundtable discussions on various topics such as climate change, sustainable agri-food systems, and the delegates’ objectives and needs related to agriculture in their respective states. A frequent topic was the dilemma of a public with a growing fear of technology, though technology is indispensable in the growth of the science of agriculture. “Research and education is the future of agriculture,” said one of the representatives.

The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT's Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)
The director of the Genetic Resources program, Kevin Pixley (center), shows some of the genetic materials at CIMMYT’s Germplasm Bank to US Under Secretary McKinney (top-left). (Photo: Eleusis Llanderal/CIMMYT)

At the closing of their visit, the delegation was eager to spread their newfound knowledge about CIMMYT’s work and legacy. “I’m just so impressed with the work done here… the representation of all the countries in this facility is outstanding!,” said Chris Chin, Director of the Missouri Department of Agriculture.

“I was blown away. [CIMMYT] is so valuable to every country in the world,” stated Ignacio Marquez, a representative from the Washington State Department of Agriculture.

A step towards food security: German and Mexican researchers working jointly on the wheat of tomorrow

The International Maize and Wheat Improvement Center (CIMMYT) from Mexico and the German Julius Kühn Institute (JKI) signed a Declaration of Intent to intensify joint research on disease-resistant and stress-tolerant wheat. Representatives of both institutions met in Berlin at the International Conference on Improving Drought Stress Tolerance of Crops.

Read more here.