Skip to main content

Tag: partnerships

New CGIAR Initiative to catalyze resilient agrifood systems in eastern and southern Africa

Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)
Participants of the kick-off meeting for the Ukama Ustawi Initiative stand for a group photo in Nairobi, Kenya. (Photo: Mwihaki Mundia/ILRI)

Partners of CGIAR’s new regional integrated Initiative in eastern and southern Africa held a kick-off meeting in Nairobi on March 2–3, 2022. Eighty-five people participated, including national agricultural research extension programs, government representatives, private sector actors, funders and national and regional agricultural research and development organizations.

Entitled Ukama Ustawi, the Initiative aims to support climate-smart agriculture and livelihoods in 12 countries in eastern and southern Africa: Kenya, Zambia, Ethiopia and Zimbabwe (in Phase 1); Malawi, Rwanda, Tanzania and Uganda (in Phase 2); and Eswatini, Madagascar, Mozambique and South Africa (in Phase 3).

The Initiative aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.

Ukama Ustawi is a bilingual word derived from the Shona and Swahili languages. In Shona, Ukama refers to partnerships, and in Swahili, Ustawi means well-being and development. Together, they resemble the vision for the Initiative to achieve system-level development through innovative partnerships.

The meeting brought together partners to get to know each other, understand roles and responsibilities, identify priorities for 2022, and review the cross-cutting programmatic underpinnings of Ukama Ustawi — including gender and social inclusion, capacity strengthening and learning.

Baitsi Podisi, representing the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), said he is excited to be part of the Initiative: “CCARDESA, in its cooperation and coordination mandate, can learn a lot from CGIAR in restructuring to respond to the changing times.” Podisi supported the partnership with CGIAR in the Initiative’s embedded approach to policy dialogue, working with partners such as CCARDESA, the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN).

Similarly, FANRPAN’s Francis Hale emphasized the need not to re-invent the wheel but to work with partners who already have a convening power, to advance the policy agenda for diversification and sustainable intensification.

What were key issues discussed?

One of the features of Ukama Ustawi is the use of four interconnected platforms: a scaling hub, a policy hub, an accelerator program and a learning platform. These will provide spaces for exchange and learning with partners across all CGIAR Initiatives in the region. Partners conducted a series of ‘fishbowl’ interactions across work packages to review the planned activities and provide a clearer understanding of deliverables, identify synergies, potential overlaps, common partners and countries, and set timelines.

The Initiative will work with innovative multimedia platforms to change knowledge, attitudes and practices of millions of farmers in eastern and southern Africa. One key partner in this area is the Shamba Shape Up TV show and the iShamba digital platform. Sophie Rottman, Producer of Shamba Shape Up, said she is looking forward to the work with Initiative partners, that will help expand the show to Uganda and Zambia.

Jean Claude Rubyogo, representing the Pan-Africa Bean Research Alliance (PABRA) said: “It is time we move away from CGIAR-initiated to country-initiated development activities. This is what Ukama Ustawi is all about”.

Martin Kropff, Global Director of Resilient Agrifood Systems at CGIAR, explained CGIAR’s regional integrated initiatives are designed to respond to national/regional demands. “The initiatives will start by working with partners to assess the food and nutritional challenges in the region, and tackle them by bringing in innovative solutions.”

The event was concluded by agreeing on the implementation of the inception phase of the Ukama Ustawi Initiative, and follow-on discussions to finalize key activities in 2022.

Learn more about the Ukama Ustawi Initiative.

Materials from the meeting are available online:

This article was originally published on CGIAR.org.

CIMMYT to lead CGIAR varietal improvement and seed delivery project in Africa

Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)
Sorghum field in Kiboko, Kenya. (Photo: E Manyasa/ICRISAT)

As part of the One CGIAR reform, the Global Science Group on Genetic Innovation will implement a crop breeding and seed systems project for key crops including groundnut, sorghum and millet, across western and eastern African countries.

The International Maize and Wheat Improvement Center (CIMMYT), a leader in innovative partnerships, breeding and agronomic science for sustainable agri-food systems, will lead the project.

The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project aims to improve the health and livelihoods of millions by increasing the productivity, profitability, resilience and marketability of nutritious grain, legumes and cereal crops. The project focuses on strengthening networks to modernize crop breeding by CGIAR and national program partners, and public-private partnerships to strengthen seed systems. The project currently works in Burkina Faso, Ethiopia, Ghana, Mali, Nigeria, Uganda and Tanzania.

“Sorghum, groundnut and millets are essential staples of nutritious diets for millions of farmers and consumers and are crucial for climate-change-resilient farming systems,” explained CIMMYT Deputy Director General and Head of Genetic Resources, Kevin Pixley. “The oversight of this project by CGIAR’s Genetic Innovation Science Group will ensure continued support for the improvement of these crops in partnership with the national agricultural research and extension systems (NARES) that work with and for farmers,” he said.

“CIMMYT is delighted to lead this project on behalf of the Genetic Innovations Science Group and CGIAR,” confirms CIMMYT Director General, Bram Govaerts.

“We look forward to contributing to co-design and co-implement with partners and stakeholders the next generation of programs that leverage and build the strengths of NARES, CGIAR and others along with the research to farmers and consumers continuum to improve nutrition, livelihoods, and resilience to climate change through these crops and their cropping systems.”

CIMMYT deeply regrets the passing of leading agriculture and forestry research expert Barbara H. Wells

Barbara Wells (Photo: CGIAR)
Barbara Wells (Photo: CGIAR)

The International Maize and Wheat Improvement Center (CIMMYT) mourns the passing of our much respected and admired colleague, agriculture, forestry and global development leader, Barbara H. Wells.

Wells held the positions of Global Director of Genetic Innovation of CGIAR and Director General of the International Potato Center (CIP). She had over 30 years of experience in multiple areas of research and management of innovations in the agriculture and forestry sectors. Barbara also served at several senior executive positions in the private sector throughout her outstanding career.

“We are deeply saddened by the news of Barbara’s passing and send our heartfelt condolences to her family, friends and colleagues at our sister center CIP,” said CIMMYT Director General Bram Govaerts.

CIP’s projects and activities flourished under her leadership, opening new collaboration opportunities with local partners and fellow CGIAR centers, particularly with those based in the Americas.

In their partnership, CIMMYT and CIP have successfully collaborated in several areas of research and capacity building for the benefit of smallholder farmers throughout the region; including:

  • Building resilience through poverty- and food security-based safety nets, including links to productive programs;
  • Rural financial inclusion, including different types of savings, loans, and credit instruments, management of risk, and remittances;
  • New financial arrangements and governance structures in value chains;
  • Public-policy institutional mechanisms for dialogue on policymaking;
  • Successful R&D and extension projects funded by local governments at both national and state levels;
  • A regional approach to agricultural policies and role of sub-national governments and intermediate cities; and
  • Delivery and monitoring instruments, including use of ICT technology.

“We want our colleagues and friends throughout the world to know that we will honor Barbara’s legacy by redoubling our efforts for those who really mattered to her, the farmers,” Govaerts said.

2021 GAP Report endorses CIMMYT’s integrated agri-food systems methodology

The 2021 Global Agricultural Productivity (GAP) Report warns that farmers and food workers globally face the intimidating challenge of producing food sustainably in a degrading environment. The global economic slowdown and climate change are making the situation even more difficult.

This year’s report, titled Strengthening the Climate for Sustainable Agricultural Growth, argues that “accelerating productivity growth at all scales of production is imperative to meet the needs of consumers and address current and future threats to human and environmental well-being.”

The report, produced by Virginia Tech, was presented at the 2021 Borlaug Dialogue, part of the World Food Prize events.

The International Maize and Wheat Improvement Center’s (CIMMYT) public–private partnership model for the Integrated Agri-food Systems Initiative (IASI) contributes to one of six key strategies that accelerate productivity growth, according to the 2021 GAP Report.

“Our integrated methodology engages farmers in participatory research and innovation efforts, effectively improving small-scale systems,” said Bram Govaerts, director general of CIMMYT. “This results-backed strategy bridges yield gaps and builds resilience to the effects of climate change, with the main objective of giving access to enhanced nutrition and new market opportunities.”

The skillset and cumulative knowledge of small farmers worldwide shapes CIMMYT’s integrated development projects.

“The Integrated Agri-food Systems Initiative (IASI) is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant livelihood of supportive public and private investment,” concludes the GAP Report.

The report argues that technology itself does not boost productivity and resilience. Instead, “partnerships play an important role in enhancing human capital: a set of skills and knowledge by producers and others in the agricultural value chain are essential in a time of pandemics.”

World-class laboratories and research fields to the service of Mexico and the world

CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

High-level representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City on October 18, 2021, to learn about innovative research to promote sustainable production systems in Mexico and the world.

Carlos Slim Foundation and CNA representatives agreed that public and private sectors, civil society and international research organizations like CIMMYT must collaborate to address the challenges related to climate change, forced migration and rural insecurity.

“It is necessary to give more visibility to and make use of CIMMYT’s world-class laboratories and research fields, to enhance their impact on sustainable development and the 2030 agenda,” said Juan Cortina Gallardo, president of the CNA.

The tour included a visit to CIMMYT’s germplasm bank, where the world’s largest collections of maize and wheat biodiversity are conserved. Visitors also toured the laboratories, greenhouses and experimental fields where cutting-edge science is applied to improve yield potential, adaptability to climate change, resistance to pests and diseases, and nutritional and processing quality of maize and wheat.

Representatives of the Carlos Slim Foundation and Mexico's National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
Representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco AlarcĂłn/CIMMYT)

From Mexico to the world

“CIMMYT implements Crops for Mexico, a research and capacity building project building on the successes and lessons learned from MasAgro, where smallholder farmers increase their productivity to expand their market opportunities and can, for example, join the supply chain of large companies as providers and contribute to social development of Mexican farming,” Cortina Gallardo said.

CIMMYT carries out more than 150 integrated development projects related to maize and wheat systems in 50 countries. They are all supported by first-class research infrastructure in CIMMYT’s global headquarters, funded by the Carlos Slim Foundation.

“Our goal is to put CIMMYT’s laboratories, greenhouses and experimental fields at the service of farmers and both public and private sectors as needed,” said Bram Govaerts, director general of CIMMYT. “Accelerating the development of sustainable agricultural practices and more nutritious and resilient varieties contributes to transforming agricultural systems around the world, strengthening global food security and reducing the impact of agriculture on climate change.”

International Maize Improvement Consortium for Africa (IMIC-Africa)

Launched in May 2018, the International Maize Improvement Consortium for Africa (IMIC‐Africa) is a public-private partnership designed to strengthen maize breeding programs in Africa, and thereby improve African farmers’ access to high-quality, affordable, high-yielding and locally-adapted maize seed.

Any organization engaged in maize breeding for the African market is welcome to join the consortium, including national agricultural research institutions; small, medium and large maize seed companies; and international agricultural research organizations. Consortium members will have access to early-generation maize breeding material, an expansive hybrid evaluation network for robust evaluation of their products on various traits and across diverse agroecologies, training and capacity-development opportunities, and value-added research services offered at preferential rates.

The Consortium’s goal is to enhance the capacity of African maize breeding programs from public and private sectors to develop elite maize hybrids with client-preferred traits — including abiotic stress resilience, disease and insect pest resistance, and high yield potential — for the ultimate benefit of farming communities across Africa.

Objectives:

  • Providing members with access to CIMMYT’s early- and advanced-generation maize lines (breeding materials under development) to strengthen and diversify the germplasm used in their own breeding programs;
  • Allowing members to test their own pre-commercial maize hybrids in CIMMYT-led multi-location trials;
  • Improving members’ access to research services that improve the efficiency and effectiveness of their own breeding programs;
  • Facilitating participation by members’ staff in annual training courses.

International Maize Improvement Consortium for Asia (IMIC-Asia)

The International Maize Improvement Consortium for Asia (IMIC-Asia) is a public-private partnership formed by CIMMYT to develop and share improved maize varieties for targeted impacts in Asia.

Established in 2010, IMIC-Asia has developed and distributed thousands of improved inbred lines developed by CIMMYT to members for use in new inbred line development or in heterotic hybrid combinations of the partners. Molecular breeding is one of the key strategies used to enhance genetic gains and accelerate the pace of product development, helping researchers understand the genetics of complex traits, like heat stress and waterlogging tolerance.

IMIC-Asia’s activities also include training on maize breeding, phenotyping for abiotic stresses, statistical and genomic analysis data management imparted through this consortium, and evaluation of pre-release hybrid combinations of partners.

Consortium members also benefit from a strong collaborative testing network for identifying best-bet pre-release products, which now serves as a precursor for such products to be further evaluated at the national or state level as a part of the varietal release process.

International Maize Improvement Consortium for Latin America (IMIC-LatAm)

The International Maize Improvement Consortium for Latin America (IMIC-LatAm) promotes the sustainable development of the Latin American maize seed industry.

The Consortium is a partnership formed by CIMMYT and member institutions — including seed companies and national research programs — to achieve enhanced maize yields in Latin America.

IMIC-LatAm formalizes the sharing of maize lines under development with public and private maize breeding programs. It supports a vibrant germplasm testing network, offering opportunities for training and cross-learning among members. It also grants access to other special services offered by CIMMYT in Latin America, including maize quality analysis, doubled haploid development and molecular quality assurance/quality control.

The provision of early generation or advanced maize lines enhances the Consortium members’ capacity for germplasm development in their own breeding programs, including the collaborative establishment of multi-location testing of elite pre-commercial maize hybrids throughout Mexico and other countries in Latin America to identify products that can advance to commercialization and deployment.

Objectives:

  • Diversification of the germplasm base of members’ maize breeding programs through distribution of CIMMYT-derived lines-under-development
  • Strengthen members’ capacity to develop maize hybrid products through a participatory, multi-location hybrid evaluation network
  • Build the capacity of members’ maize breeding programs by providing training to their staff on prioritized technical areas related to maize breeding, seed production and marketing
  • Support members’ maize breeding programs by improving their access to value-added services provided by CIMMYT

CIMMYT becomes partner of choice in PepsiCo and Grupo Trimex’s sustainability strategy

Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, PĂ©njamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)
Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, PĂ©njamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)

A new partnership announced today between the International Maize and Wheat Improvement Center (CIMMYT), PepsiCo and Grupo Trimex will greatly contribute to scale out sustainable farming practices in the central Mexican states of Guanajuato and Michoacán, which together form the country’s second wheat producing region.

The project Agriba Sustentable — a shortened reference for Bajío Sustainable Agriculture — will promote the adoption of conservation agriculture-based sustainable intensification practices among local farmers who will have access to PepsiCo’s wheat grain supply chain via Grupo Trimex.

“A part of the wheat that we use in Mexico for our products comes from the BajĂ­o region,” said Luis Treviño, Director of Sustainability at PepsiCo Latin America. “However, agricultural production in the region has needs and areas of opportunity that we were able to identify thanks to the experience and deep knowledge that CIMMYT has developed over the years.”

Agriba Sustentable is the latest example of the new business models that CIMMYT is exploring as part of its integrated development approach to agri-food systems transformation, which seeks to engage multiple public, private and civil sector collaborators in cereals value chain development and enhancement efforts.

CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, PĂ©njamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)
CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, PĂ©njamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)

“The project’s specific goal is to improve the sustainability of the wheat production system in the Bajío region by enabling the adoption of technological innovations and sustainable production practices among at least 200 farmers in the Grupo Trimex supply chain during the first year of implementation, and to gradually scale out to reach many more farmers,” said Bram Govaerts, Director General of CIMMYT.

CIMMYT’s long-term field trials in Mexico have shown that conservation agriculture-based sustainable intensification practices raise wheat yields by up to 15% and cut greenhouse gas emissions by up to 40%.

“The farming practices that CIMMYT promotes reduce environmental impact,” said Mario Ruiz, Sourcing Manager of Grupo Trimex. “Conservation agriculture can cut CO2 emissions by up to 60% from reduced diesel consumption, lower fuel use by up to 70% and water consumption by 30%.”

According to PepsiCo Mexico, Agriba Sustentable is an important step for its global vision PepsiCo Positive (pep+), which seeks to offset its agricultural footprint by promoting sustainable farming on 2.8 million hectares globally. The plan also aims to improve the livelihoods of 250,000 people who are part of their global agricultural supply chain and to source sustainably 100% of the company’s key ingredients by 2030.


FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, PLEASE CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

CIMMYT scientists join 60th All India Wheat and Barley Research Workers’ Meet

Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)
Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)

The International Maize and Wheat Improvement Center’s (CIMMYT) legacy of work with the Indian Centre for Agricultural Research (ICAR) has once again produced more successful collaborations this year. This solid partnership resulted in the release of new varieties poised to bring new, superior yielding, disease-resistant, high-quality wheat varieties suitable for different production environments to Indian farms.

The National Variety Release Committee announced the release of nine new varieties at the 60th All India Wheat and Barley Research Workers’ Virtual Meet on August 23–24, 2021, hosted by the Indian Institute of Wheat and Barley Research (IIWBR) of ICAR. Of the nine new varieties identified, five were selected by national partners from CIMMYT international trials and nurseries.

At the event, ICAR-IIWBR director Gyanendra Pratap (GP) Singh highlighted the impressive growth trajectory of India’s wheat production, estimated at 109.52 million tons of wheat harvested in 2021, a figure which was 86.53 million tons in 2015 and less than 60 million tons in 1991. Singh highlighted that this success is dependent upon the deployment of superior wheat varieties, bridging yield and information gaps, strengthened seed value chain, supportive government policies and, of course, farmer support to adopt new varieties and technologies.

The CIMMYT-derived varieties announced at the meeting include DBW296, DBW327, DBW332, HUW296 and JKW261. A few days earlier, variety PBW869 was released by the Punjab Agricultural University for growing in Punjab State under conservation agriculture practices.

“An innovative and powerful feature of ICAR-CIMMYT collaboration has been the introduction of long-term (10-month) rotational involvement of Indian young scientists in CIMMYTs breeding program at Mexico as well as in wheat blast screening in Bolivia,” said Arun Joshi, CIMMYT Regional Representative for Asia and Managing Director, Borlaug Institute for South Asia (BISA). “In this way, the breeding program of CIMMYT is an excellent example of joint breeding program with national institutions.”

At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)
At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)

Beyond expectations

In addition to these important new wheat varieties, some CIMMYT-derived wheat varieties that were released in recent years have now been deemed suitable for regions beyond their initial region of cultivation, showing wide adaptation and yield stability.

Wheat variety DBW222, released in 2020 for the northwestern plain zone, has now been deemed suitable for cultivation in the northeastern plain zone. Similarly, DBW187, which was initially released for the northeastern plain zone, and then for northwestern plain zone as well for early sowing, is now also extended for sowing in the central zone, together representing 25 million hectares of the 31 million hectares of wheat grown in India.

“Farmers prefer these types of varieties that give them flexibility during sowing time, and have high, stable yields, and disease resistance,” GP Singh said at the meeting.

A major achievement discussed at this year’s event was that three of the new varieties — DBW187, DBW303 and DBW222 — achieved record-high demand in Breeders Seed Indent, with first, second and seventh ranks, respectively. This is a reflection and indirect measure of popularity and demand for a variety. IIWBR’s innovative strategy to implement pre-release seed multiplication and create demand for seeds from new varieties has led to a faster turnover of improved varieties.

According to Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at CIMMYT, the collaborators are “further expanding our partnership through the support from the Accelerating Genetic Gains in Maize and Wheat (AGG) and zinc-mainstreaming projects, to expand testing of larger sets of elite lines in targeted populations of environments of the four South Asian countries where various IIBWR-affiliated institutions shall expand testing in the 2021–22 crop season.” CIMMYT looks forward to continuing ongoing and new collaborations with the ICAR-IIWBR programs to deliver even faster genetic gain for yield and grain zinc levels in new varieties, he explained.

Speaking during the meeting Alison Bentley, Director of CIMMYT’s Global Wheat Program, highlighted the collaborative efforts underway as part of the AGG project to accelerate breeding progress. “Innovations and discoveries in breeding approaches are being rapidly made — with further investment needed — to quickly and equitably accumulate and deploy them to farmers,” she said.

New solutions for chopping fodder

It is a laborious and time-consuming process: chopping plant matter by hand to feed to livestock. In Cox’s Bazar district, in eastern Bangladesh, it is common practice. A mechanized fodder chopper can do the job more quickly and efficiently — yet this simple but effective machine has not seen much use in the region.

To address this, a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and aid organizations in the region is creating networks between farmers, agriculture service providers and the businesses that make and distribute the machines.

The Cox’s Bazar region is host to around 900,000 Rohingya refugees who were displaced from Myanmar. The influx of refugees has put a strain on resources in the region. This collaborative effort took place near the camps, in an effort to support capacity and economic development in the host communities nearby.

Though this collaboration has only been around for a few months, it has already seen early success, and received an award from the United States Agency for International Development (USAID). The award recognized the organizations’ “outstanding collaboration that contributed to increased and efficient livestock production through mechanization in the host communities impacted by the influx of Rohingya refugees.”

Mechanization and livestock collaboration

The project — funded by USAID — is a partnership between two existing efforts.

The first is Cereal Systems Initiative for South Asia – Mechanization Extension Activity (CSISA-MEA), which aims to boost the country’s private agricultural machinery industry while supporting local farmers. This initiative supports the mechanization of agriculture in Bangladesh, through increased capacity of the private sector to develop, manufacture and market innovative new technologies. CSISA-MEA is implemented by the International Maize and Wheat Improvement center (CIMMYT) in partnership with iDE and Georgia Institute of Technology.

The second is the Livestock Production for Improved Nutrition (LPIN) Activity, which works to improve nutrition and income generation among rural households in the region.

“We made a great collaboration with LPIN,” said Jotirmoy Mazumdar, an agriculturalist working with CSISA-MEA. “We’re very happy that our initiative helped us achieve this award. In this short time period, a new market opportunity was created.”

Nonstop chop

There are numerous benefits to using fodder choppers, according to Muhammad Nurul Amin Siddiquee, chief of party of LPIN. For one, having access to the choppers can save farmers around $7 (600 Bangladeshi taka) in labor costs per day, and reduce the amount of feed wasted by 10–15%. On average, a farmer can hand-chop 500 kg of forage or fodder each day, while the machines can process around 1,000 kg of the material per hour.

According to Siddiquee, giving chopped feed to livestock improves their productivity. One farmer’s herd of 17 crossbreed cows produced 115 liters of milk per day — he expects this to increase to 130 liters per day after feeding them fodder produced with a mechanized chopper.

“He can now save labor costs and four hours of his time per day by using the fodder chopping solutions,” he said, adding that the collaborative effort is “fostering increased livestock productivity and [farmer] incomes.”

However, Cox’s Bazar is far away from the center of Bangladesh, where most of these machines are produced. For example, there are more than 30 small engineering workshops in the more centrally located Khulna Division and they have cumulatively made 7,470 choppers.

“In Cox’s Bazar, it was almost impossible for those livestock farmers to get to know the chopper machines, and actually get access to them,” said Khaled Khan, team lead with iDE, who also aided in private-sector engagement.

So, the collaboration between CSISA-MEA and LPIN began connecting farmers and agriculture service providers with these fodder chopper producers and distributors. Moreover, it worked to increase knowledge of how to operate the machines among the farmers.

“Fodder choppers are an entirely new technology in Cox’s Bazar,” said Zakaria Hasan, CSISA team lead in the district.

Though it is still early days, the partnership has been met with a warm reception. Farmers and agriculture service providers cumulatively purchased 12 of the choppers within two weeks — each machine can support its owner and five other farmers — and three dealers are now selling the machines to meet farmer demand. In the region, 60 dairy farms are now purchasing chopped fodder for their livestock.

According to Khan, engaging the private sector in this project was essential. He explained that increasing the connectivity between the buyers and the sellers will help make the market larger and more stable.

“We found the perfect opportunity of supply and demand because their partners are demanding our partners’ service. The role of the private sector was the most important for the sustainability of this marriage of demand and supply,” Khan said.

“We want to establish a linkage between these two private entities. Our project’s job is to facilitate that, so that even after the project is over this networking continues in the future.”

Cover photo: Farmer Hosne Ara uses a mechanized fodder chopper to prepare feed for livestock in Bangladesh. (Photo: Ashraful Alam/CIMMYT)

México y EU establecen estrategia conjunta a favor de la seguridad alimentaria

Mexico’s Secretariat of Agriculture and Rural Development (SADER) and its counterpart in the United States reached an agreement to promote knowledge sharing and scientific collaboration on agriculture-related issues.

Read more: https://www.elsoldemexico.com.mx/mexico/sociedad/mexico-y-eu-establecen-estrategia-conjunta-a-favor-de-la-seguridad-alimentaria-6722351.html

CIMMYT and John Innes Centre announce strategic collaboration on wheat research

CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)
CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre (JIC) have announced a strategic collaboration for joint research, knowledge sharing and communications, to further the global effort to develop the future of wheat.

Wheat, a cornerstone of the human diet that provides 20% of all calories and protein consumed worldwide, is threatened by climate change-related drought and heat, as well as increased frequency and spread of pest and disease outbreaks. The new collaboration, building on a history of successful joint research achievements, aims to harness state-of-the-art technology to find solutions for the world’s wheat farmers and consumers.

“I am pleased to formalize our longstanding partnership in wheat research with this agreement,” said CIMMYT Deputy Director General for Research Kevin Pixley. “Our combined scientific strengths will enhance our impacts on farmers and consumers, and ultimately contribute to global outcomes, such as the Sustainable Development Goal of Zero Hunger.”

Director of the John Innes Centre, Professor Dale Sanders commented, “Recognizing and formalizing this long-standing partnership will enable researchers from both institutes to focus on the future, where the sustainable development of resilient crops will benefit a great many people around the world.”

Thematic areas for collaboration

Scientists from CIMMYT and JIC will work jointly to apply cutting-edge approaches to wheat improvement, including:

  • developing and deploying new molecular markers for yield, resilience and nutritional traits in wheat to facilitate deploying genomic breeding approaches using data on the plant’s genetic makeup to improve breeding speed and accuracy;
  • generating, sharing and exploiting the diversity of wheat genetic material produced during crossing and identified in seed banks;
  • pursuing new technologies and approaches that increase breeding efficiency to introduce improved traits into new wheat varieties; and
  • developing improved technologies for rapid disease diagnostics and surveillance.

Plans for future collaborations include establishing a new laboratory in Norwich, United Kingdom, as part of the Health Plants, Healthy People, Healthy Plant (HP3) initiative.

Bringing innovations to farmers

An important goal of the collaboration between CIMMYT and JIC is to expand the impact of the joint research breakthroughs through knowledge sharing and capacity development. Stakeholder-targeted communications will help expand the reach and impact of these activities.

“A key element of this collaboration will be deploying our innovations to geographically diverse regions and key CIMMYT partner countries that rely on smallholder wheat production for their food security and livelihoods,” said CIMMYT Global Wheat Program Director Alison Bentley.

Capacity development and training will include collaborative research projects, staff and student exchanges and co-supervision of graduate students, exchange of materials and data, joint capacity building programs, and shared connections to the private sector. For example, plans are underway for a wheat improvement summer school for breeders in sub-Saharan African countries and an internship program to work on the Mobile And Real-time PLant disease (MARPLE) portable rust testing project in Ethiopia.


INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

Dale Sanders  – Director, John Innes Centre

OR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE JOHN INNES CENTRE:

The John Innes Centre is an independent, international centre of excellence in plant science, genetics and microbiology. Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

We foster a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 100 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. Our new vision Healthy Plants, Healthy People, Healthy Planet (www.hp3) is a collaborative call to action. Bringing knowledge, skills and innovation together to create a world where we can sustainably feed a growing population, mitigate the effects of climate change and use our understanding of plants and microbes to develop foods and discover compounds to improve public health.

The John Innes Centre is strategically funded by the UKRI-BBSRC (Biotechnology and Biological Sciences Research Council), and is supported by the John Innes Foundation through provision of research accommodation, capital funding and long-term support of the Rotation PhD programme.

For more information about the John Innes Centre visit our website: www.jic.ac.uk.

Bill Gates highlights CIMMYT’s innovation in latest climate book

Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.

With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.

Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”

“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”

Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.

Innovations in agriculture

When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. [
] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.

One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[
] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.

We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.

For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.

The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.

Five big steps toward wheat self-sufficiency in Pakistan

A seed vendor near Islamabad, Pakistan. For improved crop varieties to reach the farmers who need them, they usually must first reach local vendors, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
A seed vendor near Islamabad, Pakistan. For improved crop varieties to reach the farmers who need them, they usually must first reach local vendors, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)

Wheat is not just an essential part of the Pakistani diet, but also absolutely critical to the country’s economy and to the farmers who cultivate it. The government of Pakistan’s goal to achieve self-sufficiency in wheat production just became more attainable with the release of five new wheat varieties. These new seeds could help the country’s 8.8 million hectares of wheat-farmed area become more productive, climate-resilient and disease-resistant — a welcome development in a region where new climate change scenarios threaten sustained wheat production.

With multiple years of on-station and on-farm testing, the Wheat Research Institute (WRI) in Faisalabad, the Arid Zone Research Institute (AZRI) in Bhakhar, and the Barani Agricultural Research Institute in Chakwal released five varieties: Subhani 2021, MH-2021, Dilkash-2021, Bhakkar-20 and MA-2020.

The varieties, drawn from germplasm from the International Maize and Wheat Improvement Center (CIMMYT), were developed for different production environments in the Punjab province of Pakistan.

Dilkash-2021 was developed by WRI from a cross with a locally developed wheat line and a CIMMYT wheat line. MH-2021 and MA-2020 were selected from the CIMMYT wheat breeding germplasm through international trials and nurseries.

Subhani-21 and MA-2020 were selected from special trials assembled by CIMMYT for expanded testing, early access and genomic selection under the USAID-funded Feed the Future Innovation Lab for Applied Wheat Genomics at Kansas State University, in partnership with Cornell University and four South Asian countries (Bangladesh, India, Nepal and Pakistan).

Over the course of multiple years and locations, the new varieties exhibited a yield potential that is 5 to 20% higher than current popular varieties such as Faisalabad 2008, in addition to good grain quality and attainable yields of over 7 tons per hectare. They also showed an impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stresses.

“It is exciting to see new varieties coming out of these collaborative projects between the Pakistani breeding programs, CIMMYT and the university teams,” said Jesse Poland, associate professor at Kansas State University and director of the Wheat Genomics Innovation Lab.

Wheat breeder and WRI director Javed Ahmad (center, wearing a white cap) explains the performance of a new variety and its positive traits to visitors. (Photo: Muhammad Shahbaz Rafiq)
Wheat breeder and WRI director Javed Ahmad (center, wearing a white cap) explains the performance of a new variety and its positive traits to visitors. (Photo: Muhammad Shahbaz Rafiq)

Closing the yield gap between research fields and smallholder fields

Despite all of these encouraging traits, releasing a new variety is just half of the battle. The other half is getting these new, quality seeds to markets quickly so that wheat growers can realize the benefits. A fast-track seed multiplication program for each of these varieties has been designed and implemented.

“Pakistan has started to multiply early-generation seeds of rust-resistant varieties. These will be available to seed companies for multiplication and provision to farmers in the shortest possible time,” agreed wheat breeder and WRI Director Javed Ahmad and the National Wheat Coordinator Atiq Rattu.

Wheat breeder and WRI director Javed Ahmad (left) discusses performance of the new varieties with a colleague. (Photo: Muhammad Shahbaz Rafiq)
Wheat breeder and WRI director Javed Ahmad (left) discusses performance of the new varieties with a colleague. (Photo: Muhammad Shahbaz Rafiq)

However, the current seed replacement rate is still low, mainly because new, quality seeds are rarely available at the right time, location, quantity, and price for smallholders. Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Additionally, marketing and training efforts need to be improved for women, who are mostly responsible for household-level seed production and seed care.

In 2020, Pakistan harvested 25.7 million tons of wheat, up from 23.3 million tons a decade ago in 2010, which roughly matches its annual consumption of the crop. Pakistan is coming close to its goal of self-sufficiency, as outlined in the Pakistan Vision 2025, Food Security Policy 2018 and Vision for Agriculture 2030. Research shows that the public sector cannot extensively disseminate seeds alone; new policies must create an attractive environment to private sector partners, so that entrepreneurs are also attracted to the seed business.  With continued efforts and a bold distribution and training effort, new releases like these will contribute to narrowing the yield gap between research stations and farmers’ fields.