CIMMYT senior scientist and cropping systems agronomist Nele Verhulst (left) shows the benefits of conservation agriculture to visitors at CIMMYT’s experimental station in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
High-level representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) outside Mexico City on October 18, 2021, to learn about innovative research to promote sustainable production systems in Mexico and the world.
Carlos Slim Foundation and CNA representatives agreed that public and private sectors, civil society and international research organizations like CIMMYT must collaborate to address the challenges related to climate change, forced migration and rural insecurity.
“It is necessary to give more visibility to and make use of CIMMYT’s world-class laboratories and research fields, to enhance their impact on sustainable development and the 2030 agenda,” said Juan Cortina Gallardo, president of the CNA.
The tour included a visit to CIMMYT’s germplasm bank, where the world’s largest collections of maize and wheat biodiversity are conserved. Visitors also toured the laboratories, greenhouses and experimental fields where cutting-edge science is applied to improve yield potential, adaptability to climate change, resistance to pests and diseases, and nutritional and processing quality of maize and wheat.
Representatives of the Carlos Slim Foundation and Mexico’s National Agriculture Council (CNA) stand for a group photo with CIMMYT representatives at the organization’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
From Mexico to the world
“CIMMYT implements Crops for Mexico, a research and capacity building project building on the successes and lessons learned from MasAgro, where smallholder farmers increase their productivity to expand their market opportunities and can, for example, join the supply chain of large companies as providers and contribute to social development of Mexican farming,” Cortina Gallardo said.
CIMMYT carries out more than 150 integrated development projects related to maize and wheat systems in 50 countries. They are all supported by first-class research infrastructure in CIMMYT’s global headquarters, funded by the Carlos Slim Foundation.
“Our goal is to put CIMMYT’s laboratories, greenhouses and experimental fields at the service of farmers and both public and private sectors as needed,” said Bram Govaerts, director general of CIMMYT. “Accelerating the development of sustainable agricultural practices and more nutritious and resilient varieties contributes to transforming agricultural systems around the world, strengthening global food security and reducing the impact of agriculture on climate change.”
Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)
A new partnership announced today between the International Maize and Wheat Improvement Center (CIMMYT), PepsiCo and Grupo Trimex will greatly contribute to scale out sustainable farming practices in the central Mexican states of Guanajuato and Michoacán, which together form the country’s second wheat producing region.
The project Agriba Sustentable — a shortened reference for Bajío Sustainable Agriculture — will promote the adoption of conservation agriculture-based sustainable intensification practices among local farmers who will have access to PepsiCo’s wheat grain supply chain via Grupo Trimex.
“A part of the wheat that we use in Mexico for our products comes from the Bajío region,” said Luis Treviño, Director of Sustainability at PepsiCo Latin America. “However, agricultural production in the region has needs and areas of opportunity that we were able to identify thanks to the experience and deep knowledge that CIMMYT has developed over the years.”
Agriba Sustentable is the latest example of the new business models that CIMMYT is exploring as part of its integrated development approach to agri-food systems transformation, which seeks to engage multiple public, private and civil sector collaborators in cereals value chain development and enhancement efforts.
CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)
“The project’s specific goal is to improve the sustainability of the wheat production system in the Bajío region by enabling the adoption of technological innovations and sustainable production practices among at least 200 farmers in the Grupo Trimex supply chain during the first year of implementation, and to gradually scale out to reach many more farmers,” said Bram Govaerts, Director General of CIMMYT.
CIMMYT’s long-term field trials in Mexico have shown that conservation agriculture-based sustainable intensification practices raise wheat yields by up to 15% and cut greenhouse gas emissions by up to 40%.
“The farming practices that CIMMYT promotes reduce environmental impact,” said Mario Ruiz, Sourcing Manager of Grupo Trimex. “Conservation agriculture can cut CO2 emissions by up to 60% from reduced diesel consumption, lower fuel use by up to 70% and water consumption by 30%.”
According to PepsiCo Mexico, Agriba Sustentable is an important step for its global vision PepsiCo Positive (pep+), which seeks to offset its agricultural footprint by promoting sustainable farming on 2.8 million hectares globally. The plan also aims to improve the livelihoods of 250,000 people who are part of their global agricultural supply chain and to source sustainably 100% of the company’s key ingredients by 2030.
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, PLEASE CONTACT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
Gyanendra Pratap Singh (center), Director of ICAR-IIWBR, presents at the 60th All India Wheat and Barley Research Workers’ Meet. (Photo: Courtesy of ICAR-IIWBR)
The International Maize and Wheat Improvement Center’s (CIMMYT) legacy of work with the Indian Centre for Agricultural Research (ICAR) has once again produced more successful collaborations this year. This solid partnership resulted in the release of new varieties poised to bring new, superior yielding, disease-resistant, high-quality wheat varieties suitable for different production environments to Indian farms.
The National Variety Release Committee announced the release of nine new varieties at the 60th All India Wheat and Barley Research Workers’ Virtual Meet on August 23–24, 2021, hosted by the Indian Institute of Wheat and Barley Research (IIWBR) of ICAR. Of the nine new varieties identified, five were selected by national partners from CIMMYT international trials and nurseries.
At the event, ICAR-IIWBR director Gyanendra Pratap (GP) Singh highlighted the impressive growth trajectory of India’s wheat production, estimated at 109.52 million tons of wheat harvested in 2021, a figure which was 86.53 million tons in 2015 and less than 60 million tons in 1991. Singh highlighted that this success is dependent upon the deployment of superior wheat varieties, bridging yield and information gaps, strengthened seed value chain, supportive government policies and, of course, farmer support to adopt new varieties and technologies.
The CIMMYT-derived varieties announced at the meeting include DBW296, DBW327, DBW332, HUW296 and JKW261. A few days earlier, variety PBW869 was released by the Punjab Agricultural University for growing in Punjab State under conservation agriculture practices.
“An innovative and powerful feature of ICAR-CIMMYT collaboration has been the introduction of long-term (10-month) rotational involvement of Indian young scientists in CIMMYTs breeding program at Mexico as well as in wheat blast screening in Bolivia,” said Arun Joshi, CIMMYT Regional Representative for Asia and Managing Director, Borlaug Institute for South Asia (BISA). “In this way, the breeding program of CIMMYT is an excellent example of joint breeding program with national institutions.”
At the 60th All India Wheat and Barley Research Workers’ Meet, participants highlighted new varieties, production growth and strengthened collaboration. (Photo: CIMMYT)
Beyond expectations
In addition to these important new wheat varieties, some CIMMYT-derived wheat varieties that were released in recent years have now been deemed suitable for regions beyond their initial region of cultivation, showing wide adaptation and yield stability.
Wheat variety DBW222, released in 2020 for the northwestern plain zone, has now been deemed suitable for cultivation in the northeastern plain zone. Similarly, DBW187, which was initially released for the northeastern plain zone, and then for northwestern plain zone as well for early sowing, is now also extended for sowing in the central zone, together representing 25 million hectares of the 31 million hectares of wheat grown in India.
“Farmers prefer these types of varieties that give them flexibility during sowing time, and have high, stable yields, and disease resistance,” GP Singh said at the meeting.
A major achievement discussed at this year’s event was that three of the new varieties — DBW187, DBW303 and DBW222 — achieved record-high demand in Breeders Seed Indent, with first, second and seventh ranks, respectively. This is a reflection and indirect measure of popularity and demand for a variety. IIWBR’s innovative strategy to implement pre-release seed multiplication and create demand for seeds from new varieties has led to a faster turnover of improved varieties.
According to Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at CIMMYT, the collaborators are “further expanding our partnership through the support from the Accelerating Genetic Gains in Maize and Wheat (AGG) and zinc-mainstreaming projects, to expand testing of larger sets of elite lines in targeted populations of environments of the four South Asian countries where various IIBWR-affiliated institutions shall expand testing in the 2021–22 crop season.” CIMMYT looks forward to continuing ongoing and new collaborations with the ICAR-IIWBR programs to deliver even faster genetic gain for yield and grain zinc levels in new varieties, he explained.
Speaking during the meeting Alison Bentley, Director of CIMMYT’s Global Wheat Program, highlighted the collaborative efforts underway as part of the AGG project to accelerate breeding progress. “Innovations and discoveries in breeding approaches are being rapidly made — with further investment needed — to quickly and equitably accumulate and deploy them to farmers,” she said.
It is a laborious and time-consuming process: chopping plant matter by hand to feed to livestock. In Cox’s Bazar district, in eastern Bangladesh, it is common practice. A mechanized fodder chopper can do the job more quickly and efficiently — yet this simple but effective machine has not seen much use in the region.
To address this, a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and aid organizations in the region is creating networks between farmers, agriculture service providers and the businesses that make and distribute the machines.
The Cox’s Bazar region is host to around 900,000 Rohingya refugees who were displaced from Myanmar. The influx of refugees has put a strain on resources in the region. This collaborative effort took place near the camps, in an effort to support capacity and economic development in the host communities nearby.
Though this collaboration has only been around for a few months, it has already seen early success, and received an award from the United States Agency for International Development (USAID). The award recognized the organizations’ “outstanding collaboration that contributed to increased and efficient livestock production through mechanization in the host communities impacted by the influx of Rohingya refugees.”
Mechanization and livestock collaboration
The project — funded by USAID — is a partnership between two existing efforts.
The first is Cereal Systems Initiative for South Asia – Mechanization Extension Activity (CSISA-MEA), which aims to boost the country’s private agricultural machinery industry while supporting local farmers. This initiative supports the mechanization of agriculture in Bangladesh, through increased capacity of the private sector to develop, manufacture and market innovative new technologies. CSISA-MEA is implemented by the International Maize and Wheat Improvement center (CIMMYT) in partnership with iDE and Georgia Institute of Technology.
The second is the Livestock Production for Improved Nutrition (LPIN) Activity, which works to improve nutrition and income generation among rural households in the region.
“We made a great collaboration with LPIN,” said Jotirmoy Mazumdar, an agriculturalist working with CSISA-MEA. “We’re very happy that our initiative helped us achieve this award. In this short time period, a new market opportunity was created.”
Nonstop chop
There are numerous benefits to using fodder choppers, according to Muhammad Nurul Amin Siddiquee, chief of party of LPIN. For one, having access to the choppers can save farmers around $7 (600 Bangladeshi taka) in labor costs per day, and reduce the amount of feed wasted by 10–15%. On average, a farmer can hand-chop 500 kg of forage or fodder each day, while the machines can process around 1,000 kg of the material per hour.
According to Siddiquee, giving chopped feed to livestock improves their productivity. One farmer’s herd of 17 crossbreed cows produced 115 liters of milk per day — he expects this to increase to 130 liters per day after feeding them fodder produced with a mechanized chopper.
“He can now save labor costs and four hours of his time per day by using the fodder chopping solutions,” he said, adding that the collaborative effort is “fostering increased livestock productivity and [farmer] incomes.”
However, Cox’s Bazar is far away from the center of Bangladesh, where most of these machines are produced. For example, there are more than 30 small engineering workshops in the more centrally located Khulna Division and they have cumulatively made 7,470 choppers.
“In Cox’s Bazar, it was almost impossible for those livestock farmers to get to know the chopper machines, and actually get access to them,” said Khaled Khan, team lead with iDE, who also aided in private-sector engagement.
So, the collaboration between CSISA-MEA and LPIN began connecting farmers and agriculture service providers with these fodder chopper producers and distributors. Moreover, it worked to increase knowledge of how to operate the machines among the farmers.
“Fodder choppers are an entirely new technology in Cox’s Bazar,” said Zakaria Hasan, CSISA team lead in the district.
Though it is still early days, the partnership has been met with a warm reception. Farmers and agriculture service providers cumulatively purchased 12 of the choppers within two weeks — each machine can support its owner and five other farmers — and three dealers are now selling the machines to meet farmer demand. In the region, 60 dairy farms are now purchasing chopped fodder for their livestock.
According to Khan, engaging the private sector in this project was essential. He explained that increasing the connectivity between the buyers and the sellers will help make the market larger and more stable.
“We found the perfect opportunity of supply and demand because their partners are demanding our partners’ service. The role of the private sector was the most important for the sustainability of this marriage of demand and supply,” Khan said.
“We want to establish a linkage between these two private entities. Our project’s job is to facilitate that, so that even after the project is over this networking continues in the future.”
Cover photo: Farmer Hosne Ara uses a mechanized fodder chopper to prepare feed for livestock in Bangladesh. (Photo: Ashraful Alam/CIMMYT)
Mexico’s Secretariat of Agriculture and Rural Development (SADER) and its counterpart in the United States reached an agreement to promote knowledge sharing and scientific collaboration on agriculture-related issues.
CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre (JIC) have announced a strategic collaboration for joint research, knowledge sharing and communications, to further the global effort to develop the future of wheat.
Wheat, a cornerstone of the human diet that provides 20% of all calories and protein consumed worldwide, is threatened by climate change-related drought and heat, as well as increased frequency and spread of pest and disease outbreaks. The new collaboration, building on a history of successful joint research achievements, aims to harness state-of-the-art technology to find solutions for the world’s wheat farmers and consumers.
“I am pleased to formalize our longstanding partnership in wheat research with this agreement,” said CIMMYT Deputy Director General for Research Kevin Pixley. “Our combined scientific strengths will enhance our impacts on farmers and consumers, and ultimately contribute to global outcomes, such as the Sustainable Development Goal of Zero Hunger.”
Director of the John Innes Centre, Professor Dale Sanders commented, “Recognizing and formalizing this long-standing partnership will enable researchers from both institutes to focus on the future, where the sustainable development of resilient crops will benefit a great many people around the world.”
Thematic areas for collaboration
Scientists from CIMMYT and JIC will work jointly to apply cutting-edge approaches to wheat improvement, including:
developing and deploying new molecular markers for yield, resilience and nutritional traits in wheat to facilitate deploying genomic breeding approaches using data on the plant’s genetic makeup to improve breeding speed and accuracy;
generating, sharing and exploiting the diversity of wheat genetic material produced during crossing and identified in seed banks;
pursuing new technologies and approaches that increase breeding efficiency to introduce improved traits into new wheat varieties; and
developing improved technologies for rapid disease diagnostics and surveillance.
Plans for future collaborations include establishing a new laboratory in Norwich, United Kingdom, as part of the Health Plants, Healthy People, Healthy Plant (HP3) initiative.
Bringing innovations to farmers
An important goal of the collaboration between CIMMYT and JIC is to expand the impact of the joint research breakthroughs through knowledge sharing and capacity development. Stakeholder-targeted communications will help expand the reach and impact of these activities.
“A key element of this collaboration will be deploying our innovations to geographically diverse regions and key CIMMYT partner countries that rely on smallholder wheat production for their food security and livelihoods,” said CIMMYT Global Wheat Program Director Alison Bentley.
Capacity development and training will include collaborative research projects, staff and student exchanges and co-supervision of graduate students, exchange of materials and data, joint capacity building programs, and shared connections to the private sector. For example, plans are underway for a wheat improvement summer school for breeders in sub-Saharan African countries and an internship program to work on the Mobile And Real-time PLant disease (MARPLE) portable rust testing project in Ethiopia.
INTERVIEW OPPORTUNITIES:
Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)
Dale Sanders – Director, John Innes Centre
OR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
ABOUT THE JOHN INNES CENTRE:
The John Innes Centre is an independent, international centre of excellence in plant science, genetics and microbiology. Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.
We foster a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 100 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. Our new vision Healthy Plants, Healthy People, Healthy Planet (www.hp3) is a collaborative call to action. Bringing knowledge, skills and innovation together to create a world where we can sustainably feed a growing population, mitigate the effects of climate change and use our understanding of plants and microbes to develop foods and discover compounds to improve public health.
Global thought leader, philanthropist and one of the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR’s most vocal and generous supporters, Bill Gates, wrote a book about climate change and is now taking it around the world on a virtual book tour to share a message of urgency and hope.
With How to Avoid a Climate Disaster, Gates sets out a holistic and well-researched plan for how the world can get to zero greenhouse gas emissions in time to avoid a climate catastrophe. Part of this plan is to green everything from how we make things, move around, keep cool and stay warm, while also considering how we grow things and what can be done to innovate agriculture to lower its environmental impact.
Interviewed by actor and producer Rashida Jones, Gates explained his passion for action against climate change: “Avoiding a climate disaster will be one of the greatest challenges us humans have taken on. Greater than landing on the moon, greater than eradicating smallpox, even greater than putting a computer on every desk.”
“The world needs many breakthroughs. We need to get from 51 billion tons [of greenhouse gases] to zero while still meeting the planet’s basic needs. That means we need to transform the way we do almost everything.”
Bill Gates (left) talks to Rashida Jones during one of the events to present his new book.
Innovations in agriculture
When a book tour event attendee asked about the role of agriculture research in improving farmers’ livelihoods, Gates linked today’s challenge to that of the Green Revolution more than half a century ago. “There’s nothing more impactful to reduce the impacts of climate change than working on help for farmers. What we can do this time is even bigger than that. […] The most unfunded thing in this whole area is the seed research that has so much potential,” he said.
One such innovation and one of Gates’ favorite examples of CGIAR’s work is featured in Chapter 9 of his climate book – “Adapting to a warmer world” – and has been the source of generous funding from the Bill & Melinda Gates Foundation: drought-tolerant maize. “[…] as weather patterns have become more erratic, farmers are at greater risk of having smaller maize harvests, and sometimes no harvest at all. So, experts at CGIAR developed dozens of new maize varieties that could withstand drought conditions, each adapted to grow in specific regions of Africa. At first, many smallholder farmers were afraid to try new crop varieties. Understandably so. If you’re eking out a living, you won’t be eager to take a risk on seeds you’ve never planted before, because if they die, you have nothing to fall back on. But as experts worked with local farmers and seed dealers to explain the benefits of these new varieties, more and more people adopted them,” writes Gates.
We at CIMMYT are very proud and humbled by this mention as in collaboration with countless partners, CIMMYT and the International Institute of Tropical Agriculture (IITA) developed and promoted these varieties across 13 countries in sub-Saharan Africa and contributed to lifting millions of people above the poverty line across the continent.
For example, in Zimbabwe, farmers who used drought-tolerant maize varieties in dry years were able to harvest up to 600 kilograms more maize per hectare — enough for nine months for an average family of six — than farmers who sowed conventional varieties.
The world as we know it is over and, finally, humanity’s fight against climate change is becoming more and more mainstream. CIMMYT and its scientists, staff, partners and farmers across the globe are working hard to contribute to a transformation that responds to the climate challenge. We have a unique opportunity to make a difference. It is in this context that CGIAR has launched an ambitious new 10-year strategy that echoes Gates’s hopes for a better environment and food security for the generations to come. Let’s make sure that it ticks the boxes of smallholder farmers’ checklists.
A seed vendor near Islamabad, Pakistan. For improved crop varieties to reach the farmers who need them, they usually must first reach local vendors, who form an essential link in the chain between researchers, seed producers and farmers. (Photo: M. DeFreese/CIMMYT)
Wheat is not just an essential part of the Pakistani diet, but also absolutely critical to the country’s economy and to the farmers who cultivate it. The government of Pakistan’s goal to achieve self-sufficiency in wheat production just became more attainable with the release of five new wheat varieties. These new seeds could help the country’s 8.8 million hectares of wheat-farmed area become more productive, climate-resilient and disease-resistant — a welcome development in a region where new climate change scenarios threaten sustained wheat production.
With multiple years of on-station and on-farm testing, the Wheat Research Institute (WRI) in Faisalabad, the Arid Zone Research Institute (AZRI) in Bhakhar, and the Barani Agricultural Research Institute in Chakwal released five varieties: Subhani 2021, MH-2021, Dilkash-2021, Bhakkar-20 and MA-2020.
The varieties, drawn from germplasm from the International Maize and Wheat Improvement Center (CIMMYT), were developed for different production environments in the Punjab province of Pakistan.
Dilkash-2021 was developed by WRI from a cross with a locally developed wheat line and a CIMMYT wheat line. MH-2021 and MA-2020 were selected from the CIMMYT wheat breeding germplasm through international trials and nurseries.
Subhani-21 and MA-2020 were selected from special trials assembled by CIMMYT for expanded testing, early access and genomic selection under the USAID-funded Feed the Future Innovation Lab for Applied Wheat Genomics at Kansas State University, in partnership with Cornell University and four South Asian countries (Bangladesh, India, Nepal and Pakistan).
Over the course of multiple years and locations, the new varieties exhibited a yield potential that is 5 to 20% higher than current popular varieties such as Faisalabad 2008, in addition to good grain quality and attainable yields of over 7 tons per hectare. They also showed an impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stresses.
“It is exciting to see new varieties coming out of these collaborative projects between the Pakistani breeding programs, CIMMYT and the university teams,” said Jesse Poland, associate professor at Kansas State University and director of the Wheat Genomics Innovation Lab.
Wheat breeder and WRI director Javed Ahmad (center, wearing a white cap) explains the performance of a new variety and its positive traits to visitors. (Photo: Muhammad Shahbaz Rafiq)
Closing the yield gap between research fields and smallholder fields
Despite all of these encouraging traits, releasing a new variety is just half of the battle. The other half is getting these new, quality seeds to markets quickly so that wheat growers can realize the benefits. A fast-track seed multiplication program for each of these varieties has been designed and implemented.
“Pakistan has started to multiply early-generation seeds of rust-resistant varieties. These will be available to seed companies for multiplication and provision to farmers in the shortest possible time,” agreed wheat breeder and WRI Director Javed Ahmad and the National Wheat Coordinator Atiq Rattu.
Wheat breeder and WRI director Javed Ahmad (left) discusses performance of the new varieties with a colleague. (Photo: Muhammad Shahbaz Rafiq)
However, the current seed replacement rate is still low, mainly because new, quality seeds are rarely available at the right time, location, quantity, and price for smallholders. Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Additionally, marketing and training efforts need to be improved for women, who are mostly responsible for household-level seed production and seed care.
In 2020, Pakistan harvested 25.7 million tons of wheat, up from 23.3 million tons a decade ago in 2010, which roughly matches its annual consumption of the crop. Pakistan is coming close to its goal of self-sufficiency, as outlined in the Pakistan Vision 2025, Food Security Policy 2018 and Vision for Agriculture 2030. Research shows that the public sector cannot extensively disseminate seeds alone; new policies must create an attractive environment to private sector partners, so that entrepreneurs are also attracted to the seed business. With continued efforts and a bold distribution and training effort, new releases like these will contribute to narrowing the yield gap between research stations and farmers’ fields.
On November 13, 2020, researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Bangladesh Wheat and Maize Research Institute (BWMRI) held a virtual meeting to update Bangladesh’s Minister for Agriculture Md Abdur Razzaque on their organizations’ ongoing research activities regarding the development of sustainable, cereal-based farming systems.
The purpose of this event was to inform influential stakeholders of the implications of the impending transition to One CGIAR for collaborative research activities in Bangladesh and how CIMMYT will continue its support to the its partners in the country, including the government and other CGIAR centers. The event was chaired by CIMMYT’s Director General Martin Kropff, who called-in from CIMMYT’s headquarters in Mexico, and Razzaque, who attended the event as a special guest. Around 21 participants from various government offices including the Department of Agricultural Extension (DAE) and the Bangladesh Agricultural Research Council (BARC) were in attendance.
Speaking at the event, Razzaque thanked CIMMYT for its support in increasing maize and wheat production in Bangladesh — as the main source of germplasm for these two crops — which has been crucial for assuring food and income security and helping the country reach towards the Sustainable Development Goals. He expressed his gratitude for CIMMYT’s help in mitigating the threats posed by pests and diseases, and supporting climate information services which have enabled farmers to avoid crop losses in mung bean, and he requested that CIMMYT to intensify its research on cropping systems, heat- and disease-tolerant wheat varieties, and the introduction of technologies and farming practices to sustainably increase production and reduce wheat imports.
Martin Kropff gives an overview of CIMMYT research in Bangladesh during a virtual meeting with stakeholders. (Photo: CIMMYT)
Timothy J. Krupnik, CIMMYT’s country representative for Bangladesh, guided participants through the history of CIMMYT’s engagement in Bangladesh from the 1960s to the present and outlined the organization’s plan for future collaboration with the government. In addition developing wheat blast-resistant varieties, exchanging germplasm and seed multiplication programs for disease-resistant varieties, Krupnik described collaborative efforts to fight back against fall armyworm, research in systems agronomy to boost crop intensity and the use of advanced simulation models and remote sensing to assist in increasing production while reducing farm drudgery, expensive inputs, water and fuel use, and mitigating greenhouse gas emissions.
He also highlighted efforts to create a skilled work force, pointing to CIMMYT’s collaboration with the Bangladesh Agricultural Research Institute (BARI) on appropriate agricultural mechanization and USAID-supported work with over 50 machinery manufacturers across the country.
“This historical legacy, alongside world-class scientists and committed staff, germplasm collection, global impact in farmer’s fields, next generation research and global network of partners have made CIMMYT unique,” explained Kropff during his closing remarks, which focused on the organization’s research and collaboration on climate-smart and conservation agriculture, high-yielding, stress- and disease-tolerant maize and wheat variety development, value chain enhancement, market development, precision agronomy and farm mechanization in Bangladesh.
He expressed his gratitude towards the Government of Bangladesh for supporting CIMMYT as an international public organization in the country, thus enabling it to continue delivering impact, and for recognizing the benefits of the transition to a more integrated network of international research centers through One CGIAR, under which CIMMYT and other centers will strengthen their support to the government to help Bangladesh achieve zero hunger.
“We want to feed the people, we don’t want them to go hungry. We have to do something to make sure there is food on the table. That is where my motivation is… Let there be food to eat.”
— Ruth Wanyera, 2019
The International Maize and Wheat Improvement Center (CIMMYT) has long attributed its widespread impact and reach to strong collaborations with national agricultural research systems (NARS) around the world. Today, CIMMYT — and especially the Global Wheat Program and the CGIAR Research Program on Wheat — wish to honor one long-term collaborator whose work and dedication to wheat research has had abiding positive effects beyond her home region of sub-Saharan Africa.
Ruth Wanyera, national wheat research program coordinator at the Kenya Agricultural and Livestock Research Organization (KALRO), has spent her more than 30-year career dedicated to plant protection research, fueled by her motivation to “feed the people.” She was one of the first scientists to recognize stem rust in east Africa and has been one of CIMMYT’s strongest allies in fighting the devastating wheat disease, stem rust Ug99.
National Wheat Coordinator Ruth Wanyera (third from right) gives a lesson to pathology interns in the field of a fungicide efficiency trial at KALRO Njoro Research Station, Nakuru, Kenya. (Photo:CIMMYT)
A long-term relationship with CIMMYT
Sridhar Bhavani, senior scientist and head of Rust Pathology and Molecular Genetics at CIMMYT has worked closely with Wanyera and her team since the mid-2000s.
“Ruth is a passionate researcher who has tirelessly dedicated her entire career to cereal pathology, and as a team, we coordinated the stem rust phenotyping platform for over a decade and had great successes on multiple international projects,” he said.
CIMMYT’s relationship with Wanyera’s team strengthened when Nobel Prize Laureate Norman Borlaug visited the Kenyan research facility to observe the emerging threat of stem rust. Upon witnessing how serious the outbreak had become, Borlaug organized an emergency summit in Nairobi in 2005, famously “sounding the alarm” for swift and concerted action on stem rust, and ultimately leading to the establishment of the BGRI.
“Ruth and her team of dedicated scientists from KALRO have not only made Kenya proud but have also made a remarkable contribution to the global wheat community in mitigating the threat of stem rust Ug99,” says Bhavani. “Ruth has mentored master’s and PhD students who are now leading researchers at KALRO. She has elevated the research capacity of KALRO to international repute.”
Two recent wheat breeding projects helped extend the CIMMYT-KALRO partnership beyond Kenya. The Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects brought in a partnership with the Ethiopia Institute for Agricultural Research (EIAR) to establish and operate stem rust phenotyping platforms that addressed the global threat of Ug99 and other serious stem rust races, and helped provide solutions for the region. Thanks to KALRO’s screening efforts at the CIMMYT-KALRO Stem Rust Screening Platform in Njoro, Kenya, CIMMYT-derived rust-resistant varieties now cover more than 90% of the wheat farming area in Kenya and Ethiopia.
Ruth Wanyera receives the Kenya Agricultural Research Award (KARA), during the High Panel Conference on Agricultural Research in Kenya. (Photo: CIMMYT)
The partnership continues to grow
Continued collaboration with Ruth’s team at KALRO will be essential in the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project. AGG — which aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious wheat varieties in in sub-Saharan Africa and South Asia — has a particular focus on enhanced collaboration with national partners such as KALRO.
Its success is also closely tied to the Njoro Stem Rust Screening Platform — which, since its establishment in 2008, has conducted crucial screening for over 600,000 wheat lines, varieties, varietal candidates, germplasm bank accessions and mapping populations. Wanyera’s leadership in the Platform, alongside that of CIMMYT wheat scientist Mandeep Randhawa, plays a major role in screening, monitoring, and clearing seed in time for sowing.
As Hans Braun, former director of the CIMMYT Global Wheat Program said, “Without our national agriculture research system partnerships, CIMMYT would become obsolete.”
Indeed, the unparalleled wealth of knowledge, skills, and research facilities of the CGIAR as a whole would not be so uniquely impactful if it weren’t for the 3000+ partnerships with national governments, academic institutions, enthusiastic farmers, private companies and NGOs that help carry out this work.
CIMMYT’s historic and continued impact depends on close international partnerships with scientists and leaders like Ruth Wanyera, and we congratulate her on her numerous awards, thank her for her collaboration, and wish her a pleasant retirement.
How do you create the largest market for stress-tolerant seed away from a major business center and attract over 1000 smallholder farmers in two days? Organize a seed fair to strengthen knowledge and information sharing.
The availability, access and use of climate-resilient seed by smallholder farmers in Zimbabwe is often hampered by transport costs, the distance between farming areas and viable seed markets, lack of public transport to business centers, and the inflated prices of seed and inputs by local agro-dealers. As a result, resource-poor farmers who cannot afford to purchase inputs resort to exchanging local seed retained or recycled from informal markets. This has devastating effects on farmers’ productivity, food and nutrition security.
Under the Zambuko/R4 Rural Resilience Initiative, the International Maize and Wheat Improvement Center (CIMMYT) is promoting climate-smart technologies and appropriate seed varieties alongside conservation agriculture (CA) systems in Masvingo district, Zimbabwe. Since 2018, mother and baby trials have successfully yielded results for smallholders in Ward 17 and additional mother trials have been introduced in Ward 13.
To overcome the challenges of seed access, CIMMYT partnered with eight seed companies — including Agriseeds, Mukushi and SeedCo — to host two seed fairs in October, targeting farmers in Wards 13 and 17. The intervention sought to address seed insecurity while reducing the knowledge gap on available stress-tolerant seed varieties by smallholder farmers.
Groundwork preparations led by the Department of Agriculture and Extension Services (AGRITEX) mobilized farmers from the host wards as well as farmers from neighboring wards 15, 19 and 25. In light of the ongoing COVID-19 pandemic, regulations relating to social distancing, the use of masks and sanitization were adhered to throughout the events.
Climate-smart seed choices
A key message delivered to the more than 1000 farmers who attended the seed fairs was the importance of their preference when selecting the right seed for their field. “Farmers must be critical when selecting seed and ensure that their preferred seed will perform well under the prevailing climatic conditions to give a good harvest,” said CIMMYT seed systems specialist Peter Setimela.
Seed company representatives were offered a platform to market their varieties and explain the benefits of each product on the market while leaving it to the farmers to decide on the most suitable variety for their own needs. “Farmers came early for the seed fairs and showed interest in our products,” said Norman Chihumo, a regional agronomist at Syngenta Distributors. “We recorded fairly good sales of seed and chemicals through cash purchases and vouchers.”
Later in the day, farmers toured the seed company stands to see the diverse maize varieties and small grains on offer — including millet and sorghum, cowpeas and groundnuts — and heard testimonials from participants in the mother and baby trials. “Listening to a success story from a farmer I know gives me the confidence to follow suit and buy seed that works in this harsh climate of ours,” said Joice Magadza, a farmer from Ward 17.
Local farmer Happison Chitono agreed. “I never used to grow cowpeas on my plot,” he explained, “but after learning about the ability it has to fix nitrogen into my soil and possibility of rotating the legume with maize, I am now gladly adding it to my seed input package.”
Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A seed fair is also a knowledge market
A key highlight of the seed fair was the learning platform promoting CIMMYT’s ongoing activities under the Zambuko/R4 Rural Resilience Initiative. Here, cropping systems agronomist Christian Thierfelder shared the objectives of this initiative with participating farmers.
“We know how good this seed is, but we also have to grow it in a sustainable way, so we make best use of the limited rainfall we receive in this area while we improve our soils,” he explained to farmers. “Cropping systems such as conservation agriculture combine no-tillage, mulching and crop rotation in a climate-smart agriculture way which enables farmers to harvest enough, even under heat and drought stress.”
Thierfelder also demonstrated the use of farm equipment promoted by CIMMYT in collaboration with Kurima Machinery, explaining how these can help reduce drudgery and save time on planting, transport and shelling.
Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Vouchers for transparent seed access
The seed fairs culminated in the distribution of seed and input vouchers. One hundred farmers were selected through a transparent raffle and redeemed their vouchers at their preferred seed company stands. They then also had the option to purchase additional seed, fertilizer and chemicals using their own cash.
Particularly high sales were recorded for Provitamin A orange maize, which sold out on both seed fair days. Stress-tolerant varieties such as ZM 309 and ZM 523 from Zimbabwe Super Seeds, ZM521 from Champion Seeds, and MRI 514 from Syngenta were also favorites among the farmers, while white sorghum and cowpea varieties such as CBC2 also sold well. Most of these varieties were already known to farmers as they had seen them growing for two years in CIMMYT’s mother trials of Ward 17.
The seed fairs ended on a high note with a total of 1.2 tons of seed sold to farmers on both days and agro-dealers hailed the fairs as a timely business venture for creating linkages and bringing seed suppliers on-site to assess their shops. A post-seed fair monitoring exercise will soon follow up on farmers’ use of the seed and the performance of demo packs and purchased varieties.
The Zambuko/R4 Rural Resilience Initiative supported by the United States Agency for International Aid (USAID), Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP) aims to increase farmer resilience and capacity to withstand climatic shocks and stresses in rural communities of Masvingo, Mwenezi and Rushinga in Zimbabwe.
In most developing countries, smallholder farmers are the main source of food production, relying heavily on animal and human power. Women play a significant role in this process — from the early days of land preparation to harvesting. However, the sector not only lacks appropriate technologies — such as storage that could reduce postharvest loss and ultimately maximize both the quality and quantity of the farm produce — but fails to include women in the design and validation of these technologies from the beginning.
“Agricultural outputs can be increased if policy makers and other stakeholders consider mechanization beyond simply more power and tractorization in the field,” says Rabe Yahaya, an agricultural mechanization expert at CIMMYT. “Increases in productivity start from planting all the way to storage and processing, and when women are empowered and included at all levels of the value chain.”
In recent years, mechanization has become a hot topic, strongly supported by the German Federal Ministry for Economic Cooperation and Development (BMZ). Under the commission of BMZ, the German development agency GIZ set up the Green Innovation Centers (GIC) program, under which the International Maize and Wheat Improvement Center (CIMMYT) supports mechanization projects in 16 countries — 14 in Africa and two in Asia.
As part of the GIC program, a cross-country working group on agricultural mechanization is striving to improve knowledge on mechanization, exchange best practices among country projects and programs, and foster links between members and other mechanization experts. In this context, CIMMYT has facilitated the development of a matchmaking and south-south learning matrix where each country can indicate what experience they need and what they can offer to the others in the working group. CIMMYT has also developed an expert database for GIC so country teams can reach external consultants to get the support they need.
“The Green Innovation Centers have the resources and mandate to really have an impact at scale, and it is great that CIMMYT was asked to bring the latest thinking around sustainable scaling,” says CIMMYT scaling advisor Lennart Woltering. “This is a beautiful partnership where the added value of each partner is very clear, and we hope to forge more of these partnerships with other development organizations so that CIMMYT can do the research in and for development.”
This approach strongly supports organizational capacity development and improves cooperation between the country projects, explains Joachim Stahl, a capacity development expert at CIMMYT. “This is a fantastic opportunity to support GIZ in working with a strategic approach.” Like Woltering and Yahaya, Stahl is a GIZ-CIM integrated expert, whose position at CIMMYT is directly supported through GIZ.
A catalyst for South-South learning and cooperation
Earlier this year, CIMMYT and GIZ jointly organized the mechanization working group’s annual meeting, which focused on finding storage technologies and mechanization solutions that benefit and include women. Held from July 7–10 July, the virtual event brought together around 60 experts and professionals from 20 countries, who shared their experiences and presented the most successful storage solutions that have been accepted by farmers in Africa for their adaptability, innovativeness and cost and that fit best with local realities.
CIMMYT postharvest specialist Sylvanus Odjo outlined how to reduce postharvest losses and improve food security in smallholder farming systems using inert dusts such as silica, detailing how these can be applied to large-scale agriculture and what viable business models could look like. Alongside this and the presentation of Purdue University’s improved crop storage bags, participants had the opportunity to discuss new technologies in detail, asking questions about profitability analysis and the many variables that may slow uptake in the regions where they work.
Harvested maize cobs are exposed to the elements in an open-air storage unit in Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Discussions at the meeting also focused heavily on gender and mechanization – specifically, how women can benefit from mechanized farming and the frameworks available to increase their access to relevant technologies. Modernizing the agricultural sector in developing countries in ways that would benefit both men and women has remained a challenge for many professionals. Many argue that the existing technologies are not gender-sensitive or affordable for women, and in many cases, women are not well informed about the available technologies.
However, gender-sensitive and affordable technologies will support smallholder farmers produce more while saving time and energy. Speaking at a panel discussion, representatives from AfricaRice and the Food and Agriculture Organization of the United Nations (FAO) highlighted the importance of involving women during the design, creation and validation of agricultural solutions to ensure that they are gender-sensitive, inclusive and can be used easily by women. Increasing their engagement with existing business models and developing tailored digital services and trainings will help foster technology adaptation and adoption, releasing women farmers from labor drudgery and postharvest losses while improving livelihoods in rural communities and supporting economic transformation in Africa.
Fostering solutions
By the end of the meeting, participants had identified and developed key work packages both for storage technologies and solutions for engaging women in mechanization. For the former, the new work packages proposed the promotion of national and regional dialogues on postharvest, cross-country testing of various postharvest packages, promotion of renewable energies for power supply in storing systems and cross-country scaling of hermetically sealed bags.
To foster solutions for women in mechanization, participants suggested the promotion and scaling of existing business models such as ‘Woman mechanized agro-service provider cooperative’, piloting and scaling gender-inclusive and climate-smart postharvest technologies for smallholder rice value chain actors in Africa, and the identification and testing of gender-sensitive mechanization technologies aimed at finding appropriate tools or approaches.
Cover image: A member of Dellet – an agricultural mechanization youth association in Ethiopia’s Tigray region – fills a two-wheel tractor with water before irrigation. (Photo: Simret Yasabu/CIMMYT)
For three years, Kellogg, in partnership with the International Center for the Improvement of Corn and Wheat (CIMMYT), has been working on a program which seeks to provide technical and scientific advice to increase the productivity of land and efficient use of available natural resources, so farmers obtain better crops and have more profitable economic activities that mitigate the effects of climate change.
For ten years now, the African Green Revolution Forum (AGRF) has been an unmissable event. Every September, the premier forum for African agriculture has brought people together to share experiences about transforming agriculture, raising productivity for farmers and increasing incomes.
The theme of the 2020 summit — Feed the Cities, Grow the Continent: Leveraging Urban Food Markets to Achieve Sustainable Food Systems in Africa — was a call to action to rethink our food systems to make them more resilient and deliver better nourishment and prosperity for all.
This year, the summit went virtual. Delegates could not mingle, visit booths and network over lunch, but attendance reached new heights. Over 10,400 delegates from 113 countries participated in this edition of the AGRF, compared to 2,300 delegates last year.
As in the previous years, CGIAR centers, including the International Maize and Wheat Improvement Center (CIMMYT), maintained an active presence among speakers and attendees.
With over 50 projects and hundreds of staff based across nine countries, Africa holds a significant position in CIMMYT’s research agenda. CIMMYT’s work in Africa helps farmers access new maize and wheat system-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains.
Striving for excellence
CGIAR leveraged AGRF 2020’s highly diversified and international audience to launch the Excellence in Agronomy 2030 initiative (EiA 2030) on September 7, 2020. EiA’s impressive group of experts plans to hit the ground running in 2020 and work toward speeding up progress in tailoring and delivering nutrients and other agronomic solutions to smallholder farmers in Africa and other regions.
“Across agricultural production systems, low crop yields and inadequate incomes from agriculture are the rule rather than the exception,” said Martin Kropff, Director General of CIMMYT and Chair of One CGIAR Transition Advisory Group (TAG) 2 on Research. “At the same time, the ‘asks’ of agriculture have evolved beyond food security. They now include a broader range of Sustainable Development Goals, such as sustainable land management, climate change mitigation, provision of heathy diets, and inclusive economic growth. None of these goals will be achieved without the large-scale adoption of improved and adapted agronomic practices. To this end, we have initiated the creation of a CGIAR-wide EiA 2030 initiative aiming at reducing yield and efficiency gaps for major crops at scale.”
EiA 2030 is funded by the Bill & Melinda Gates Foundation, supported by the Big Data Platform and co-created by AfricaRice, CIAT, CIMMYT, CIP, ICARDA, ICRAF, ICRISAT, IITA and IRRI.
Martin Kropff (first row, fourth from left), Bram Govaerts (second row, first from left) and Lennart Woltering (second row, third from left) spoke at the “Scaling and Food Systems Transformation in the PLUS-COVID-19 era” panel.
Scaling agriculture beyond numbers
On September 7, 2020, a group of experts, including Lennart Woltering, Scaling Catalyst at CIMMYT and chair of the Agriculture and Rural Development (ARD) working group of the Community of Practice on Scaling, gathered to explore how organizations are supporting scaling food systems in a post-COVID-19 world.
As Martin Kropff mentioned in a video address, One CGIAR aims to deliver on its commitments by building on its experience with pioneering integrated development projects, such as CSISA, CIALCA and AVISA. “One CGIAR plans to be actively involved and help partners to scale by delivering on five One CGIAR impact areas at the regional level. How? By taking integrated regional programs from strategic planning to tactical implementation in three steps: strategic multi-stakeholder demand-driven planning process, tactical plan development based on the integration of production and demand, and implementation of multi-stakeholder innovation hubs. An integrated regional approach will deliver at scale,” Kropff said.
“CIMMYT has developed different scenarios regarding what agri-food systems will look like in 2025 with the COVID-19 shock. Whatever may unfold, integrated systems are key,” highlighted Bram Govaerts, Director of the Integrated Development Program and one of CIMMYT’s interim Deputy Directors General for Research, during the session.
“Diversity and proactive mindsets present at the #AGRF2020 High-Level Ministerial Roundtable. An example of how we can shape the future, listening to what’s needed, investing in agriculture and making resilient food systems to resist the impact of #COVID19 #AgricultureContinues,” tweeted Bram Govaerts (first row, second from left) along with a screenshot of his Zoom meeting screen.
Putting healthy diets on the roundtable
Later in the week, CIMMYT experts took part in two key events for the development of Africa’s agriculture. Govaerts stepped in for Kropff during the High-Level Ministerial Roundtable, where regional leaders and partners discussed reaching agricultural self-sufficiency to increase the region’s resilience toward shocks such as the ongoing pandemic.
At the Advancing Gender and Nutrition policy forum, Natalia Palacios, Maize Quality Specialist, spoke about engaging nutritionally vulnerable urban consumers. Palacios echoed the other speakers’ calls for transforming agri-food systems and pointed out that cereals and effective public-private partnerships are the backbone of nutritionally vulnerable and poor urban customers’ diets.
According to the Food and Agriculture Organization of the UN, in 30 years, the population of Africa is projected to double to a number as high as 2.7 billion, from 1.34 billion in 2020. Considering only the projected population, by 2050 Africa will have to supply 112.4 to 133.1 million tons of wheat and 106.5 to 126.1 million tons of maize to ensure food security of the burgeoning population. “We are living in a very challenging time because we need to provide affordable, nutritious diets — within planetary boundaries,” Palacios said.
Cover photo: Over 10,400 delegates from 113 countries participated in the 2020 edition of the African Green Revolution Forum. (Photo: AGRA)
It is no secret that Africa is urbanizing at breakneck speed. Consider Lagos. In 1950 the Nigerian city boasted a population of a few hundred thousand. Today that number has soared to around 14 million. It is estimated that by 2025 half of Africa’s population will live in urban areas.
This demographic transformation has had dramatic consequences for human health and nutrition. Urban dwellers are far more likely to rely on cheap highly-processed foods, which are shelf-stable but poor on nutrients.
These statistics, presented by moderator Betty Kibaara, Director of the Food Initiative at The Rockefeller Foundation, framed the 2020 African Green Revolution Forum’s policy symposium on “Advancing Gender and Nutrition.” The forum comprised two tracks. One focused on addressing the needs of nutritionally vulnerable urban consumers, particularly women; the other on gender-based financing in the African agri-food system
Speaking in the first track, Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT), underlined the enormity of the challenge. “We need to provide affordable, nutritious diets … within planetary boundaries,” she said.
Many of the panelists pointed out further dimensions of the challenge — from evidence deficits around the continent’s urban populations to the amplifying effects of the COVID-19 crisis. Palacios stressed that the bedrock of any response must be effective partnerships between governments, companies and non-profit actors working in this area.
“The really important thing is to start working together,” she said, “to start developing the strategies together instead of providing things or demanding things.” Speaking to the role of organizations like CIMMYT, Palacios highlighted the need to work closely with the private sector to understand the demand for agricultural raw materials that can be converted into nutritious diets.
Rich nutrition within reach
Palacios’ most recent research efforts focus on precisely this question. She and a team of researchers, including CIMMYT senior scientist Santiago Lopez-Ridaura, explored how various innovations in maize production have improved the macro- and micro-nutrient content of the grain and led to healthier maize-based agri-food systems.
CIMMYT, HarvestPlus and the International Institute of Tropical Agriculture (IITA), together with several stakeholders, have been deeply involved in work to improve the nutritional quality of staple-dependent food systems. In partnership with a broad network of national and private-sector partners, they have released over 60 improved maize and wheat varieties fortified with zinc or provitamin A in 19 countries.
Cover photo: Unlike white maize varieties, vitamin A maize is rich in beta-carotene, giving it a distinctive orange color. This biofortified variety provides consumers with up to 40% of their daily vitamin A needs. (Photo: HarvestPlus/Joslin Isaacson)