Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.
Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)
“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.
CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”
Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.
Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.
Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”
Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)
Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.
The International Maize and Wheat Improvement Center (CIMMYT) played a significant role in India’s agricultural development during the 1950s and 1960s. A brief history of this involvement – through the Green Revolution – is useful to understand CIMMYT’s journey of strengthening global partnerships.
In August 2022, the arrival of a container ship at the port in Cotonou, Benin signaled a major milestone in a developing South-South business relationship that holds the potential to produce a massive change in agricultural practices and output in Benin and across West Africa.
The delivery of six-row seeder planters from India marks the initial fruit of a collaboration between Indian manufacturer Rohitkrishi Industries and Beninese machinery fabricator and distributor Techno Agro Industrie (TAI) that has been two years in the making.
Connecting partners in the Global South
A major area of focus for the Green Innovation Centers for the Agriculture and Food Sector (GIC) projects launched in 15 countries by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger is fostering cooperation between nations in the Global South.
Krishna Chandra Yadav laser levels land for rice planting in Sirkohiya, Bardiya, Nepal (Photo: Peter Lowe/CIMMYT)
This story began through the partnership between the Green Innovation Centers for the Agriculture and Food Sector and The International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and 2 in Asia.
GIC in India has been working with Rohitkrishi to develop appropriate mechanization solutions for smallholding farmers in India since 2017.
Under this new cross-border goal, GIC India discussed with Rohitkrishi the opportunity to adapt machines to the agroecological and socio-economic systems of African countries where continued use of traditional farming methods was drastically limiting efficiency, productivity, and yield. Rohitkrishi assessed the need and pursued this opportunity for long-term business expansion.
Small machines for smallholders
Before connecting with farmers and manufacturers in Benin, Rohitkrishi was busy solving problems for smallholding farmers in India, where large manufacturers focus on agricultural machinery designed and produced to meet the needs of the bigger, commercial farms. Sameer Valdiya of GIC India and Sachin Kawade of Rohitkrishi put their heads together to develop a plan for producing machines that could make a difference—and then convince smallholding farmers to try them.
A farmer pulls a row seeder, Maharashtra, India. (Photo: Green Innovation Center-India)
By adapting an existing machine and incorporating continuous feedback from farmers, they created a semi-automatic planter. This unique, co-creative process was accompanied by an equally important change in farmer mindset and behavior—from skepticism to the demonstrated impact and cost-benefit of the planter that was clear to each farmer.
These farmers were the first to adopt the technology and promoted it to their peers. Their feedback also drove continued improvements—a fertilizer applicator, new shaft and drive, safety features, night-lights and (perhaps most importantly) a multi-crop feature to make it useful for planting potatoes, ginger, and turmeric.
Today, Rohitkrishi has distributed 52 semi-automatic planters across India, and these machines are being used by up to 100 farmers each. Users are seeing a 17-20 percent increase in productivity, with an accompanying increase in income, and 30 percent of users are women.
The seeders are a roaring success, but Rohitkrishi is focused on continued improvement and expansion. As they continue to respond to adjustments needed by farmers, the company plans to sell 1000 semi-automatic planters per year by 2025. Reaching that goal will require both domestic and foreign sales.
Market opportunity meets technological need
Thanks to the active partnership of CIMMYT and Programme Centres d’Innovations Vertes pour le secteur agro-alimentaire (ProCIVA), TAI in Benin emerged as a promising early adopter of Rohitkrishi’s planters outside India. Seeing a remarkable opportunity to establish a foothold that could open the entire West African market to their products, Rohitkrishi began the painstaking process of redesigning their machine for a new context.
This ambitious project faced numerous challenges–from language barriers, to the definition of roles amongst major players, to major COVID-19 and supply chain delays. The arrival of the seeders, however, is a major accomplishment. Now Rohitkrishi and TAI will begin working with government representatives and farmer-based organizations to ensure the equipment performs well on the ground and meets Benin’s agroecological requirements.
Once final testing is completed in the coming months, Rohitkrishi’s seeders will have the chance to demonstrate what a difference they can make for soy and rice production in Benin.
“When developing countries with similar contexts and challenges forge alliances and business connections to share their knowledge, expertise, and problem-solving skills with each other, this kind of direct South-South collaboration produces the most sustainable advances in agricultural production, food security, and job creation,” said Rabe Yahaya, agricultural mechanization specialist at CIMMYT.
Scale mechanization through a starter pack that comprises a two-wheel tractor – a double row planter as well as a trailer and sheller (Photo: CIMMYT)
Meanwhile, CIMMYT is studying this pilot project to identify opportunities for reproducing and expanding its success. Through the Scaling Scan–a web-based, user-friendly tool to assess ten core ingredients necessary to scale-up any innovation–CIMMYT is helping Rohitkrishi and TAI set ambitious and reachable goals for scalability.
Most importantly, the Scaling Scan results will identify areas for course correction and help Rohitkrishi and its partners continue to be sensitive to farmer feedback and produce equipment better suited to needs on the ground.
Bram Govaerts, Sieg Snapp, Minister Mtolo Phiri and Prassana Boddupalli pose at the conclusion of the high level meeting between CIMMYT and the Government of Zambia. (Photo: Tawanda Hove/CIMMYT)
Senior government officials in Zambia have embraced the rollout of the International Maize and Wheat Improvement Center’s (CIMMYT’s) new innovations which target smallholder farmers and agriculture-based value chain actors in the country.
On January 17, 2023, CIMMYT Director General Bram Govaerts met with Minister of Agriculture Reuben Mtolo Phiri. The Minister reassured Govaerts that the investments made by CIMMYT in the country had the Government’s full support.
Earlier this year, a delegation led by Cary Fowler, the US Special envoy for Global Food Security met the Minister and his team at the Government complex in Lusaka, Zambia’s capital, to deliberate on a variety of agriculture development issues concerning the country.
Govaerts’ visit came off the back of the new Accelerated Innovation Delivery Initiative (AID-I), a CIMMYT-led project funded by the United Stated Agency for International Development (USAID). The project seeks to scale up promising innovations that could transform the maize and legume value chains within the southern African region, with a focus on Zambia, Malawi and Tanzania.
“As the Government of Zambia, we intend to create a private sector driven economy for which agriculture plays a critical role. Having progressive partners like CIMMYT helps us achieve this cause and this new program is received with open arms,” said Phiri.
The aims of the AID-I project include strengthening seed systems, the promotion and adoption of stress-tolerant maize and legume varieties, demonstration of good agriculture practices that respond to the effects of climate change and addressing systemic constraints in maize and legume value chains.
Through AID-I, CIMMYT experts are working with over 20 global, regional, national and local partners including the Alliance for a Green Revolution in Africa (AGRA), Catholic Relief Services (TLC), Total Land Care (TLC), the International Water Management Institution (IMWI) and World Vegetable Center.
Also attending the meeting was AID-I Technical Lead and CIMMYT Scientist Hambulo Ngoma who discussed some of the latest project activities.
“As this project focuses on accelerated delivery, we have set up more than 40 demonstrations in eastern Zambia with the intention of showcasing stress-tolerant varieties for maize and legume under conservation agriculture. In addition, we are showcasing other good agriculture practices such as strip cropping which not only enhances intensified crop production but is a biological control for fall armyworm,” Ngoma said.
Hambulo Ngoma receiving a verbal vote of confidence from Zambian Minister of Agriculture Mtolo Phiri. (Photo: Tawanda Hove/CIMMYT)
The Minister appreciated the rationale of the project and indicated that participatory variety selection for farmers was crucial if they were going to maximize their yields and returns from farming.
Phiri further emphasized that CIMMYT and partners’ investment in legume value chain strengthening came at a welcome time as upscaling soya bean production was a key priority in the Government’s strategic plan for agricultural development because of its export-ready market within the region.
“Markets such as Zimbabwe, Mozambique and Tanzania can readily take up the soya we produce, and we are looking to export legumes such as soya and groundnuts to East Africa. This project therefore fits very well within our strategic road map,” Phiri said.
The demonstration plots set up by CIMMYT experts will help farmers grow the right varieties for their agro ecologies and have greater response capabilities to the export market opportunities the Government is facilitating.
The Minister also indicated that he hoped CIMMYT would assist in strengthening the country’s capacity to deal with fall armyworm. CIMMYT Global Maize Program Director B.M. Prasanna reassured Phiri that through the Zambian Agriculture research Institute (ZARI), CIMMYT had already released three fall armyworm-tolerant varieties. He also discussed how the AID-I project would be instrumental in scaling up their uptake, especially amongst smallholder farmers who have minimal disposable income to buy enough pesticides to control the pest.
Concluding the meeting, Govaerts spoke of CIMMYT’s commitment to supporting Zambia achieve its food security and agricultural export goals.
“As CIMMYT, we want you to recognize us as a listening partner. We are of the conviction that we can only combat climate change and achieve shared prosperity through the strength of convening power, where we leverage on each other’s strength.”
As the project is focused on scaling existing promising technologies and innovations, rapid transformative results are on the horizon for the people of Zambia.
Techno-Nejat owner Usman Abdella, operations manager Ali Mussa, and GIZ project manager Ralf Barthelmes with a recently completed seed cleaner at Techno-Nejat workshop in Adama, Ethiopia. (Photo: Adane Firde)
In many sub-Saharan countries, including Ethiopia, smallholder farmers of legume, wheat, and maize struggle to maintain their own food security, produce higher incomes, and promote economic growth and jobs in agricultural communities.
As farmers, fabricators, and aid workers collaborate to move forward on this problem, innovative solutions are moving out into the field – and generating new ideas across the continent.
Where are machines for small farmers?
Machines tailored to local needs and conditions can often make a big difference–but most agricultural technology is designed and produced to meet the requirements of massive, commercial farms. To help close this gap, Green Innovations Centers (GIC) work to connect smallholding farmers with locally produced technology that can transform their business, their family lives, and their local economies.
Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD No Hunger, the GIC collaborate with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.
Technician at Techno-Nejat workshop, Adama, Ethiopia. (Photo: Adane Firde)
The need for seed
Informal seed systems, in which farmers save and reuse seed, and exchange low quality seed with other farmers, are prevalent among Ethiopian smallholder farmers. Seed cleaning plays an important role in helping farmers build high-yielding seed development systems by removing seed pods and other chaff, eliminating seeds that are too small or infected, and refining the seeds to a high-quality remainder.
After GIC staff in Ethiopia identified seed cleaning as a critical need for smallholding farmers in the country, researchers set out to develop a solution that was affordable, sustainable, and adaptable to local demands.
Local machines for local farmers
In 2022, GIC Ethiopia partnered with Techno-Nejat Industries in Adama, Ethiopia, to design and produce a first run of mobile seed cleaners for use by smallholding farmers across the country. Techno-Nejat has an established track record in agricultural fabrication and was eager to take on the new collaboration.
In early March, the company completed the initial delivery of eight seed cleaners. The machines process chickpea, soy, wheat, and barley seed with a maximum capacity of 1.5 tons per hour. With wheels and a compact, efficient design, they are also easy to move from one farmer’s property to another. At a cost of US $7,500 and a production time of 55 days, the machines have potential both for expansion within Ethiopia and scaling up for export.
Mr. Zogo, owner of Techno Agro Industrie in Benin, with Ali Mussa, Adama, Ethiopia. (Photo: Adane Firde)
Seeding future collaboration
Smallholding farmer cooperatives will take delivery of the first eight seed cleaners in the coming weeks. And while Ethiopian farmers are ready to experience the immediate benefits for their operations, this innovation is also showing promise for additional collaboration.
“Through existing GIC networks, we have connected with Techno Agro Industrie, a company manufacturing seed cleaners in Benin,” said Techno-Nejat’s owner Usman Abdella. “We welcome partnership opportunities, and we extend the red carpet,” Usman said.
As funding for GIC’s mechanization effort winds down, this organic, private Ethiopia-Benin partnership holds promise to generate continued benefits of innovation after the project has concluded, fostering South-South collaboration within Africa.
Stewards Global, trading as Afriseed, is a Zambia seed systems intervention success story. Thanks to support from the International Maize and Wheat Improvement Center (CIMMYT) and other partners such as the United States Agency for International Development (USAID) and the Alliance for a Green Revolution in Africa (AGRA), Afriseed is transforming rural farmers’ livelihoods through supplying drought tolerant maize seed.
What began as a start-up in 2007 has since grown to be one of the leading companies in Zambia’s seed industry. “I started this company with a team of three people. We did not have much, but we had a compelling vision,” says founder Stephanie Angomwile. “Initially, we were multiplying and distributing legume seed to the market as we had observed the deficit where it was very difficult for any serious farmer to procure improved and high-performing seed.”
“Having set up the business, we were fortunate to get AGRA’s support to secure proper industrial premises where we could focus our operations and serve the Zambian market,” she explains. “Using a basic drum seed dresser, we were able to churn out 100 metric tons of seed per season, which was quite impressive considering how rudimentary our equipment was.”
At this point, USAID bought into their vision and furnished Afriseed with a processing plant that could handle, sort, treat, and package seeds for both legume and maize. The company then pivoted to working with maize seed, based off the observation that most farmers were obtaining yields lower than the genetic potential of existing varieties.
“To do so, it was quite clear that we needed an institution that could help us break into the maize seed industry dominated by large multinational seed companies,” Angomwile explains. “This led us to partner with CIMMYT, which is a partnership that still exists today and has enabled us to accelerate our market penetration strategy through providing us with high-performing drought-tolerant genetics which are growing in popularity among farmers.”
Stephanie Angomwile gives a tour to representatives from the USAID special envoy and CIMMYT during a visit to Afriseed. (Photo: Tawanda Hove/CIMMYT)
The impact of CIMMYT support
Since 2017, CIMMYT has been working with Afriseed to help smallholder farmers access new and improved varieties that are drought-tolerant and can withstand seasonal weather variations induced by climate change. “As CIMMYT, our role is not only to breed improved genetic material that farmers can take up, but also to support business development for the private sector through intensive capacity building programs that position such entities to be sustainable and to excel in the absence project support,” explains Hambulo Ngoma, an agricultural economist working with CIMMYT. The organization has provided Afriseed with two high performing varieties so far: AFS 635 and AFS 638. In addition, CIMMYT has supported Afriseed in stimulating demand within the smallholder farmer market through facilitating the establishment of demonstration plots and designing targeted seed marketing strategies.
During CIMMYT Director General Bram Govaerts’ recent visit to Zambia, Ngoma highlighted that the organization is aware that small-to-medium enterprises may be constrained with regards to marketing budgets and market development investments. “As such, when we are convinced that there is a business case and an opportunity for a food security transformation, we usually support promising entities such as Afriseed with knowledge and resources to stimulate demand,” he said. “This is of extreme importance as farmers growing old, recycled seed from ancient varieties need to transition to new, improved varieties.”
Govaerts said, “We are happy we could contribute to the success of Afriseed in our own small way and we hope our partnership will take you to the next level.”
Afriseed has since grown and now comprises nearly 200 workers: 90 permanent staff and 110 casual workers during the peak season. Production has surged to an excess of 10,000 metric tons per season and there is a growing customer base stretching throughout all regions of the country. Angomwile is very grateful to have had a partner like CIMMYT, which facilitated Afriseed’s membership to the International Maize Consortium (IMC), a global body that provides access to an expanded genetic pool bringing exposure to new genetic gains. “Being a member of IMC is definitely an advantage for us as an entity because the seed supply market is highly competitive,” she explains. “So, we can now quickly become aware of the new genetic materials available and ask our research and development team — established through the immense support from CIMMYT — to develop new varieties for our target market.”
Through a series of exchange visits and trainings, CIMMYT has mentored the research and development team who are now in a position to breed their own varieties without external support. “The number of farmers in high potential areas that are remotely located that are still growing recycled seed is still quite large,” says Peter Setimela, a seed systems specialist who was part of the mentoring team. “We need to continuously render extensive support to entities such as Afriseed such that the seed quality deficiency gap can be greatly reduced.”
As the rains have been in abundance during this 2022/23 season, there is high anticipation that farmers who have grown seed from reputable seed suppliers such as Afriseed, are set for a bumper harvest.
Cover photo: Afriseed staff preparing legume seeds for processing in Zambia. (Photo: Agricomms)
CIMMYT scientists and private sector partners photographed during a dinner hosted by CIMMT Director General Bram Govaerts in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)
Goal 17 of the United Nations’ Sustainable Development Goals calls to “Strengthen the means of implementation and revitalize the global partnership for sustainable development”. The International Maize and Wheat Improvement Center (CIMMYT) answered this call to action by recently hosting a collaborative dinner to strengthen ties between the Center, the private sector and government partners in Malawi.
Hosted by CIMMYT Director General Bram Govaerts, the dinner followed a visit by US Special Envoy for Global Food Security Cary Fowler, Dina Esposito, Assistant to the Administrator, USAID Bureau of Resilience and Food Security and other USAID staff to discuss and witness the new Accelerated Innovation for Delivery Initiative (AID-I) in action.
“The challenges of today do not require a single sector approach but a pluralistic one in which partners from the private, public sectors agree to work hand in hand with science for impact organizations like CIMMYT and other CGIAR centers,” said Govaerts in his keynote address at the event. “I am very grateful for your support and your presence today is a testimony or our harmonious solidarity and spirit of collaboration in addressing food and nutrition security.”
Govaerts engages with government and agro industry captains in a dinner hosted in Lilongwe, Malawi. (Photo: Tawanda Hove/CIMMYT)
The meeting was attended by seed industry players, agricultural input distributors, food processors and Government representatives including Director of Agriculture Research Services Grace Kaudzu, who expressed her appreciation for the gathering.
“As government, our role is to create an enabling environment for the private sector to thrive and progressive development partners are always welcome. Such gatherings enable us to hear the needs of colleagues and partners from other sectors to create this environment,” she said.
Malawi has established an ambitious roadmap where legume exports and maize production are to be significantly scaled up. The AID-I project dovetails with this roadmap as it focuses on strengthening maize and legume seed systems and addressing systemic constraints in both value chains.
The dinner further facilitated private sector players to meet various CIMMYT specialists ranging from seed system experts, soil scientists, breeders and plant physiologists. According to Peter Setimela, a seed system specialist at CIMMYT, such meetings are critical as they enable a diversity of partners to know what the other has to offer.
“CIMMYT has a lot of expertise which these private sector partners can take advantage of,” Setimela said.
The AID-I project seeks to scale up existing and high potential innovations, technologies and business models as opposed to initiating new ones. This only makes sense considering that the implementation period is only two years and scaling up existing innovations give greater prospects for success.
CIMMYT Regional Representative Moses Siambi labelled the event a success citing the huge turnout of the partners.
“The effectiveness of our interventions is dependent on the strength of the relationships we have with our partners. Such a massive attendance is indicative of cordial relations between CIMMYT and the private sector in conjunction with the government,” Siambi said.
Govaerts closed the event by stressing that through harnessing the potential of convening power, the future is bright regardless of the reality of climate change and geopolitical conflicts.
On March 2, the China-Pakistan Joint Wheat Molecular Breeding International Lab (“Joint Lab”) was launched, funded by the Science and Technology Partnership Program, Ministry of Science and Technology of China, with the joint support from China‘s Ministry of Agriculture and Rural Affairs, National Agriculture Research Center of Pakistan and the International Maize and Wheat Improvement Center (CIMMYT).
The joint lab aims to develop new varieties with high yield and resistance to disease, enhancing breeding capacity and wheat production in Pakistan, where wheat is the largest food crop.
Dr Dumisani Kutwayo (second left) receives state of art Maize Lethal Necrosis test kits from Dr Wegary Dagne (second from right). (Photo: Tawanda Hove/CIMMYT)
The best results in combating pests and diseases exacerbated by climate change and protecting agricultural food systems originate from strategic partnerships between national governments and international research organizations. Such a synergy between Zimbabwe’s Department of Research and Specialist Services (DRSS) and the International Maize and Wheat Improvement Center (CIMMYT) was recognized for its effectiveness at an event hosted by Zimbabwe Plant Quarantine Services on January 9, 2023.
“The mandate of ensuring that Zimbabwe is protected from plant diseases and invasive pests is one which cannot be attained by government alone, but together with partners such as CIMMYT,” said Dumisani Kutywayo, Chief Director of DRSS.
Dagne Wegary Gissa, CIMMYT senior scientist in maize breeding, presented Kutywayo with the latest advanced PCR testing kits for detecting maize lethal necrosis. “We are committed to ensuring that we support Zimbabwe with improved maize and wheat varieties but also with rapid disease detection,” said Gissa.
Kutywayo and senior directors were given a tour of the plant quarantine services station, where they observed where all introduced maize seed is quarantined and tested before being incorporated into the local seed systems. Tanyaradzwa Sengwe, a seed health and quality expert, summarized the quarantine procedures and explained how the day-to-day operations between the two institutes are being implemented. This involves the management of imported seed, protocols of seed management and biosafety measures for the quarantine facility.
Government officials take part in a field visit of the quarantine facility set up by CIMMYT in Mazowe, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)
Expanding partnerships
Zimbabwe can now accelerate its crop improvement programs, Gissa indicated, because CIMMYT has provided the government access to doubled haploid (DH) technology. This technology significantly shortens the breeding cycle from seven years to approximately 3-4 years. DH technology has become an integral part of many commercial maize breeding programs, as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide.
CIMMYT-Zimbabwe has facilitated access for Zimbabwe’s maize breeding program to a CIMMYT DH facility in Kenya. Busiso Mavankeni, the head of the Crop Breeding Institute, related how it was very expensive for governments of developing countries to keep up with the latest breeding technology trends and so collaborating with CIMMYT is helping Zimbabwe. “Having access to the DH facility has been a great boon to our breeding program,” said Mavankeni.
CIMMYT and Zimbabwe are also engaged in capacity building exercises; involving training sessions across a variety of food system frameworks. Nhamo Mudada, Head of Plant Quarantine Services, acknowledged the multiple trainings ranging from disease identification and prevention systems to entomology related concepts. “Our technical capabilities have increased significantly, and we strongly attribute this to CIMMYT’s knowledge sharing mandate,” Mudada said.
“This sustainability is enabled by ensuring that our systems can screen genetic materials coming into the country and detect diseases which may be foreign to the agroecological region. CIMMYT has, over the years, supported the government not only from a financial perspective but also from a technical capacity perspective.
“Having reliable partners such as CIMMYT who generously invest in government priorities helps our country to be well positioned against threats to our food security,” said Kutywayo, “The key for creating and maintaining sustainable innovation is for development partners like CIMMYT to work within existing national frameworks,” said Kutywayo. “As the adverse effects of climate change intensify, such strategic partnerships are the only way to establish appropriate responses.”
“Our goal is to serve as critical partners for Zimbabwe’s agrifood programs. We have dedicated ourselves to be a long-term partners and will provide as much support as we can to ensure Zimbabwe’s food security,” Gissa said.
Bram Govaerts, director general of CIMMYT, said the collaboration with China can be regarded as one of the mutually beneficial examples of working together to safeguard the world’s food security.
“CIMMYT and China together can be partners,” said Govaerts. “CIMMYT can work with China for new wheat varieties that can fight climate change, for new maize varieties that can sustain new diseases.”
Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.
Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.
In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.
Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.
The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.
“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.
The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.
The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.
The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.
According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.
Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)
Attieke is the national dish of Ivory Coast. Served with fried fish or a vegetable stew, this tangy, fermented side is the heart and soul of Ivorian cuisine. And because it’s made from cassava, attieke is gluten free. So, in addition to its status as an iconic food of hospitality from Abidjan to Yamoussoukro, attieke has the potential to catch on in distant locales.
Producing attieke is complicated—transforming tubers in the ground into a delicious bowl of couscous-like cassava involves harvesting, peeling, grinding, fermenting, pressing, and effectively storing the processed crop. And in Ivory Coast, this work is traditionally performed almost entirely by women.
A cooperative member processes cassava using a manual grinder. (Photo: Sylvanus Odjo/CIMMYT)
A grueling process
Traditional methods for processing cassava, however, are very slow and extremely laborious. “We had to use a wooden plank with nails [to grind cassava]”, said N’Zouako Akissi Benedicte, president of the local agricultural cooperative in Mahounou, Nanafoue, about 30 kilometers from the capital, Yamoussoukro. To remove the liquid from the ground cassava, Ivorian women used “a kind of screw press” that required so much strength that “it caused us pain in the chest.”
In addition to being painful and grueling, these manual methods are terribly inefficient, generating about 30 kilograms of product per hour. Benedicte said a worker could process very little cassava in a day’s work using this traditional approach. Limited physically by this hard manual labor and struggling to generate enough income to establish financial independence, women working in cassava production in Ivory Coast face difficult challenges.
Three years ago, things started to change for Benedicte and other women working in cassava production in her area. At that time, her cooperative partnered with the Green Innovation Centers for the Agriculture and Food Sector (GIC) of Ivory Coast to receive training to use hydraulic-powered cassava grinders and presses. These machines, which GIC helped design and adapt for the climate and cultural context of Ivory Coast, promised to significantly increase speed of production while making all aspects of cassava work more accessible to women. For instance, the grinding capacity of the equipment is around 600 kg/hr.
Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative, ONE WORLD no hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.
Beyond helping Benedicte’s cooperative finance the purchase of the new machines and providing instruction in their use, GIC offered the agricultural cooperative a broad range of seminars on topics including selecting seed varieties, soil preparation, processing, and commercialization. This comprehensive approach set the women of Mahounou, Nanafoue up for success.
Gas powered mechanical cassava grinder in Mahounou, Ivory Coast. (Photo: Sylvanus Odjo/CIMMYT)
A message for my sisters
For Benedicte, the new grinder and press are making a huge difference. “The press with the hydraulic system is very efficient and we no longer need to use so much effort to remove the juice,” she said. According to Benedicte, workers in the cooperative are now processing up 1,000% more cassava per day and are only limited by the availability of raw material.
Better yield is also generating financial improvements for these women. “A woman who is working can buy her own machine and earn money that can be used for the education of her children,” Benedicte said. “I have a message for my sisters: a woman cannot solely depend on her husband and expect him to provide everything.”
GIC is working with 32 other groups like Benedicte in Ivory Coast, and the mechanization program has impacted the work of 1,000 women so far.
Taking the next step
There are still hurdles to overcome. In Mahounou, women producing cassava are relying on men to ignite the machines, and when a grinder or a press breaks down, it can be difficult to find spare parts. Benedicte believes electric machines could help solve both problems and take their business to the next level. “We would like to increase our production and sell it at an international level,” she said. “We would like to have a small processing unit here for women that could be used to produce high quality products for the international markets.”
GIC also has plans for a technology transfer that could reproduce this successful program in Malawi. Ivorian staff are collaborating with colleagues there to develop a cassava grinder and press for the Malawian context.
For Benedicte, there is more than food and income at stake in the success of these efforts. “It is important to be autonomous in taking charge of our own expenses,” she said. “This is being a woman. So, please, I invite my sisters to work.”
Cover photo: N’Zouako Akissi Benedicte, president of the local agricultural cooperative, with cooperative members and mechanical cassava grinders. (Photo: Sylvanus Odjo/CIMMYT)
This trip was an extension of their visit to the Türkiye Akdeniz University, Antalya, under the ICAR-NAHEP overseas fellowship program. The trip to CIMMYT program in Türkiye was with the objective to get exposure to CIMMYT’s germplasm and other new developments in wheat improvement that may be helpful for wheat production in the Northern Hill zone of India, which grows wheat on around 0.8 million hectares.
Ajaz Ahmed Lone, Principal Scientist, Genetics and Plant Breeding at the Dryland Agricultural Research Station, and Shabir Hussain Wani, Scientist, Genetics and Plant Breeding and Principal Investigator, aimed to learn more about CIMMYT’s wheat improvement systems.
Meeting at TAGEM, from left to right: Hilal Ar, Amer Dababat, Ajaz Lone, Shabir Wani, Fatma Sarsu, Aykut Ordukaya. (Photo: TAGEM)
After a brief introduction on CIMMYT’s international and soil borne pathogens program in Türkiye by Abdelfattah Dababat, CIMMYT Country Representative for Türkiye and program leader, the visitors met with General Directorate of Agricultural Research and Policies (TAGEM) representative Fatma Sarsu and her team to discuss possible collaboration and capacity building between the two institutions.
Ayşe Oya Akın, Amer Dababat, Shabir Wani, Sevinc Karabak, Senay Boyraz Topaloglu, Ajaz Lone and Durmus Deniz outside of the GenBank in Ankara, Türkiye. (Photo: GenBank)
Wheat improvement in Türkiye
Lone and Wani also visited the GenBank in Ankara to meet its head, Senay Boyraz Topaloglu, who gave a presentation about the GenBank and highlighted the site’s various facilities.
They then visited the Transitional Zone Agricultural Research Institute (TZARI) in Eskisehir, located in Central Anatolian Plateau of Türkiye, to hear about historical and current studies, particularly within the national wheat breeding program delivered by Head of the Breeding Department, Savas Belen. Belen briefed the visitors about the institute’s facilities, and the collaboration with CIMMYT scientists on wheat breeding activities and germplasm exchange.
Dababat and Gul Erginbas-Orakci, research associate at CIMMYT, presented an overview of soil borne pathogens activities in TZARI-Eskisehir.
Before the visitors departed to Konya, Director of TZARI, Sabri Cakir, welcomed the visitors in his office.
Visitors to TZARI, from left to right: Sali Sel, Shabir Wani, Ajaz Lone, Sabri Cakir, Amer Dababat, Savas Belen, Gul Erginbas-Orakci. (Photo: TZARI)
On the final day, the scientists were briefed about Bahri Dagdas International Agricultural Research Institute (BDIARI) through a presentation given by Murat Nadi Tas and Musa Turkoz. Bumin Emre Teke from the animal department presented a European project report on animal breeding, and Mesut Kirbas provided an overview of a European project on e-organic agriculture, as well as visits to the institute’s laboratory and field facilities and the newly established soil borne pathogens field platform.
Dababat said, “It was a fruitful short trip which enabled scientist from SKUAST-Kashmir and CIMMYT-Türkiye to share knowledge about wheat improvement activities and will give way to a road map for future research collaborations between the three institutions.”
Musa Turkoz, Amer Dababat, Ajaz Lone, Shabir Wani, Gul Erginbas-Orakci, Murat Nadi Tas, Bumin Emre Teke and Mesut Kirbas visit the BDIARI site in Konya, Türkiye. (Photo: BDIARI)
Members of Umoja, Tuaminiane, Upendo and Ukombozi groundnut farming groups in Naliendele, Tanzania showing their groundnut harvests in May 2022. (Photo: Susan Otieno/CIMMYT)
The Accelerated Varietal Improvement and Seed Delivery of Legumes and Cereals in Africa (AVISA) project has developed draft national groundnut target product profiles in Malawi, Mozambique, Sudan, Tanzania, Uganda and Zambia.
Groundnut is grown in eastern and southern Africa, where it remains an important food and oil crop from small holder farmers.
The new findings from the project are a result of work from groundnut crop breeding and improvement teams from the National Agricultural Research and Extension Systems (NARES) representatives from the six largest groundnut producing countries in the eastern and southern Africa region.
Their important research was carried out with the support of representatives from the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA) and CGIAR.
Developing target product profiles for groundnut
For the first time, through the International Maize and Wheat Improvement Center (CIMMYT)-led AVISA program, funded by the Bill & Melinda Gates Foundation, groundnut breeding teams discussed and documented country level priorities at a meeting in Dar es Salaam, Tanzania.
Their findings were developed using a standard target product profile template recently developed by CGIAR Excellence in Breeding (EiB) in conjunction with CGIAR’s Market Intelligence Initiative. The template serves as a tool to capture market segments and develop targeted product profiles.
The groundnut breeding teams also shared information on current groundnut production metrics and trends in the six national programs. This also helped to establish a common understanding of countries’ level research priorities.
Futhi Magagula from CCARDESA and Elailani Abdalla, Mohamed Ahmed and Abdelrazeg Badadi from ARC-Sudan deliberate on groundnut market segments for Sudan. (Photo: Biswanath Das/CIMMYT)
Agnes Gitonga, market strategist at CGIAR Genetic Innovations Action Area, who led the team in understanding and applying the template, explained that the quality of a target product profile (TPP) is dependent on how well market segments are defined. “To ensure target product profiles are an accurate reflection of customer needs, who include farmers, consumers, and processors,” she said.
“National groundnut teams nominated Country Product Design Teams that will meet nationally before the end of 2022 to review and update country TPPs. These multi-stakeholder teams will ensure that the needs of diverse groups are captured and that breeding efforts are accurately focused.”.
Harish Gandhi, Breeding Lead, Dryland Legumes and Cereals (DLC) at CIMMYT, further explained that a bottom-up approach for defining country and regional priorities was used, where each country defined market segments and target product profile based on the use of the produce and growing conditions of farmers. This strategy involved each country defining its market segments and TPP, which was based on the use of the produce and growing conditions of farmers.
Building on the draft national target product profiles that were defined at the meeting, participants went on to prioritize traits such as diseases, nutrition and stress tolerance. These factors can be critical at regional level and important in identifying potential locations for conducting phenotyping. The phenotyping locations are distributed based on capacity of stations in different countries to screen for traits, such as late leaf spot disease screening in Msekera in Zambia, which is a known hotspot for the disease.
“We had a good opportunity to consider grower needs as well as consumer needs in each country for purposes of defining the relevant groundnuts market segments. I believe this will have a positive impact on future work in groundnuts in the East and Southern Africa region,” reflected Gitonga.
The collaboration of the teams involved was a key factor for the project’s success so far and will be crucial in working towards its goals in the future.
“Involving different stakeholders in designing target product profile was an effective way of enabling transformation of individual preferences (area of interest) to collective preferences (targeted product) with consumer needs and markets in mind,” said Happy Daudi, Groundnut Breeding lead at the Tanzania Agricultural Research Institute (TARI).
Tanzania Agricultural Research Institute (TARI) Naliendele Station Groundnut Research Team ((L-R) Bakari Kidunda, Gerald Lukurugu, Anthony Bujiku and Dr. Happy Daudi) deliberate on national groundnut breeding priorities. (Photo: Biswanath Das/CIMMYT)
Strengthening groundnut breeding programs in east and southern Africa
The project’s first meeting will provide an important foundation for future research, which will use the new findings as a blueprint.
Biswanath Das, Plant Breeder, Groundnut for East and Southern Africa region and NARES Coordinator and Programming lead for EiB said, “Defining national TPPs, identifying regionally important traits and mapping a testing network are fundamental building blocks of a modern breeding program.”
At the meeting, a schedule was laid out for peer-to-peer assessments of breeding programs within the regional network to take stock of current efforts and gaps. This step helps to develop customized capacity development plans for each network partner.
“Through targeted and demand led capacity development, the East and Southern Africa groundnut crop improvement network aspires to strengthen the role of each network member in collaborative, regional breeding efforts,” Das said.
The meeting laid the ground for coordinated regional groundnut breeding and took steps towards formalizing a regional NARES-CGIAR-SME groundnut crop improvement network. By building on excellent connections that already exist among national groundnut breeding teams. Das underscored that the move will strengthen alignment of NARES, CGIAR and regional research efforts around a common vision of success.
In addition, David Okello who leads groundnut research at National Agriculture Research Organization (NARO) Uganda, noted that the meeting provided a good opportunity for consolidating the existing network. He also looked forward to welcoming more groundnut improvement programs in the region on board.
CIMMYT and Join Hope sign a partnership agreement on November 14. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) and Join Hope have cemented their partnership at a research cooperation agreement signing ceremony on November 14.
Join Hope produce seed products including maize, wheat, cotton, and soybean, as well as fertilizers, agricultural films and other products. The company will be providing some funding for five years and will receive access to CIMMYT’s international wheat nurseries and some maize inbred lines, in addition to training and other services. The funding will strengthen CIMMYT’s research efforts in China and create opportunities for training in Pakistan.
“CIMMYT and China have developed a win-win partnership that was established back in 1974,” said CIMMYT Director General Bram Govaerts. “Over 48 years, we have collaborated and advanced research for agricultural development in the areas of breeding, genomic research, and sustainable farming systems.”
Through this partnership, as much as 10.7 million tons of grain has been added to China’s wheat output. More than 26,000 CIMMYT wheat accessions were introduced and stored in China, and more than 300 wheat cultivars derived from CIMMYT germplasm have been released in China and are currently grown on nearly 10 percent of the Chinese wheat production area.
“The cooperation agreement that we sign today is another step in the right direction,” continued Govaerts. “It will bring us closer to the Chinese farmer and grain consumers who we all aim to serve.”