Skip to main content

Tag: Oromia

Farmers diversify crops in their fields and food on their plates

Farmers in the Bale area, in Ethiopia’s Oromia region, mainly produce wheat and barley. Temam Mama was no different — but some six years ago, the introduction of the two-wheel tractor offered him additional opportunities. This was part of an initiative of the International Maize and Wheat Improvement Center (CIMMYT) and the Africa RISING project.

Selected as one of the two farmers in the region to test the technology, Temam took a five-day training course to understand the technology and the basics behind operating calibrating and maintaining the equipment.

The two-wheel tractor is multipurpose. By attaching various implements to a single engine, farmers can use it for ploughing, planting, water pumping, transportation, harvesting and threshing. For Temam, who had always relied on a rainfed agricultural system, the technology has high importance — he will be able to use the nearby river as a source of water for irrigation purposes.

To start off, Temam allocated 0.25 hectare from his four hectares of land for irrigation and planted potatoes for the first time. He was delighted with his harvest and the income he collected afterwards.

“From the first harvest, I was able to collect 112 quintals of potato and made roughly $1,529 in total,” said Temam.

Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)
Temam Mama checks his crops. (Photo: Simret Yasabu/CIMMYT)

Eternal returns

His productive journey had just started. This income allowed Temam to keep growing his business. He bought a horse and cart for $550 and taking the advice from the project team, he constructed a Diffused Light Storage (DLS) system to store his potatoes for longer.

To diversify his income, Temam occasionally provides transport services to other farmers. Over time, Temam’s financial capital has continued to grow, bringing new ideas and a desire to change. He went from a wooden fence to a corrugated iron sheet, to an additional three rooms by the side of his house for rentals.

He is fortunate for having access to the river and the road, he explains. He also sees new opportunities emerging as the demand for potato in the market continues to grow. The price for one quintal of potato sometimes reaches $76 and matching the demand is unthinkable without the two-wheel tractor, he says.

In addition to the two-wheel tractor, he has also bought a water pump to enable him to increase the area that he can grow irrigated potato, garlic and pepper on. His target is to have two hectares irrigated soon.

Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Temam Mama drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

The future is bright

With his wife and four children, Temam is now living a well-deserved, healthy and exemplary life. Tomato, chilli and onion now grow on his farm ensuring a healthy diet, as well as diversified and nutritious food for the family. His economic status is also enabling him to support his community in times of need. “As part of my social responsibility, I have contributed around $152 for road and school constructions in our area,” noted Temam.

Under the Africa RISING project, Temam has proven that irrigation of high-value crops using two-wheel tractor pumping really works, and that it increases production and the profitability of farming. He has now stepped into a new journey with a bright future ahead of him.

“I plan to sell my indigenous cows to buy improved breeds and, in two to three years’ time, if I am called for refreshment training in Addis Ababa, I will arrive driving my own car,” concluded Temam.

Cover photo: Temam Mama’s family eats healthy and nutritious food produced through irrigation. (Photo: Simret Yasabu/CIMMYT)

Shared responsibilities and equal economic benefits

Women play a crucial role in Ethiopian agriculture. A significant portion of their time is spent in the field helping their male counterparts with land preparation, planting, weeding and harvesting. Despite this, women face barriers in accessing productive resources and gaining financial benefits.

In 2015 and 2016, there was a 9.8% gap in farming plot productivity between woman- and man- managed farms in Ethiopia, which translated to a $203.5 million loss in the country’s GDP. Access to mechanization services though service provision could contribute to decreasing this gap.

The International Maize and Wheat Improvement Center (CIMMYT) and the German development agency GIZ have been testing service provision models in different areas of Ethiopia to expand small-scale agricultural mechanization that would benefit both men and women.

Zewdu Tesfaye, a smallholder farmer and mother of two, lives in the Amba Alaje district of the Tigray region. Two years ago, she paid $8 to become a member of the Dellet Agricultural Mechanization Youth Association (DAMYA), established to provide agricultural mechanization services in the area.

Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)
Zewdu Tesfaye drives a two-wheel tractor to the irrigation area. (Photo: Simret Yasabu/CIMMYT)

Along with other members, Tesfaye provides various services to farmers in her area that need assistance. “I take part in every assignment the group is tasked with. I drive the two-wheel tractor and I support during threshing and irrigation,” she says.

Tesfaye has now secured a job providing these services and has started earning income. In November 2019, she received $72 from the association’s threshing services, which she saved in the bank. If women are given equal opportunities and equal access to resources, she says, they have the capacity to do anything that will empower themselves and change their families’ lives.

DAMYA currently has 12 members — eight men and four women — and all responsibilities are shared, with benefits divided equally. “Agricultural mechanization is an area less accessible to women,” explains group chair Alemayehu Abreha. “Thus, we highly encourage and motivate our women members to maximize their potential and invite other women to witness that everything is possible.”

Belay Tadesse, regional advisor for GIZ’s Integrated Soil Fertility Management project, explained that the initiative aims to benefit both women and men as service providers and recipients. Various trainings are provided for women, so that they are well acquainted with the machinery, as well as with the business aspects of each model. Events and other activities are also helping spread awareness, to attract and encourage more women to get involved in similar jobs, adds Tadesse.

Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)
Belay Tadesse shows young women from Dellet how the water should flow. (Photo: Simret Yasabu/CIMMYT)

In the Gudiya Billa district, located about 220 kilometers away from Addis Ababa, the introduction of the two-wheel tractor has been a blessing for many farmers in the area, especially women. For Kidane Mengistu, farmer and mother of six, harvesting season used to bring an added strain to her already existing chores. Now everything has changed. Through the new service provision model, Mengistu is able to get help with her daily tasks from Habtamu, a farmer professionally trained in agricultural mechanization. “We now hire Habtamu, a service provider, to get different services like threshing,” she says. “He does the job in few hours with reasonable amount of payment. This has given me ample time to spend on other household chores.”

Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)
Kidane Mengistu is much happier with the threshing service she gets from the service provider. (Photo: Simret Yasabu/CIMMYT)

Maize, sorghum and teff are the three main crops grown on Mengistu’s eight hectares of land. With the introduction of the two-wheel tractor and service provision model, she and Habtamu have been able to begin potato irrigation on two hectares — Mengistu provides the land while Habtamu provides and operates the water pump — and together they share costs and income. Mengistu says she and her family have seen firsthand the benefits of the two-wheel tractor and plan to purchase their own someday.

Leasing scheme helps farmers purchase small-scale agricultural machinery

A new small-scale agricultural machinery leasing scheme became operational in Amhara region, Ethiopia, in December 2019. The initiative offers farmers and group of farmers the opportunity to buy agricultural machineries with only 15-20% advance payment and the rest to be paid during a three-year period. Three farmers participated in the pilot phase of the project.

This initiative, led by the International Maize and Wheat Improvement Center (CIMMYT) and the German Development Agency (GIZ), is one more step to expand small-scale agricultural mechanization in Ethiopia. CIMMYT and GIZ have explored this area of work since 2015, in collaboration with government and private partners.

Subsistence modes of production, shortage of quality agricultural inputs and farm machinery services are some of the impediments to expand agricultural productivity and enhance food security in Ethiopia.

Small-scale agricultural mechanization, in the Ethiopian context, improves the quality of field operations. For example, farmers are benefiting from row planting, optimal plant population, more precise seed and fertilizer placement, efficient utilization of soil moisture during planting window. The timing of operations is also very important — delays in planting could have a serious negative impact on yield, and harvesting and threshing must be done at a time when there is no labor shortages. Small-scale mechanization drastically saves time and labor compared to conventional crop establishment systems, and reduces yield loss at the time of harvesting and threshing.

Farmers walk by irrigated potato fields during a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)
Farmers walk by irrigated potato fields during a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)

Despite these advantages, the adoption rate has been too low. A survey conducted by IFPRI and Ethiopia’s Central Statistical Agency in 2015 shows that only 9% of farmers in Ethiopia use machine power to plough their land, harvest their output, or thresh their crops. A significant number of farmers continues to use conventional farming systems, using animal and human labor.

Ephrem Tadesse, small-scale mechanization project agribusiness specialist with CIMMYT, said that most of the land holdings in Ethiopia are small and fragmented, and thus not suitable for large agricultural machineries.

CIMMYT and its partners introduced the two-wheel tractor and tested it in different parts of the country. One of the challenges has been the issue of access to finance to buy tractors and their accessories, because of their relatively high costs for individual farmers to buy with their own cash, noted Ephrem.

CIMMYT and GIZ have been working with selected microfinance institutes to pilot a machinery leasing scheme for small-scale agricultural mechanization. For several years, they have partnered with Waliya Capital Goods Finance Business Share in the Amhara region and with Oromia Capital Goods Lease Finance Business Share Company in the Oromia region. In December 2019, three farmers in the Machakel district of the Amhara region were the first ones to receive their machines through this scheme.

Farmers in the district of Machakel participate in a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)
Farmers in the district of Machakel participate in a field day to learn about the use of small-scale agricultural mechanization. (Photo: Simret Yasabu/CIMMYT)

Tesfaw Workneh is the father of one of the beneficiaries. “This is great opportunity for farmers like my son to access small-scale agricultural machinery,” said Tesfaw. His son only paid 30,000 Ethiopian birr, about $1,000 — that is 20% of the total cost to own the different agricultural implements. Now, he is able to provide service to other farmers and get income, he explained.

Several types of machinery are being considered for this leasing scheme, using the two wheel-tractor as the source of power: planters, harvesters/reapers, threshers/shellers, trailers and water pumps.

For farmers like Alemayew Ewnetu, this kind of machinery is a novelty that makes farming easier. “Today, my eyes have seen miracles. This is my first time seeing such machineries doing everything in a few minutes. We have always relayed on ourselves and the animals. Now I am considering selling some of my animals to buy the implements,” said Alemayew.

Demelsah Ynew, Deputy Director of Waliya Capital Goods Finance Business Share, noted that his company was established six years ago to provide services in the manufacturing sector. However, after a discussion with CIMMYT and GIZ, the company agreed to extend its services to the agriculture sector. When revising our role, he noted, we considered the limitations farmers have in adopting technologies and the vast opportunity presented in the agricultural sector. Demelsah explained that to benefit from the leasing scheme, farmers will have to fulfill a few minimal criteria, including being residents of the area and saving 15-20% of the total cost.

Ethiopian farmers weatherproof their livelihoods

Many maize farmers in sub-Saharan Africa grow old varieties that do not cope well under drought conditions. In the Oromia region of Ethiopia, farmer Sequare Regassa is improving her family’s life by growing the newer drought-tolerant maize variety BH661. This hybrid was developed by the Ethiopian Institute of Agricultural Research (EIAR), using CIMMYT’s drought-tolerant inbred lines and one of EIAR’s lines. It was then officially released in 2011 by the EIAR as part of the Drought Tolerant Maize for Africa (DTMA) project, funded by the Bill & Melinda Gates Foundation and continued under the Stress Tolerant Maize for Africa (STMA) initiative.

“Getting a good maize harvest every year, even when it does not rain much, is important for my family’s welfare,” said Regassa, a widow and mother of four, while feeding her granddaughter with white injera, a flat spongy bread made of white grain maize.

Since her husband died, Regassa has been the only breadwinner. Her children have grown up and established their own families, but the whole extended family makes a living from their eight-hectare farm in Guba Sayo district.

Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)

On the two hectares Regassa cultivates on her own, she rotates maize with pepper, sweet potato and anchote, a local tuber similar to cassava. Like many farming families in the region, she grows maize mainly for household food consumption, prepared as bread, soup, porridge and snacks.

Maize represents a third of cereals grown in Ethiopia. It is cheaper than wheat or teff — a traditional millet grain — and in poor households it can be mixed with teff to make the national staple, injera.

In April, as Regassa was preparing the land for the next cropping season, she wondered if rains would be good this year, as the rainy season was coming later than usual.

In this situation, choice of maize variety is crucial.

She used to plant a late-maturing hybrid released more than 25 years ago, BH660, the most popular variety in the early 2000s. However, this variety was not selected for drought tolerance. Ethiopian farmers face increasing drought risks which severely impact crop production, like the 2015 El Nino dry spell, leading to food insecurity and grain price volatility.

Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)

Laborious development for fast-track adoption

Under the DTMA project, maize breeders from CIMMYT and the Ethiopian Institute for Agricultural Research (EIAR) developed promising drought-tolerant hybrids which perform well under drought and normal conditions. After a series of evaluations, BH661 emerged as the best candidate with 10% better on-farm grain yield, higher biomass production, shorter maturity and 34% reduction in lodging, compared to BH660.

The resulting BH661 variety was released in 2011 for commercial cultivation in the mid-altitude sub-humid and transition highlands.

The year after, as farmers experienced drought, the Ethiopian extension service organized BH661 on-farm demonstrations, while breeders from CIMMYT and EIAR organized participatory varietal selection trials. Farmers were impressed by the outstanding performances of BH661 during these demos and trials and asked for seeds right away.

Seed companies had to quickly scale up certified seed production of BH661. The STMA project team assisted local seed companies in this process, through trainings and varietal trials. Companies decided to replace the old hybrid, BH660.

Comparison of the amount of certified seed production of BH660 (blue) and BH661 (red) from 2012 to 2018. (Graph: Ertiro B.T. et al. 2019)
Comparison of the amount of certified seed production of BH660 (blue) and BH661 (red) from 2012 to 2018. (Source: Ertiro B.T. et al. 2019)

“In addition to drought tolerance, BH661 is more resistant to important maize diseases like Turcicum leaf blight and grey leaf spot,” explained Dagne Wegary, a maize breeder at CIMMYT. “For seed companies, there is no change in the way the hybrid is produced compared to BH660, but seed production of BH661 is much more cost-effective.”

EIAR’s Bako National Maize Research Center supplied breeder seeds to several certified seed producers: Amhara Seed Enterprise (ASE), Bako Agricultural Research Center (BARC), Ethiopian Seed Enterprise (ESE), Oromia Seed Enterprise (OSE) and South Seed Enterprise (SSE). Certified seeds were then distributed through seed companies, agricultural offices and non-governmental organizations, with the technical and extension support of research centers.

Sequare Regassa stands next to her fields holding a wooden farming tool. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa stands next to her fields holding a wooden farming tool. (Photo: Simret Yasabu/CIMMYT)

From drought risk to clean water

After witnessing the performance of BH661 in a neighbor’s field, Regassa asked advice from her local extension officer and decided to use it. She is now able to produce between 11-12 tons per hectare. She said her family life has changed forever since she started planting BH661.

With higher maize grain harvest, she is now able to better feed her chickens, sheep and cattle. She also sells some surplus at the local market and uses the income for her family’s needs.

Sequare Regassa feeds her granddaughter with maize injera. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa feeds her granddaughter with maize injera. (Photo: Simret Yasabu/CIMMYT)

“If farmers follow the recommended fertilizer application and other farming practices, BH661 performs much better than the old BH660 variety,” explained Regassa. “If we experience a drought, it may be not that bad thanks to BH661’s drought tolerance.”

Regassa buys her improved seeds from the Bako Research Station, as well as from farmers’ cooperative unions. These cooperatives access seeds from seed companies and sell to farmers in their respective districts. “Many around me are interested in growing BH661. Sometimes we may get less seeds than requested as the demand exceeds the supply,” Regassa said.

She observed that maize prices have increased in recent years. A 100 kg bag of maize that used to sell for 200–400 Ethiopian birr (about $7–14) now sells for 600–700 Ethiopian birr (about $20–23). With the increased farmers’ wealth in her village, families were able to pay collectively for the installation of a communal water point to get easy access to clean water.

“Like women’s role in society, no one can forget the role maize has in our community. It feeds us, it feeds our animals, and cobs are used as fuel. A successful maize harvest every year is a boon for our village,” Regassa concluded.

New publications: Gender and agricultural innovation in Oromia region, Ethiopia

Despite formal decentralization, agricultural services in Ethiopia are generally “top-down,” claim the authors of a recently published paper on gender and agricultural innovation. “Extension services,” they explain, “are supply-driven, with off-the-shelf technologies transferred to farmers without expectation of further adaptation.”

Drawing on GENNOVATE case studies from two wheat-growing communities in Ethiopia’s Oromia region, the authors examine how a small sample of women and men smallholders attempt to innovate with improved wheat seed, row planting, and the broad bed maker, introduced through the Ethiopian agricultural extension system. They also introduce the concept of tempered radicals, an analytic lens used to understand how individuals try to initiate change processes, and assess whether this can have validity in rural settings.

Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)

As the authors demonstrate through their literature review on cultural norms in the region, there are powerful institutional gender constraints to change processes, which can be punitive for women.

Ethiopian women smallholders are particularly disadvantaged because they have limited access to productive assets such as irrigation water, credit and extension services. Therefore, they find it harder to implement innovations. The study asserts that strategies to support innovators, and women innovators in particular, must be context-specific as well as gender-sensitive.

Read the full article “Gender and agricultural innovation in Oromia region, Ethiopia: from innovator to tempered radical” in Gender, Technology and Development.

Development of research methodology and data collection was supported by the CGIAR Gender and Agricultural Research Network, the World Bank, the Government of Mexico, the Government of Germany, and the CGIAR Research Programs on Maize and Wheat. Data analysis was supported by the Bill & Melinda Gates Foundation.

Check out other recent publications by CIMMYT researchers below:

  1. Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: in search of feasible crops in Bangladesh. 2019. Mottaleb, K.A., Singh, P.K., Xinyao He, Akbar Hossain, Kruseman, G., Erenstein, O. In: Land Use Policy v. 82, p. 1-12.
  2. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. 2019. González-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  3. Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. 2019. Gordon, E., Kaviani, M., Kagale, S., Payne, T.S., Navabi, A. In: Genetic Resources and Crop Evolution v. 66, no. 2, p. 335-348.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. 2019. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Improved water-management practices and their impact on food security and poverty: empirical evidence from rural Pakistan. 2019. Ali, A., Rahut, D.B., Mottaleb, K.A. En: Official Journal of the World Water Council Water Policy v. 20, no. 4, p. 692-711.
  6. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. 2019. Juliana, P., Montesinos-Lopez, O.A., Crossa, J., Mondal, S., Gonzalez-Perez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.A., Velu, G., Dreisigacker, S., Shrestha, S., Perez-Rodriguez, P., Pinto Espinosa, F., Singh, R.P. In: Theoretical and Applied Genetics v. 132, no. 1, p. 177-194.
  7. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. 2019. Mahuku, G., Nzioki, H., Mutegi, C., Kanampiu, F., Narrod, C., Makumbi, D. In: Food Control v. 96, p. 219-226.
  8. Root-lesion nematodes in cereal fields: importance, distribution, identification, and management strategies. 2019. Mokrini, F., Viaene, N., Waeyenberge, L., Dababat, A.A., Moens, M. In: Journal of Plant Diseases and Protection v. 126, no. 1, p. 1-11.
  9. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Agriculture, Ecosystems and Environment v. 272, p. 237-245.
  10. Threats of tar spot complex disease of maize in the United States of America and its global consequences. 2019. Mottaleb, K.A., Loladze, A., Sonder, K., Kruseman, G., San Vicente, F.M. In: Mitigation and Adaptation Strategies for Global Change v. 24, no. 2, p. 281–300.