Skip to main content

Tag: Obregon

The race against time to breed a wheat to survive the climate crisis

CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.

Reporter visited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.

Read more: https://www.theguardian.com/environment/2022/jun/12/wheat-breeding-climate-crisis-drought-resistant

Matching seed to farmer

Farmer Raj Narayin Singh stands in his wheat field in Bihar, India. (Photo: Petr Kosina/CIMMY)
Farmer Raj Narayin Singh stands in his wheat field in Bihar, India. (Photo: Petr Kosina/CIMMYT)

Since the earliest days of global wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT), breeders have made their crossing selections to meet farmers’ requirements in specific environments throughout the world’s wheat-growing regions.

To streamline and make this trait selection process consistent, in the 1970s CIMMYT breeders developed 15 mega-environments — sets of farming, climatic, weather, and geographic conditions to use as profiles for testing their varieties.

They took this a step further in the 1980s by developing sets of profiles for their varieties with common characteristics in current — and projected — climatic, soil and hydrological characteristics as well as socioeconomic features such as end-use quality and agronomic practices.

In newly presented research, CIMMYT wheat scientist Leo Crespo has taken another look at these mega-environments in the form of target population of environments (TPE) — specifically the ones that fall in the bread basket wheat production area of India — to create more nuanced definitions based on updated underlying conditions and desired traits.

Using meteorological and soil data, along with information about farmers’ practices in each region and more advanced analytical methods, Crespo defined three new specific TPEs for the region:

  • TPE1, in the optimally irrigated Northwestern Plain Zone with higher yield potential;
  • TPE2, in the irrigated, heat-stressed Northeastern Plains Zone; and
  • TPE3, in the drought-stressed Central-Peninsular Zone.

These TPEs encompass more than 28 million hectares, equivalent to more than 97% of India’s total wheat production area.

“While the mega-environments can be broad and transcontinental, we defined the TPE at a more regional level,” said Crespo. “In fact, two of our new TPEs — the NWPZ (TPE1) and part of the NEPZ (TPE2) — have distinct climate and soil characteristics, but they both fall under the same mega-environment: ME1.”

Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, in Mexico's Sonora state. (Photo: Marcia MacNeil/CIMMYT)
Elite wheat varieties at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Marcia MacNeil/CIMMYT)

Comparing international environments

Crespo later cross-checked these TPEs with the testing environments that CIMMYT wheat breeders use in the research station in Obregon, in Mexico’s Sonora Valley.

Obregon has long been valued by wheat breeders worldwide for its unique capacity to simulate many wheat growing conditions. Wheat grown in the various testing environments replicate in Obregon — known as selection environments (SEs) — goes through an arduous testing process including testing in other agroeconomic zones and undergoing pest and disease infestations to demonstrate its resilience.

This process, though intensive, is much cheaper and more efficient than testing each potential new wheat line in every major wheat growing area. That is why it is so important to verify that the decisions made in Obregon are the right ones for farmers in the diverse growing areas of the world.

Crespo used data from one of CIMMYT’s global wheat trials, the Elite Spring Wheat Yield Trials (ESWYT), to estimate the genetic correlation between the TPEs and in Obregon, selection response indicators and performance prediction. He found that wheat lines that perform well in the Obregon selection environments are very likely to display high performance in the TPEs he defined in India.

“Our results provide evidence that the selection environments in CIMMYT’s Obregon research station correlate with international sites, and this has led to high genetic gains in targeted regions,” explained Crespo.

“We can achieve even greater gains by targeting selections for farmers in the TPEs and improving the testing in those TPEs, along with the high-quality evaluations from the selection environment.”

These findings confirming the relationship between the selection environments and farmers’ fields in one of the world’s largest wheat growing regions allow CIMMYT to realize its mission to deliver superior wheat germplasm to national partners for their breeding programs, or for direct release as varieties for farmers throughout the world.

Watch Leo Crespo’s full presentation at the BGRI Technical Workshop.

“CIMMYT is at my heart”

After a 37-year career, Hans-Joachim Braun is retiring from the International Maize and Wheat Improvement Center (CIMMYT). As the director of the Global Wheat Program and the CGIAR Research Program on Wheat, Braun’s legacy will resonate throughout halls, greenhouses and fields of wheat research worldwide.

We caught up with him to capture some of his career milestones, best travel stories, and vision for the future of CIMMYT and global wheat production. And, of course, his retirement plans in the German countryside.

Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)
Beyh Akin (left) and Hans Braun in wheat fields in Izmir, Turkey, in 1989. (Photo: CIMMYT)

Major career milestones

Native to Germany, Braun moved to Mexico in 1981 to complete his PhD research at CIMMYT’s experimental station in Obrégon, in the state of Sonora. His research focused on identifying the optimum location to breed spring wheat for developing countries — and he found that Obrégon was in fact the ideal location.

His first posting with CIMMYT was in Turkey in 1985, as a breeder in the International Winter Wheat Improvement Program (IWWIP). This was the first CGIAR breeding program hosted by a CIMMYT co-operator, that later developed into the joint Turkey, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) winter wheat program. “In 1990, when the Commonwealth of Independent States was established, I saw this tremendous opportunity to work with Central Asia to develop better wheat varieties,” he said. “Today, IWWIP varieties are grown on nearly 3 million hectares.”

Although Braun was determined to become a wheat breeder, he never actually intended to spend his entire career with one institution. “Eventually I worked my entire career for CIMMYT. Not so usual anymore, but it was very rewarding. CIMMYT is at my heart; it is what I know.”

Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (center), Sanjaya Rajaram (third from right), Ravi Singh (first from right) and other colleagues stand for a photograph during a field day at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

“Make the link to the unexpected”

One of Braun’s standout memories was a major discovery when he first came to Turkey.  When evaluating elite lines from outside the country — in particular lines from a similar environment in the Great Plains — his team noticed they were failing but nobody knew why.

Two of his colleagues had just returned from Australia, where research had recently identified micronutrient disorders in soil as a major constraint for cereal production. The team tried applying micro-nutrients to wheat plots, and it became crystal clear that zinc deficiency was the underlying cause. “Once aware that micro-nutrient disorders can cause severe growth problems, it was a minor step to identify boron toxicity as another issue. Looking back, it was so obvious. The cover picture of a FAO book on global soil analysis showed a rice field with zinc deficiency, and Turkey produces more boron than the rest of the world combined.”

“We tested the soil and found zinc deficiency was widespread, not just in the soils, but also in humans.” This led to a long-term cooperation with plant nutrition scientists from Cukurova University, now Sabanci University, in Istanbul.

But zinc deficiency did not explain all growth problems. Soil-borne diseases — cyst and lesion nematodes, and root and crown rot — were also widespread. In 1999, CIMMYT initiated a soil-borne disease screening program with Turkish colleagues that continues until today.  Over the coming decade, CIMMYT’s wheat program will make zinc a core trait and all lines will have at least 25% more zinc in the grain than currently grown varieties.

After 21 years in Turkey, Braun accepted the position as director of CIMMYT’s Global Wheat Program and moved back to Mexico.

Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)
Left to right: Zhonghu He, Sanjaya Rajaram, Ravi Singh and Hans Braun during a field trip in Anyang, South Korea, in 1990. (Photo: CIMMYT)

Partnerships and friendships

Braun emphasized the importance of “mutual trust and connections,” especially with cooperators in the national agricultural research systems of partner countries. This strong global network contributed to another major milestone in CIMMYT wheat research: the rapid development and release of varieties with strong resistance to the virulent Ug99 race of wheat rust. This network, led by Cornell University, prevented a potential global wheat rust epidemic.

CIMMYT’s relationship with Mexico’s Ministry of Agriculture and the Obregón farmers union, the Patronato, is especially important to Braun.

In 1955, Patronato farmers made 200 hectares of land available, free if charge, to Norman Borlaug. The first farm community in the developing world to support research, it became CIMMYT’s principal wheat breeding experimental station: Norman Borlaug Experimental Station, or CENEB.  When Borlaug visited Obregón for the last time in 2009, the Patronato farmers had a big surprise.

“I was just getting out of the shower in my room in Obregón when I got a call from Jorge Artee Elias Calles, the president of the Patronato,” Braun recalls. “He said, ‘Hans, I’m really happy to inform you that Patronato decided to donate $1 million.’”

The donation, in honor of Borlaug’s lifetime of collaboration and global impact, was given for CIMMYT’s research on wheat diseases.

“This relationship and support from the Obregón farmers is really tremendous,” Braun says. “Obregón is a really special place to me. I am admittedly a little bit biased, because Obregón gave me a PhD.”

Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Hans Braun (right) and colleagues in a wheat field in CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Norman Borlaug (left), Ravi Singh (center) and Hans Braun stand in the wheat fields at CIMMYT’s experimental station in Ciudad Obregón, in Mexico’s Sonora state. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug's birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Sanjaya Rajaram, unknown, unknown, unknown, Norman E. Borlaug, unknown, Ken Sayre, Arnoldo Amaya, Rodrigo Rascon and Hans Braun during Norman Borlaug’s birthday celebration in March 2006. (Photo: CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Left to right: Hans Braun, Ronnie Coffman, Jeanie Borlaug-Laube, Thomas Lumpkin, Antonio Gándara, Katharine McDevitt and unknown during the unveiling of the Norman Borlaug statue at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico, in 2012. (Photo: Xochil Fonseca/CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)
Participants in the first technical workshop of the Borlaug Global Rust Initiative in 2009 take a group photo at CIMMYT’s experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: CIMMYT)

A worldwide perspective

Braun’s decades of international research and travel has yielded just as many stories and adventures as it has high-impact wheat varieties.

He remembers seeing areas marked with red tape as he surveyed wheat fields in Afghanistan in the 1990s, and the shock and fear he felt when he was informed that they were uncleared landmine areas. “I was never more scared than in that moment, and I followed the footsteps of the guy in front of me exactly,” Braun recalls.

On a different trip to Afghanistan, Braun met a farmer who had struggled with a yellow rust epidemic and was now growing CIMMYT lines that were resistant to it.

“The difference between his field and his neighbors’ was so incredible. When he learned I had developed the variety he was so thankful. He wanted to invite me to his home for dinner. Interestingly, he called it Mexican wheat, as all modern varieties are called there, though it came from the winter wheat program in Turkey.”

Seeing the impact of CIMMYT’s work on farmers was always a highlight for Braun.

Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)
Hans Braun, Director of CIMMYT’s Global Wheat Program of CIMMYT, is interviewed by Ethiopian journalist at an event in 2017. (Photo: CIMMYT)

CIMMYT’s future

Braun considers wheat research to be still in a “blessed environment” because a culture of openly-shared germplasm, knowledge and information among the global wheat community is still the norm. “I only can hope this is maintained, because it is the basis for future wheat improvement.”

His pride in his program and colleagues is clear.

“A successful, full-fledged wheat breeding program must have breeders, quantitative genetics, pathology, physiology, molecular science, wide crossing, quality, nutrition, bioinformatics, statistics, agronomy and input from economists and gender experts,” in addition to a broad target area, he remarked at an acceptance address for the Norman Borlaug Lifetime Achievement award.

“How many programs worldwide have this expertise and meet the target criteria? The Global Wheat Program is unique — no other wheat breeding program has a comparable impact. Today, around 60 million hectares are sown with CIMMYT-derived wheat varieties, increasing the annual income of farmers by around $3 billion dollars. Not bad for an annual investment in breeding of around $25 million dollars. And I don’t take credit for CIMMYT only, this is achieved through the excellent collaboration we have with national programs.”

A bright future for wheat, and for Braun

General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)
General view Inzlingen, Germany, with Basel in the background. (Photo: Hans Braun)

After retirement, Braun is looking forward to settling in rural Inzlingen, Germany, and being surrounded by the beautiful countryside and mountains, alongside his wife Johanna. They look forward to skiing, running, e-biking and other leisure activities.

“One other thing I will try — though most people will not believe me because I’m famous for not cooking — but I am really looking into experimenting with flour and baking,” he says.

Despite his relaxing retirement plans, Braun hopes to continue to support wheat research, whether it is through CIMMYT or through long friendships with national partners, raising awareness of population growth, the “problem of all problems” in his view.

“We have today 300 million more hungry people than in 1985. The road to zero hunger in 2030 is long and will need substantial efforts. In 1970, Organization for Economic Co-Operation and Development (OECD) countries agreed to spend 0.7% of GDP on official development assistance. Today only 6 countries meet this target and the average of all OECD countries has never been higher than 0.4%. Something needs to change to end extreme poverty — and that on top of COVID-19. The demand for wheat is increasing, and at the same time the area under wheat cultivation needs to be reduced, a double challenge. We need a strong maize and wheat program. The world needs a strong CIMMYT.”

Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Left to right: Bruno Gerard, Ram Dhulipala, David Bergvinson, Martin Kropff, Víctor Kommerell , Marianne Banziger, Dave Watson and Hans Braun stand for a photograph at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Former Director General of CIMMYT, Thomas Lumpkin (center), Hans Braun (next right) and Turkish research partners on a field day at a wheat landraces trial in Turkey. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (sixth from right) stands for a photograph with colleagues during a work trip to CIMMYT’s Pakistan office in 2020. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)
Hans Braun (seventh from left) visits wheat trials in Eskişehir, Turkey in 2014. (Photo: CIMMYT)

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Retrospective quantitative genetic analysis and genomic prediction of global wheat yields

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago. Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites. They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana.

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Cover photo: Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón, Mexico. (Photo: CIMMYT)

Mexican Secretary of Agriculture joins new partners and longtime collaborators in Obregon

Secretary Villalobos (center) tours the wheat fields at the experimental station in Obregón with CIMMYT scientists. (Photo: Ernesto Blancarte)
Secretary Villalobos (center) tours the wheat fields at the experimental station in Obregón with CIMMYT scientists. (Photo: Ernesto Blancarte)

“The dream has become a reality.” These words by Victor Manuel Villalobos Arambula, Secretary of Agriculture and Rural Development of Mexico, summed up the sentiment felt among the attendees at the International Maize and Wheat Improvement Center (CIMMYT) Global Wheat Program Visitors’ Week in Ciudad Obregon, Sonora.

In support of the contributions to global and local agricultural programs, Villalobos spoke at the week’s field day, or “Dia de Campo,” in front of more than 200 CIMMYT staff and visitors hailing from more than 40 countries on March 20, 2019.

Villalobos recognized the immense work ahead in the realm of food security, but was optimistic that young scientists could carry on the legacy of Norman Borlaug by using the tools and lessons that he left behind. “It is important to multiply our efforts to be able to address and fulfill this tremendous demand on agriculture that we will face in the near future,” he stated.

The annual tour at the Campo Experimental Norman E. Borlaug allows the global wheat community to see new wheat varieties, learn about latest research findings, and hold meetings and discussions to collaborate on future research priorities.

Given the diversity of attendees and CIMMYT’s partnerships, it is no surprise that there were several high-level visits to the field day.

A high-level delegation from India, including Balwinder Singh Sidhu, commissioner of agriculture for the state of Punjab, AK Singh, deputy director general for agricultural extension at the Indian Council of Agricultural Research (ICAR), and AS Panwar, director of ICAR’s Indian Institute of Farming Systems Research, joined the tour and presentations. All are longtime CIMMYT collaborators on efforts to scale up and disseminate sustainable intensification and climate smart farming practices.

Panwar, who is working with CIMMYT and partners to develop typologies of Indian farming systems to more effectively promote climate smart practices, was particularly interested in the latest progress in biofortification.

“One of the main objectives of farming systems is to meet nutrition of the farming family. And these biofortified varieties can be integrated into farming systems,” he said.

Secretary Villalobos (right) and Hans Braun, Program Director for CIMMYT's Global Wheat Program, stand for a photograph in a wheat field at the experimental station in Obregón. (Photo: Ernesto Blancarte)
Secretary Villalobos (right) and Hans Braun, Program Director for CIMMYT’s Global Wheat Program, stand for a photograph in a wheat field at the experimental station in Obregón. (Photo: Ernesto Blancarte)

In addition, a delegation from Tunisia, including dignitaries from Tunisia’s National Institute of Field Crops (INGC), signed a memorandum of understanding with CIMMYT officials to promote cooperation in research and development through exchange visits, consultations and joint studies in areas of mutual interest such as the diversification of production systems. INGC, which conducts research and development, training and dissemination of innovation in field crops, is already a strong partner in the CGIAR Research Program on Wheat’s Precision Phenotyping Platform for Wheat Septoria leaf blight.

At the close of the field day, CIMMYT wheat scientist Carolina Rivera was honored as one of the six recipients of the annual Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award. The award offers professional development opportunities for women working in wheat.   “Collectively, these scientists are emerging as leaders across the wheat community,” said Maricelis Acevedo, Associate Director for Science for Cornell University’s Delivering Genetic Gain in Wheat Project, who announced Rivera’s award.

CGIAR Research Program on Wheat and Global Wheat Program Director Hans Braun also took the opportunity to honor and thank three departing CIMMYT wheat scientists. Alexey Morgounov, Carlos Guzman and Mohammad Reza Jalal Kamali received Yaquis, or statues of a Yaqui Indian. The figure of the Yaqui Indian is a Sonoran symbol of beauty and the gifts of the natural world, and the highest recognition given by the Global Wheat Program.

The overarching thread that ran though the Visitor’s Week was that all were in attendance because of their desire to benefit the greater good through wheat science. As retired INIFAP director and Global Wheat Program Yaqui awardee Antonio Gándara said, recalling his parents’ guiding words, “Siempre, si puedes, hacer algo por los demas,  porque es la mejor forma de hacer algo por ti. [Always, if you can, do something for others, because it’s the best way to do something for yourself].”

Participants in the Field Day 2019 at the experimental station in Obregón stand for a group photo. (Photo: Ernesto Blancarte)
Participants in the Field Day 2019 at the experimental station in Obregón stand for a group photo. (Photo: Ernesto Blancarte)

Q&A with 2019 Women in Triticum awardee Carolina Rivera

Carolina Rivera shakes the hand of Maricelis Acevedo, Associate Director for Science for Cornell University’s Delivering Genetic Gain in Wheat Project and WIT mentor, after the announcement of the WIT award winners.
Carolina Rivera (left) shakes the hand of Maricelis Acevedo, Associate Director for Science for Cornell University’s Delivering Genetic Gain in Wheat Project and WIT mentor, after the announcement of the WIT award winners.

As a native of Obregon, Mexico, Carolina Rivera has a unique connection to the heart of Norman Borlaug’s wheat fields. She is now carrying on Borlaug’s legacy and working with wheat as a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and data coordinator with the International Wheat Yield Partnership (IWYP).

Given her talents and passion for wheat research, it is no surprise that Rivera is one of the six recipients of the 2019 Jeanie Borlaug Laube Women in Triticum (WIT) Early Career Award. As a young scientist at CIMMYT, she has already worked to identify new traits associated with the optimization of plant morphology aiming to boost grain number and yield.

The Jeanie Borlaug Laube WIT Award provides professional development opportunities for women working in wheat. The review panel responsible for the selection of the candidates at the Borlaug Global Rust Initiative (BGRI), was impressed by her commitment towards wheat research on an international level and her potential to mentor future women scientists.

Established in 2010, the award is named after Jeanie Borlaug Laube, wheat science advocate and mentor, and daughter of Nobel Laureate Dr. Norman E. Borlaug. As a winner, Rivera is invited to attend a training course at CIMMYT in Obregon, Mexico, in spring 2020 as well as the BGRI 2020 Technical Workshop, to be held in the UK in June 2020. Since the award’s founding, there are now 50 WIT award winners.

The 2019 winners were announced on March 20 during CIMMYT’s Global Wheat Program Visitors’ Week in Obregon.

In the following interview, Rivera shares her thoughts about the relevance of the award and her career as a woman in wheat science.

Q: What does receiving the Jeanie Borlaug Laube WIT Award mean to you?

I feel very honored that I was considered for the WIT award, especially after having read the inspiring biographies of former WIT awardees. Receiving this award has encouraged me even more to continue doing what I love while standing strong as a woman in science.

It will is a great honor to receive the award named for Jeanie Borlaug, who is a very active advocate for wheat research. I am also very excited to attend the BGRI Technical Workshop next year, where lead breeders and scientists will update the global wheat community on wheat rust research. I expect to see a good amount of women at the meeting!

Q: When did you first become interested in agriculture?

My first real encounter with agriculture was in 2009 when I joined CIMMYT Obregon as an undergraduate student intern. I am originally from Obregon, so I remember knowing about the presence of CIMMYT, Campo Experimental Norman E. Borlaug (CENEB) and Instituto Nacional de Investigación Forestales Agrícolas y Pecuario (Inifap) in my city but not really understanding the real importance and impact of the research coming from those institutions. After a few months working at CIMMYT, I became very engrossed in my work and visualized myself as a wheat scientist.

Q: Why is it important to you that there is a strong community of women in agriculture?

We know women play a very important role in agriculture in rural communities, but in most cases they do not get the same rights and recognition as men. Therefore, policies — such as land rights — need to be changed and both women and men need to be educated in gender equity. I think the latter factor is more likely to strengthen communities of women, both new and existing, working in agriculture.

In addition, women should participate more in science to show that agricultural research is an area where various ideas and perspectives are necessary. To achieve this in the long run, policies need to look at current social and cultural practices holding back the advancement of women in their careers.

Q: What are you currently working on with CIMMYT and IWYP?

I am a post-doctoral fellow in CIMMYT’s Global Wheat Program where I assist in collaborative projects to improve wheat yield potential funded by IWYP. I am also leading the implementation of IWYP’s international research database, helping to develop CIMMYT’s wheat databases in collaboration with the center’s Genetic Resources Program. Apart from research and data management, I am passionate about offering trainings to students and visitors on field phenotyping approaches.

Q: Where do you see yourself in the agriculture world in 10 years?

In 10 years, I see myself as an independent scientist, generating ideas that contribute to delivering wheat varieties with higher yield potential and better tolerance to heat and drought stresses. I also see myself establishing strategies to streamline capacity building for graduate students in Mexico. At that point, I would also like to be contributing to policy changes in education and funding for science in Mexico.

Global wheat community discusses research, partnerships at Obregon pilgrimage

Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins
Scientist Sukhwinder Singh (L) hosts a discussion in the wheat fields at the CIMMYT research station in Obregon, Mexico. CIMMYT/Julie Mollins

OBREGON, Mexico (CIMMYT) — For  hundreds of international agricultural development experts, an annual gathering in northern Mexico provides a vital platform for sharing and debating the latest wheat breeding news and research.

This year, more than 200 members of the wheat community from more than 30 countries met in the legendary wheat fields of Ciudad Obregon in Mexico’s state of Sonora to participate in Visitors’ Week, hosted by the Global Wheat Program (GWP) of the International Maize and Wheat Improvement Center (CIMMYT).

The event coincides with the birthday of Norman Borlaug, the late CIMMYT wheat breeder and Nobel Peace Prize laureate, known as the father of the Green Revolution for his contributions to global food security, many of which were undertaken in Obregon. This year, Visitors’ Week delegates toasted  his 102nd birthday at the Norman E. Borlaug Experimental Field research station.

The month of March also marks the peak wheat-growing season in Obregon, and participants attended a field day tour to see old and new wheat varieties, learn about CIMMYT programs and the latest research findings. Additionally, meetings and discussions were held with the goal of contributing to the improvement of wheat research across the globe by identifying key priorities.

INTERNATIONAL DIALOGUES

A brainstorming session between representatives from the British government and CIMMYT included discussions on collaborating on breeding for tolerance to high ambient temperatures, durable disease resistance, nitrogen use efficiency, and quality and nutrition.

Future collaborations between CIMMYT and Australia were explored with the Grains Research and Development Corporation and the CIMMYT-Australia-ICARDA Germplasm Exchange (CAIGE) group. 2Blades, a U.S.-based organization supporting the development of durable disease resistance in crop plants, joined the discussion and expressed the need to use safe, sustainable crop production strategies.

As part of discussions regarding international collaboration, the second meeting of the Expert Working Group on Nutrient Use Efficiency in wheat aimed to improve international coordination on NUE (nitrogen and other nutrients) research among Australia, Britain, France, Mexico, Italy, Spain and Germany.

During the NUE meeting, an executive committee was appointed, with Malcolm Hawksford, head of Plant Biology and Crop Science at Rothamsted Research as chair and Jacques Le Gouis, of the French National Institute for Agricultural Research, as vice chair.

As well, the International Wheat Yield Partnership (IWYP) held its first official conference during which IWYP director Jeff Gwyn discussed outcomes and objectives for the next 20 years.

Due to the large audience of global wheat researchers, the Borlaug Global Rust Initiative took the opportunity to launch its new project, Delivering Genetic Gain in Wheat (DGGW), supported by a $24 million grant from the Bill & Melinda Gates Foundation. Under the DGGW, CIMMYT scientists aim to mitigate serious threats to wheat brought about by climate change by developing and deploying new heat-tolerant, disease-resistant wheat varieties.

ENCOURAGING ENGAGEMENT

With the hope of increasing data and information sharing, the International Wheat Improvement Network (IWIN) awarded Mehmet Nazım Dincer of Turkey the IWIN Cooperator Award for contributing data on international nurseries. Through a lottery, Dincer was selected from among researchers who provided data on international seed nurseries to IWIN in 2015. Dincer was awarded a one-week paid visit to Obregón during GWP Visitors’ Week, and was also congratulated for his collaborative efforts during the festivities.

Another lottery will be held in November to select the next winner from among cooperators who return 2016 international nursery data. GWP director Hans Braun joked that he is not aware of other lotteries with so few participants in which the jackpot is a trip to Obregon, encouraging  IWIN cooperators to return their data and win.

Visitors’ Week is not only an important time for international collaborations and brainstorming, but also for capacity development and training early career scientists. Coinciding with this year’s Visitors’ Week was the GWP Basic Wheat Improvement Course (BWIC), a three-month training course for young and mid-career scientists focusing on applied breeding techniques in the field. In addition to attending Visitors’ Week events, trainees were offered special courses with guest lecturers.

Joining the BWIC at this time were winners of the 2016 Women in Triticum Award who alongside women trainees attended a “Women in Agriculture” discussion led by Jeannie Borlaug, daughter of Norman Borlaug, to discuss difficulties and successes women face in achieving equality in the science and agriculture sectors.