Skip to main content

Tag: nutrition

Millions at lower risk of vitamin A deficiency after six-year campaign to promote orange-fleshed sweet potato

A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)
A community health worker in Rwanda talks to people on hygiene and the importance of a balanced diet, as part of the SUSTAIN project. (Photo: CIP)

STOCKHOLM, Sweden — Millions of families in Africa and South Asia have improved their diet with a special variety of sweet potato designed to tackle vitamin A deficiency, according to a report published today.

A six-year project, launched in 2013, used a double-edged approach of providing farming families with sweet potato cuttings as well as nutritional education on the benefits of orange-fleshed sweet potato.

The Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project, led by the International Potato Center (CIP) and more than 20 partners, reached more than 2.3 million households with children under five with planting material.

The project, which was rolled out in Kenya, Malawi, Mozambique and Rwanda as well as Bangladesh and Tanzania, resulted in 1.3 million women and children regularly eating orange-fleshed sweet potato when available.

“Vitamin A deficiency (VAD) is one of the most pernicious forms of undernourishment and can limit growth, weaken immunity, lead to blindness, and increase mortality in children,” said Barbara Wells, director general of CIP. “Globally, 165 million children under five suffer from VAD, mostly in Africa and Asia.”

“The results of the SUSTAIN project show that agriculture and nutrition interventions can reinforce each other to inspire behavior change towards healthier diets in smallholder households.”

Over the past decade, CIP and partners have developed dozens of biofortified varieties of orange-fleshed sweet potato in Africa and Asia. These varieties contain high levels of beta-carotene, which the body converts into vitamin A.

Just 125g of fresh orange-fleshed sweet potato provides the daily vitamin A needs of a pre-school child, as well as providing high levels of vitamins B6 and C, manganese and potassium.

Under the SUSTAIN project, families in target communities received nutritional education at rural health centers as well as cuttings that they could then plant and grow.

For every household directly reached with planting material, an additional 4.2 households were reached on average through farmer-to-farmer interactions or partner activities using technologies or materials developed by SUSTAIN.

The project also promoted commercial opportunities for smallholder farmers with annual sales of orange-fleshed sweet potato puree-based products estimated at more than $890,000 as a result of the project.

Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)
Two women sort orange-fleshed sweet potato in Faridpur district, Bangladesh. (Photo: Sara Quinn/CIP)

Perspectives from the Global South

The results of the initiative were published during the EAT Forum in Stockholm, where CGIAR scientists discussed the recommendations of the EAT-Lancet report from the perspective of developing countries.

“The SUSTAIN project showed the enormous potential for achieving both healthy and sustainable diets in developing countries using improved varieties of crops that are already widely grown,” said Simon Heck, program leader, CIP.

“Sweet potato should be included as the basis for a sustainable diet in many developing countries because it provides more calories per hectare and per growing month than all the major grain crops, while tackling a major nutrition-related health issue.”

At an EAT Forum side event, scientists highlighted that most food is grown by small-scale producers in low- and middle-income countries, where hunger and undernutrition are prevalent and where some of the largest opportunities exist for food system and dietary transformation.

“There are almost 500 million small farms that comprise close to half the world’s farmland and are home to many of the world’s most vulnerable populations,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT).

“Without access to appropriate technologies and support to sustainably intensify production, small farmers — the backbone of our global food system — will not be able to actively contribute a global food transformation.”

Matthew Morell, director general of the International Rice Research Institute (IRRI), added: “If the EAT-Lancet planetary health diet guidelines are to be truly global, they will need to be adapted to developing-world realities — such as addressing Vitamin A deficiency through bio-fortification of a range of staple crops.

“This creative approach is a strong example of how to address a devastating and persistent nutrition gap in South Asia and Africa.”


This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.


For more information or interview requests, please contact:

Donna Bowater
Marchmont Communications
donna@marchmontcomms.com
+44 7929 212 434

The International Potato Center (CIP) was founded in 1971 as a research-for-development organization with a focus on potato, sweet potato and Andean roots and tubers. It delivers innovative science-based solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America. CIP is a CGIAR research center. www.cipotato.org

CGIAR is a global research partnership for a food-secure future. CGIAR science is dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources and ecosystem services. Its research is carried out by 15 CGIAR centers in close collaboration with hundreds of partners, including national and regional research institutes, civil society organizations, academia, development organizations and the private sector. www.cgiar.org

 

The recipe for better food systems

How food is produced, consumed, and how much is lost or wasted shapes the health of both people and planet. The EAT-Lancet Commission report, released in January 2019, brought together 30 interdisciplinary scientists from across the globe to propose a dietary pattern that meets nutritional requirements and promotes health but uses less environmental resources.

The report promotes diets consisting of a variety of plant-based foods, with low amounts of animal-based foods, refined grains, highly processed foods or added sugars, and with unsaturated rather than saturated fats.

The EAT Food Forum 2019 is taking place in Stockholm June 11-14, 2019. Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT), will participate in a panel of agricultural research experts organized by CGIAR which will explore the implications of the EAT-Lancet report in the Global South, particularly for small farmers.

Palacios and her CIMMYT colleagues Santiago Lopez Ridaura, agronomist, and Jason Donovan, socioeconomist, got together for a conversation with CIMMYT editors to analyze how EAT-Lancet recommendations adapt to smallholder farmers’ realities.

Can nutrition bring the food system together?

Santiago Lopez Ridaura: Nutrition is the perfect setting to create system approaches to food. Nutrition involves everything: production quality, the genetics of the seed, input supply, output demand, as well as the purchasing power of farmers, dietary and cooking habits. It truly requires an interdisciplinary approach to look at food systems through a nutrition lens.

Natalia Palacios: We must stop thinking about the crop and think about the diet. Interdisciplinary and inter-institutional research is key to improve nutrition and agricultural sustainability in the context of smallholder farmers in Africa, Asia and Latin America.

Lopez-Ridaura: An economic analysis, a soil fertility study, or pest and disease breeding alone does not give us a holistic view of the food system. However, nutrition gives us the opportunity to have an integrated view. Equally, sustainability and avoiding food loss relate to all parts of the food system.

It’s a synergy of things. CIMMYT has been advocating for a systems approach to maize and wheat farming and nutrition, and sustainability fits right in with this.

Jason Donovan: It’s time to develop that dialogue, including specialists from different fields such as nutritionists, economists, agronomists, breeders and gender specialists when we investigate and form research questions on the health benefits and sustainability of our food systems and take holistic view of how all these things come together.

Palacios: A shift in our priority research is needed. It is important to integrate resilient production with nutrition. Focus only on productivity should no longer be the driver. We might not need big changes in the technologies and interventions, but we need to make sure nutrition and consumer demands are included.

There is no silver-bullet solution. You need to take action from different points, whether it is biofortified crops, intercropping for diversified diets or access to markets.

Is the EAT-Lancet report a recipe for a planetary diet?

Palacios: The report takes a global focus and is overwhelmingly targeted at high income nations. However, if we look at its five strategies, they are actually applicable for low- and middle-income countries as well: Seek international and national commitment to shift toward healthy diets; reorient agricultural priorities from producing high quantities of food to producing healthy food; sustainably intensify food production to increase high-quality output; strong and coordinated governance of land and oceans; and halve food losses at the production side and food waste at the consumption side.

CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a "planetary health diet" for producers and consumers in low- and middle-income countries. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientists Natalia Palacios (left), Santiago Lopez-Ridaura (center) and Jason Donovan discuss the implications of a “planetary health diet” for producers and consumers in low- and middle-income countries. (Photo: Alfonso Cortés/CIMMYT)

Lopez-Ridaura: Rather than a recipe, the commission proposes a “reference healthy diet” that will need to be adapted to different regions and cultures. More importantly, the trajectories towards such diet will probably be very different, depending on the region and culture, the current dietary habits of the population, and the production systems they are based on.

In some cases, consumption of meat and sugars will need to decrease, but in other regions it might need to be increased. It all depends on the current situation.

Donovan: The report highlighted the sustainability issues around our food production. Although it was focused toward high-income countries who consume a lot of proteins. One of the big questions I had after reading it was the “how” question. In a lot of countries where we work — in Africa, Asia and Latin America — the consumption of meat is increasing at a rapid pace.

So, the question that struck me was how do these societies with fast rural and urban transformations, and an increasing taste for animal-based food products, fit into the context of the report? How can we promote plant-based diets in these contexts?

Adjusting their diets towards a universal healthy reference diet would be difficult as there is little room for maneuver.

Is adaptation the key to success?

Lopez-Ridaura: Yes, adaptation is needed and I think the EAT-Lancet Commission colleagues are well aware of that. The healthy reference diet needs to be seen as such, as a reference, with some basic principles regarding food quantity and quality as well as sustainable use of resources.

Each region, sub-region or even families and individuals will need to adapt their dietary habits and production systems in order to attain healthy diets and halt the degradation of the resource base.

Palacios: It is important to look at smallholder farmers in the context of diet and sustainable agriculture. We need to ask, what are they growing? How are they growing it? How are they eating it? What do they sell?

Quite often smallholder farmers are already using agricultural practices that improve their nutrition and benefit the environment. For example, look at the milpa farm system: it combines maize, beans, squash, chili, tomatoes and seasonal fruits to provide a diverse plant-based diet. The milpa system, combined with crop residue retention and other conservation agriculture techniques can improve soil fertility.

Latin American farmers also use the traditional nixtamalization technique to prepare maize grain for cooking, which improves its nutritional value. Farmers in Africa are adopting green manure cover crops grown with maize as a way to improve soil health, diversify household diets and provide a cash crop to be sold at markets.

It is important that these initiatives are promoted through national and local government policy and supported by the private sector if they are to have real impact on the health of people and the planet.

Donovan: Local policies to promote healthy diets and diversification in the field are being put in place — Latin America is a good example. However, this is not at a scale where it can have real impact on the health of people and environments. There is pressure on the private sector to respond, especially considering the increasing consumption of processed foods. It is important to engage with the private sector on issues of nutrition and sustainability.

Solutions will be at multiple levels when we look at nutrition and food systems. Too often the actors in a food system act alone, for example many NGOs, universities, and government programs. There needs to be unity in action — players need to work together as creators of holistic solutions. This is currently a gap, as many nutritionists do not look at agriculture or food systems. Addressing this can have a significant impact on the health of family farmers in Africa, Asia and Latin America.

This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.

Top shelf: Who has access to the healthiest processed foods?

In 2013, Mexico had the fourth highest sales of ultra-processed products worldwide. This is indicative of one of the most important changes in food systems in middle-income countries in recent years: the shift away from meals prepared at home with fresh or minimally processed products towards meals that include ultra-processed foods.

“Typically, these products do not have any wholefood ingredient, are ready to eat, and are high in fat, sodium and sugar but low in fiber, protein and vitamins,” says Ana Gaxiola, a nutritionist consultant working with the International Maize and Wheat Improvement Center (CIMMYT). “The health risks associated with their consumption have important, long-term implications for the health and nutritional status of individuals, families and communities.”

Latin America has a sophisticated maize and wheat processing sector with the potential to segment urban markets according to income, preferences and knowledge. This has important implications for equity in access to food with higher nutritional value.

In 2018, CIMMYT researchers began a new investigative project in collaboration with two CGIAR research programs, Agriculture for Health and Nutrition (A4NH) and WHEAT, seeking to understand how affordability affects diets in different areas of Mexico City. “We want to better understand access to healthier maize- and wheat-based foods across differences in purchasing power,” explains CIMMYT senior economist Jason Donovan. “Part of that involves looking at what processed products are available at what price and in different neighborhoods and the dietary implications of that.”

A researcher captures nutritional information from a packet of tortillas. (Photo: Emma Orchardson/CIMMYT)
A researcher captures nutritional information from a packet of tortillas. (Photo: Emma Orchardson/CIMMYT)

This is relatively new territory for those involved. “This kind of research has been done before,” explains Gaxiola, “but only looking at supermarkets in Mexico City and without differentiating between socioeconomic levels.” Previous studies have also failed to include data from abarrotes, the small convenience stores ubiquitous throughout the city.

The study compares Polanco and San Vicente, two neighborhoods in Mexico City chosen to represent high- and low-income areas, respectively. Using economic data in combination with label and packaging information it analyzes the variation in availability of processed and ultra-processed maize and wheat products, taking into account ingredients, nutritional content, portion size, price and other added value. The study will later include a qualitative element, in which the team will conduct interviews with shop managers to find out how they decide which products to stock, and with consumers to discuss the products they buy and the factors influencing their decisions.

“We’re also interested in how the products are being promoted,” says Miriam Perez Luna, a CIMMYT research assistant involved in the study. “Do companies employ celebrity endorsements or cartoons to appeal to children? Do they have any special certifications based on where or how the products were produced? This information goes into our database so we can examine how products are being marketed, whether in stores or online and through social media.”

In a small food shop in San Vicente, a low-income area, snacks high in salt and sugar line the shelves. (Photo: Emma Orchardson/CIMMYT)
In a small food shop in San Vicente, a low-income area, snacks high in salt and sugar line the shelves. (Photo: Emma Orchardson/CIMMYT)

Now at the end of the data collection period, Gaxiola and a team of researchers have collected more than 20,000 images of packaging, bar codes and nutritional information for a variety of products including biscuits, breads, cakes, cereals, flours, pastas, soups and tortillas. Once the data has been cleaned, they will begin to analyze each individual product and create an index for how healthy they are. Preliminary results from the study will be made available later in the year, but the team are keen to share some of their initial observations.

They were unsurprised to note that many products were more expensive in the upscale Polanco neighborhood, and smaller convenience stores tended to charge more for certain products than larger supermarkets.

There have however, been some unexpected findings. For example, many of the discussions about lack of access to nutritious food options focus on the diets of the urban poor, but there may be reason to believe that affluent consumers face similar challenges. “You’ll be surprised to hear that a lot of what we found in Polanco was not that healthy, because most of it is heavily processed,” says Gaxiola.

Based on the Pan-American Health Organization’s classification system, a product containing more than one milligram of sodium per calorie, 10% refined sugar and 30% total fat is an unhealthy one. “We still need to carry out the analysis, but I’d say more than 70% of the products we’ve encountered could be deemed unhealthy, based on this classification system.”

In a small supermarket in San Vicente, the research team found nearly 50 different types of biscuits and around 80 savory maize-based snacks like chips and tortillas. (Photo: Emma Orchardson/CIMMYT)
In a small supermarket in San Vicente, the research team found nearly 50 different types of biscuits and around 80 savory maize-based snacks like chips and tortillas. (Photo: Emma Orchardson/CIMMYT)

The implications of this are significant for a country like Mexico, which currently faces an epidemic of obesity and overweight. “There’s a lot of advocacy now around nutritional information, but it can be hard to understand sometimes, even for me,” says Gaxiola. “It has to be become something that everyone can understand and use to make healthier choices.”

For this to happen it is important to close the data gap on how urban consumers interact with their food environments. Understanding how they choose among different types of maize- and wheat-based products and how much of this is shaped by socioeconomic disparities is a key first step towards engaging with the private and public sectors on options for promoting healthier processed wheat and maize products in fast-evolving food systems.

This study is being carried out by the International Maize and Wheat Improvement Center (CIMMYT) and supported by the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH) and the CGIAR Research Program on Wheat (WHEAT).

This story is part of our coverage of the EAT Stockholm Food Forum 2019.
See other stories and the details of the side event in which CIMMYT is participating.

Cobs & Spikes podcast: Striving for higher quality, more nutritious maize

While increasing yields will be necessary to feed the 9.8 billion people expected by 2050, Natalia Palacios — head of the maize nutritional quality laboratory at CIMMYT — says that’s only part of the challenge. She argues we must also strive for higher-quality, more nutritious crops. According to the United Nations Food and Agriculture Organization, over 800 million people are considered undernourished. That’s about one out of every nine people in the world. Find out how Palacios’ research helps CIMMYT and its partners close the gap and support better health and nutrition.

For more information on Palacios’ research linking provitamin A orange maize and reduced aflatoxin contamination, read the publication here.

Fighting hidden hunger with agricultural innovation

Maize provides 15-16 percent of total calorie intake in Asia, Latin America and sub-Saharan Africa, while wheat provides 18 percent of our total available calories. Hidden hunger occurs when these calories don’t provide the essential micronutrients, such as iron, zinc and vitamin A, needed for healthy growth and prevention of diseases.

On World Health Day, we are sharing five stories showing how the International Maize and Wheat Improvement Center (CIMMYT) is combating hidden hunger and how agricultural research and innovation leads to healthier families, improved livelihoods and a healthier planet.

Climate change impact and adaptation for wheat protein

Often, work on climate change adaptation in agriculture focuses on productivity instead of nutrition of crops. If nutritional implications of climate change are not addressed, there will be devastating consequences on the health and livelihoods of marginalized people who depend on wheat as a source of protein.

A new study examines why wheat grain protein concentration is often overlooked in relation to improving global crop production in the face of climate change challenges and concludes that not all climate change adaptations have positive impacts on human nutrition.

An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)

Nutritious vitamin A orange maize boosts health and livelihoods in Zimbabwe

In Zimbabwe, child malnutrition peaked above international thresholds for emergency response. Vitamin A deficiency is the leading cause of preventable blindness in children and can increase risk of measles, diarrhea and respiratory infections. However, biofortification of maize is a sustainable solution to improve health and nutrition in the region.

CIMMYT and Harvest Plus worked together to breed maize with higher amounts of nutritious vitamin A and are working with farmers, seed companies, food processors and millers to make this maize part of the food system in Zimbabwe.

Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O'Leary/ CIMMYT)
Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O’Leary/ CIMMYT)

Pakistan wheat seed makeover: More productive, resilient varieties for thousands of farmers

In Pakistan, CIMMYT is working to develop and spread better wheat production systems, by replacing outdated, disease susceptible seeds with new varieties. These new varieties also come with a health benefit — zinc.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality. These new seeds will increase the nutrition content of wheat, Pakistan’s number-one food crop, as well as resist diseases such as wheat rust.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: Ansaar Ahmad/CIMMYT)
El camino hacia una mejor seguridad alimentaria y nutrición parece esclarecerse para el agricultor Munsif Ullah y su familia, con semillas de una variedad de trigo de alto rendimiento con zinc. (Foto: Ansaar Ahmad/CIMMYT)
Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: Ansaar Ahmad/CIMMYT)
Munfiat, un agricultor del distrito de Nowshera, provincia de Khyber Pakhtunkhwa, Pakistán, está feliz de sembrar y compartir semillas de la variedad de trigo de alto rendimiento y resistente a las enfermedades Faisalabad-08. (Foto: Ansaar Ahmad/CIMMYT)

Better together: Partnership around zinc maize improves nutrition in Guatemala

Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of the country’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system.

CIMMYT, HarvestPlus and Semilla Nueva are working together to change this, through the development and deployment of the world’s first biofortified zinc-enriched maize. Called Fortaleza 3 by Semilla Nueva, it fights against hidden hunger, containing 6-12ppm more zinc and 2.5 times more quality protein compared to conventional maize varieties.

“With the extra income I’ve gotten since switching to F3, I’ve been paying for my daughter to go to school. Fortaleza F3 not only gave me a good harvest, but also the ability to support my daughter’s education,” said Rómulo González, a farmer from the southern coast of Guatemala.

Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)
Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)

Farmers key to realizing EAT-Lancet report recommendations in Mexico, CIMMYT highlights

The EAT-Lancet Commission Report aims to answer the question: can we feed a future population of 10 billion people a healthy diet within planetary boundaries? It proposes a “planetary health diet” that balances nutrition with sustainable food production.

CIMMYT participated in the report launch in Mexico. “If anybody is able to manage the complex systems that will sustainably yield the volume of nutritious food that the world needs, that’s the farmer,” said Bram Govaerts, Director of Innovative Business Strategies at CIMMYT. “In Mexico, more than 500 thousand farmers already innovate every day and grow maize, wheat and related crops under sustainable intensification practices that CIMMYT and Mexico’s Agriculture Department promote with MasAgro”.

These innovations he mentioned create healthier families and a healthier planet.

CIMMYT's director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)
CIMMYT’s director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)

New report calls for urgent diet and food system changes to sustainably feed world

smallerEAT-LancetCoverA new report by more than 30 world-leading experts in health and environmental sustainability offers a roadmap for a global food system that provides a healthy, sustainable diet for the world’s 10 billion people by 2050.

The report, Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems, represents the first comprehensive review of what constitutes a healthy diet from a sustainable food system.

Published jointly by EAT, a global non-profit foundation founded to catalyze a food system transformation, and The Lancet, the world’s leading medical journal, the report links diets with human health and environmental sustainability. It lays out five global scientific strategies to achieve healthy diets and sustainable food production by the year 2050: shifting diets, producing healthy food, sustainably intensifying food production, improving land and water governance, and reducing food loss and waste.

The report urges substantial dietary shifts and specific courses of action from consumers, policymakers, businesses and government agencies alike to transform the world’s food system. As the report states, “Without action, the world risks failing to meet the UN Sustainable Development Goals (SDGs) and the Paris Agreement, and today’s children will inherit a planet that has been severely degraded and where much of the population will increasingly suffer from malnutrition and preventable disease.”

The report emphasizes eating diets heavy in fruits, nuts, vegetables and whole grains and light on meat, as current Western-style diets are already straining the global food system’s environmental impact and pushing planetary limits. According to CIMMYT consultant and leading nutritionist Julie Miller Jones of St. Catherine University, USA, eating whole grain foods reduces obesity and the risk of almost all chronic diseases.

Given that the food system drives nearly 30 percent of greenhouse gas emissions, occupies 40 percent of land and causes 80 percent of biodiversity loss, increasing healthy, resource-saving foods and reducing unhealthy and unsustainably produced foods is an essential step in securing future environmental sustainability.

The founder and executive chair of EAT, Gunhild Stordalen, commented at the report’s launch event January 17 in Olso, Norway: “No single sector, technology or entity can fix it alone but, for the first time, we have a clear direction and initial targets to align and guide our actions.”

Read the full report here: http://www.thelancet-press.com/embargo/EATComm.pdf.

Read the summary here: https://eatforum.org/content/uploads/2019/01/EAT-Lancet_Commission_Summary_Report.pdf

Researchers find “hotspot” regions in the wheat genome for high zinc content, new study shows

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: CIMMYT)

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat, according to a report published in Nature Scientific Reports on September 10.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

The findings promise greatly to ease development of wheat varieties with enhanced levels of zinc, a critical micronutrient lacking in the diets of many poor who depend on wheat-based food, according to Velu Govindan, wheat breeder at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new report.

“A collaboration among research centers in India, Australia, the USA and Mexico, this work will expedite breeding for higher zinc through use of ‘hotspot’ genome regions and molecular markers,” said Govindan. “It also advances efforts to make selection for grain zinc a standard feature of CIMMYT wheat breeding. Because varieties derived from CIMMYT breeding are grown on nearly half the world’s wheat lands, ‘mainstreaming’ high zinc in breeding programs could improve the micronutrient nutrition of millions.”

More than 17 percent of humans, largely across Africa and Asia, lack zinc in their diets, a factor responsible for the deaths of more than 400,000 young children each year.

Often used in human disease research, the genome-wide association approach was applied in this study to zero in on genome segments — known as quantitative trait loci (QTLs) — that carry genes of interest for wheat grain zinc content, according to Govindan.

“The advantages of the genome-wide association method over traditional QTL mapping include better coverage of alleles and the ability to include landraces, elite cultivars, and advanced breeding lines in the analysis,” he explained. “Our study fully opens the door for the expanded use of wheat progenitor species as sources of alleles for high grain zinc, and the outcomes helped us to identify other candidate genes from wheat, barley, Brachypodium grasses and rice.”

Farmers in South Asia are growing six zinc-enhanced wheat varieties developed using CIMMYT breeding lines and released in recent years, according to Ravi Singh, head of the CIMMYT Bread Wheat Improvement Program.

Financial support for this study was provided by HarvestPlus (www.HarvestPlus.org), a global alliance of agriculture and nutrition research institutions working to increase the micronutrient density of staple food crops through biofortification. The views expressed do not necessarily reflect those of HarvestPlus. It was also supported by CGIAR Funders, through the Research Program on Wheat and the Research Program on Agriculture for Nutrition and Health. Research partners in India and Pakistan greatly contributed to this study by conducting high-quality field trials.

This article was originally published on the website of the CGIAR Research Program on Wheat.