Skip to main content

Tag: New Publications

New publications: Climate change impact and adaptation for wheat protein

Globally, wheat provides around 20 percent of the calories and protein in human diets. By mid-century, crop production must increase by 60 percent to meet global food demand and help reduce hunger, a challenge made even harder by climate change. “Climate Change Impact and Adaptation for Wheat Protein,” a study published in Global Change Biology in September 2018, examines why wheat grain protein concentration — a determinant of grain quality — is often overlooked in relation to improving global crop production in the face of climate change challenges.

“The impact of climate change on crops typically focuses on productivity; however, there are nutritional implications too,” says key contributor to the study Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT). “Since wheat also provides a significant proportion of protein in the diets of millions of resource-poor people, the negative impact of increased atmospheric CO2 on protein concentration in the grain is a disturbing fact,” stated Reynolds. “If not addressed, it could have a devastating impact on the health and livelihoods especially of marginalized people who cannot easily afford diverse sources of protein in their diet.”

Multi-location field trials, in addition to model testing, were used to systematically analyze the effects of increasing temperature, heat shocks, elevated atmospheric CO2 concentration, nitrogen, water deficiency and the combination of these factors on yield and wheat grain protein in the world’s main wheat producing regions. This study marked the first time that heat shock and high temperature interaction with elevated CO2 concentration was tested through an impact model. As noted in the study, “This is the most comprehensive study ever done of the effect of climate change on yield and the nutritional quality of one of the three major sources of human food security and nutrition.”

Read the full study here.

An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)

Check out other recent publications by CIMMYT researchers here:

  1. Association of Lr 34 gene complex with spot blotch disease resistance at molecular level in wheat (Triticum aestivum L.). Suneel Kumar, Singh, R.P., Joshi, A.K., Roder, M.S., Chhuneja Parveen, Mavi, G.S., Kumar, U. In: Indian Journal of Genetics and Plant Breeding v. 78, no. 3, p. 302-308.
  2. Base temperatures and degrees days development of 10 Mexican corn accessions. Arista-Cortes, J., Quevedo-Nolasco, A., Zamora-Morales, B.P., Bauer Mengelberg, J.R., Sonder, K., Lugo-Espinosa, O. In: Revista Mexicana de Ciencias Agricolas v. 9, no. 5, p. 1023-1033.
  3. Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. Var. Durum). Xue Lin, N’Diaye, A., Walkowiak, S., Nilsen, K., Cory, A.T., Haile, J.,  Kutcher, H.R., Ammar, K., Loladze, A., Huerta-Espino, J., Clarke, J.M., Ruan, Y., Knox, R.,  Fobert, P., Sharpe, A.G., Pozniak, C.J. In: PLoS One v. 13, no. 9, art. e0203283.
  4. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Mahuku, G., Nzioki, H., Mutegi, C., Kanampiu, F., Narrod, C., Makumbi, D. In: Food Control v. 96, p. 219-226.
  5. Variations in food-fodder traits of bread wheat cultivars released for the Ethiopian highlands. Bezabih, M., Adie, A., Ravi, D., Prasad, K.V.S.V., Jones, C., Abeyo Bekele Geleta, Tadesse, Z., Zegeye, H., Solomon, T., Blummel, M. In: Field Crops Research v. 229, p. 1-7.

New publications: Exploring the gendered rules shaping agricultural innovation

How do gender norms, agency and agricultural innovation interlink? How can we research this question comparatively to better understand patterns without overlooking the specificities of different contexts and the people who occupy them? These questions set the stage for the new special issue in the Journal of Gender, Agriculture and Food Security (Agri-Gender) on the GENNOVATE research initiative.

Ahead of the International Day of Rural Women (October 15), researchers from across CGIAR drew on the voices of over 7,000 rural women and men across diverse regional contexts to demonstrate why understanding and addressing gender norms is critical for achieving sustainable and equitable development.

Gender norms comprise the social rules that differentiate what a society considers a man and a woman should be in their lives. The papers published in the GENNOVATE special issue provide new empirical and methodological contributions to the literature on gender, agricultural innovation and rural transformation. The testimonies gathered across 137 communities in 26 countries illuminate how agricultural innovation processes are regularly constrained by gender norms. These norms prescribe women’s deference to men’s authority and in turn assign women with heavy household and care work burdens. They also limit their access to resources, physical mobility and social interactions.

Challenging the norms

Women in Nepal participate in a focus group discussion as part of GENNOVATE's field research (Photo: Anuprita Shukla)
Women in Nepal participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Anuprita Shukla)

Nevertheless, women and men find ways to challenge and redefine these norms, and village practices are often different from normative expectations. In a large majority of GENNOVATE research communities, women influence important household decisions and innovate in their rural livelihood activities, albeit often close to their homesteads and on a smaller scale than rural men. Some gender norms are beginning to relax to accommodate women’s and men’s changing lives, but these processes vary greatly across the types of norms, the groups of people concerned — young or unmarried women, widows, resource-constrained women, etc. — and the places where they live. By and large, women continue to face a myriad of barriers trying to expand their economic initiatives.

Two of the papers in the special issue explore gender norms in circumstances where farmer innovation and community development are particularly prevalent. CIMMYT researcher Lone Badstue and co-authors present findings from 336 semi-structured interviews with rural women and men from 19 countries who are known in their villages for agricultural innovation. While finance and physical assets emerge as important enablers of innovation, the testimonies stress that factors related to personality and agency are key drivers for both women’s and men’s capacity to innovate. Compared to men, women innovators are far more likely to detail how supportive spouses, parents, siblings, in-laws or children can help them learn about and adopt new farming techniques or otherwise actively innovate in their rural livelihoods.

Men in Kenya participate in a focus group discussion as part of GENNOVATE's field research (Photo: Renee Bullock/IITA)
Men in Kenya participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Renee Bullock/IITA)

In another paper focused on 79 community case studies, Patti Petesch and co-authors focus on a small set of “transforming” villages, where participants in the GENNOVATE study widely reported accelerated processes of empowerment and poverty reduction in their communities. Case studies and comparative evidence are able to show that more equitable gender norms play a crucial role in catalyzing inclusive agricultural innovation and development processes.

Other papers in the issue emphasize concerns over innovation processes that reinforce gender inequality and marginalize specific social groups. For example, Marlène Elias and co-authors focus on rural youth in seven countries to demonstrate how norms that discriminate against women in agriculture are key for understanding young women’s limited aspirations in agricultural work. Petesch and co-authors also introduce the concept of local normative climate to shed light on the contextual and fluid ways in which norms operate, such as why in one community only men perceive their village to be an enabling climate for their agency and agricultural innovation, while in another community only women perceive this.

Women in Ethiopia participate in a focus group discussion as part of GENNOVATE's field research (Photo: Mahelet Hailemariam)
Women in Ethiopia participate in a focus group discussion as part of GENNOVATE’s field research (Photo: Mahelet Hailemariam)

A large-scale endeavor

Two papers describe GENNOVATE’s methodology and conceptual framework. The authors reflect on the challenges and opportunities faced in carrying out the large-scale qualitative study. They highlight the need to be attentive to the complexities of various local social contexts and women’s and men’s own understanding of their lives, while looking for patterns to make broader claims that can contribute to agricultural research and development. They also discuss GENNOVATE’s research protocols for sampling, data collection and analysis, and reflect on challenges that correspond with their application.

The GENNOVATE papers make evident that gender norms set the stage for agricultural innovation and that some people and places find pathways to forge ahead far faster than others. The special issue makes an important contribution to the development of strategies that are meaningfully informed by social realities while also allowing for comparisons across various contexts. This insight is relevant to research and development beyond the field of agriculture and natural resource management.

The GENNOVATE special issue in the Journal of Gender, Agriculture and Food Security (Agri-Gender) was published on September 2018, Volume 3, Issue 1.

The GENNOVATE research initiative is a collaboration of 11 CGIAR research programs.

New publications: What drives capacity to innovate?

Involving diverse segments of a target population in agricultural innovation interventions allows for more inclusive and equitable processes while stimulating local innovation and development outcomes. But what are the key characteristics of rural innovators? And how are their experiences similar for women and men, and how are they different?

To examine these questions, a team of researchers from CIMMYT, collaborating CGIAR centers, and Wageningen University and Research conducted individual interviews with 336 rural women and men known in their communities for trying out new things in agriculture. The results of this study are collected in 84 GENNOVATE community case studies from 19 countries across Africa, Asia, and Latin America.

Building on study participants’ own reflections and experiences with innovation in their agricultural livelihoods, the research team combined variable-oriented analysis with analysis of specific individuals’ lived experience. The study provides in-depth knowledge on how the characteristics and experiences of individual innovators interlink with the social setting to facilitate or impede innovation.

Results indicate that factors related to personality and agency are what most drive capacity to innovate. Access to resources is not a prerequisite but an important enabling aspect. Women have great potential for local innovation, but structural inequalities mean that men are often better positioned to access resources and leverage support – as a result when women challenge the status quo, men’s support is important.

Read the full article in the Journal of Gender, Agriculture and Food Security: “What drives capacity to innovate? Insights from women and men small-scale farmers in Africa, Asia, and Latin America”

This paper draws on data collected as part of GENNOVATE case studies funded by the CGIAR Research Programs on Wheat, Maize, Grain Legumes, Humid Tropics and Rice, as well as RTB (Roots, Tubers and Bananas), A4NH (Agriculture for Nutrition and Health) and FTA (Forests, Trees and Agroforestry).

Development of research design and field methodology was supported by the CGIAR Gender & Agricultural Research Network, the World Bank, the governments of Mexico and Germany, and the CGIAR Research Programs on Wheat and Maize. Data analysis was supported by the Bill & Melinda Gates Foundation.

Women farmers in Nepal use a mini tiller for direct seeding. Photo: CIMMYT/P. Lowe
Women farmers in Nepal use a mini tiller for direct seeding. (Photo: P.Lowe/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Facilitating change for climate-smart agriculture through science-policy engagement. Dinesh, D., Zougmore, R., Vervoort, J., Totin, E., Thornton, P.K., Solomon, D., Shirsath, P.B., Pede, V.O., Lopez-Noriega, I., Läderach, P., Korner, J., Hegger, D., Girvetz, E.H,. Friis, A.E., Driessen, P.P.J., Campbell, B.M. In: Sustainability v. 10, no. 8, art. 2616.
  2. Assessment of management options on striga infestation and maize grain yield in Kenya. Kanampiu, F., Makumbi, D., Mageto, E.K., Omanya, G., Waruingi, S., Musyoka, P., Ransom, J. K. In: Weed Science v. 66, no. 4, p. 516-524.
  3. Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Badji, A., Otim, M., Machida, L., Odong, T., Kwemoi, D.B., Okii, D., Agbahoungba, S., Mwila, N., Kumi, F., Ibanda, A., Mugo, S.N., Kyamanywa, S., Rubaihayo, P. In: Frontiers in Plant Science v. 9, art. 895.
  4. Gender and equitable benefit-sharing mechanisms through agricultural innovation platforms in Rwanda. Adam, R.I., Misiko, M.T., Dusengemungu, L., Rushemuka, P.N., Mukakalisa, Z. In:  Community Development vol. 49, no. 4, p. 380-397
  5. Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Roorkiwal, M., Jarquín, D., Muneendra K. Singh., Pooran M. Gaur., Chellapilla Bharadwaj., Abhishek Rathore., Howard, R., Samineni Srinivasan., Ankit Jain., Vanika Garg., Sandip Kale., Annapurna Chitikineni., Shailesh Tripathi., Jones, E., Robbins, K., Crossa, J., Varshney, R. K. In: Scientific Reports v. 8, art. 11701.

New publications: Germplasm bank accessions add value to elite wheat lines

For the first time ever, a research team of more than 40 scientists has genetically characterized values of exotics in hexaploid wheat. CIMMYT scientists, together with partners in Demark, India, Mexico, Pakistan, and the UK, used next-generation sequencing and multi-environment phenotyping to study the contribution of exotic genomes to pre-breeding lines. Research required collaborative development, evaluation, and deployment of novel genetic resources to breeding programs addressing food security under climate change scenarios in India, Mexico, and Pakistan.

The team generated large-scale pre-breeding materials, which have been evaluated for important traits such as grain yield, quality, and disease resistance. Pre-breeding and haplotype-based approaches revealed useful genetic footprints of exotic lines in pre-breeding germplasm. Results of the study, recently published in Nature Scientific Reports, show that some DNA from exotic germplasm improved the biotic and abiotic stress tolerances of lines derived from crosses of exotics with CIMMYT’s best elite lines.

The practical successes of large-scale, impact-oriented breeding work will be useful to other wheat breeding programs around the world, and the information generated could be used to boost global wheat productivity.

Sukhwinder Singh, wheat lead on CIMMYT’s SeeD Project, explains that pre-breeding is in-demand and the resources developed through this study can serve as tools to address upcoming challenges in wheat production more efficiently, as desirable alleles from exotics have been mobilized into best elite genetic background. Breeding programs can now use this material to deliver outcomes in shorter timeframes by avoiding the lengthy process of searching for exotics first.

Read the full article in Nature Scientific Reports: “Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security.”

This research was conducted as part of the Seeds of Discovery and MasAgro projects in collaboration with the Borlaug Institute for South Asia, and was made possible by generous support from Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), the Government of Punjab, and the CGIAR Research Program on Wheat.

Wheat-seed-1

Check out other recent publications by CIMMYT researchers below:  

  1. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. González-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  2. Bayesian functional regression as an alternative statistical analysis of high‑throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-López, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vázquez, F.J. In: Plant Methods v. 14, art. 46.
  3. Effect of ppd-a1 and ppd-b1 allelic variants on grain number and thousand-kernel weight of durum wheat and their impact on final grain yield. Arjona, J.M., Royo, C., Dreisigacker, S., Ammar, K., Villegas, D. In: Frontiers in Plant Science v. 9, art. 888.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Mexican tropical cream cheese yield using low-fat milk induced by trans-10, cis-12 conjugated linoleic acid: effect of palmitic acid. Granados-Rivera, L.D., Hernández-Mendo, O., Burgueño, J., Gonzalez-Munoz, S.S., Mendoza-Martinez, G.D., Mora-Flores, J.S.,  Arriaga-Jordan, C.M. In: CyTA-Journal of Food v. 16, no. 1, p. 311-315.

New publications: Toxin-producing fungal strains can now be detected in maize field soils with a new technique

A novel approach allows the detection of aflatoxin-producing fungi in maize fields. A new study explains the technique and how it was tested. “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method” was developed in collaboration between scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Japanese National Agriculture and Food Organization (NARO) and Fukui University of Technology, funded in part by the CGIAR Research Program on Maize (MAIZE).

Aflatoxins are harmful compounds produced by the fungi Aspergillus flavus, which can be found in the soil, plants and grain of a variety of cereals and commodities including maize, nuts, cottonseed, spices and dried fruit. The toxic carcinogenic qualities of aflatoxins pose serious health hazards to humans and animals when contaminated crops are ingested. These health risks include cancers of the liver and gallbladder, stunted development in children, premature births and abnormal fetal development.

Not all strains of A. flavus produce aflatoxins however, so it is important to be able to detect and distinguish between A. flavus strains that are benign (atoxigenic) and those that produce dangerous toxins (aflatoxigenic). Current methods of detection are often complicated by the fact that the fungal strains display very similar physiological and molecular traits, thus a new approach is required.

In the study, a novel approach to detect and distinguish A. flavus strains was tested. Using soil samples from a CIMMYT experimental maize field in Mexico, fungal isolates were chemically treated in-line with a method recently developed in Japan, resulting in a color change indicative of toxicity. The method was found to be effective and accurate in the detection of the aflatoxigenic strains of the fungus.

This study is foundational work in the development of a simple, cost-effective and efficient method of detecting aflatoxigenic strains of A. flavus, which will help inform growers about the potential aflatoxin contamination of their crops. This is of particular importance in the developing world, where the resources for effective control of the fungus are often lacking.

To read the original study, “Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method”, please click here.

Original citation: Kushiro, M.; Hatabayashi, H.; Yabe, K.; Loladze, A. Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the Dichlorvos–Ammonia (DV–AM) Method. Toxins 2018, 10, 263.

This article was originally published on the website of the CGIAR Research Program on Maize.

Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)
Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. 2018. Makumbi, D., Assanga, S., Diallo, A., Magorokosho, C., Asea, G., Regasa, M.W., Bänziger, M. In: Crop Science v. 58, no. 4, p. 1492-1507.
  2. Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. 2018.  Randhawa, M.S., Caixia Lan, Basnet, B.R., Bhavani, S., Huerta-Espino, J., Forrest, K.L., Hayden, M., Singh, R.P. In: Australian Journal of Crop Science v. 12, no. 6, p. 1023-1033.
  3. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. 2018. Tabib Ghaffary, S.M., Chawade, A., Singh, P.K. In: Euphytica v. 214, art. 122.
  4. Sashaydiall : A SAS program for hayman’s diallel analysis. 2018. Makumbi, D., Alvarado Beltrán, G., Crossa, J., Burgueño, J. In: Crop Science v. 58, no. 4, p. 1605-1615.
  5. Soil bacterial diversity under conservation agriculture-based cereal systems in indo-gangetic plains. 2018. Choudhary, M., Sharma, P.C., Jat, H. S., Dash, A., Rajashekar, B., McDonald, A., Jat, M.L.  In: 3 Biotech v. 8, art. 304.

New publications: Adopting new agricultural technologies in Bangladesh

New technologies are at the core of sustainable agricultural growth and rural poverty alleviation, says Khondoker Mottaleb, an Agricultural Economist working within CIMMYT’s Socioeconomic Program. However, he explains, despite the visible benefits of using new agricultural machinery or farm management practices, overall uptake remains low as a range of factors continue to limit farmers’ ability to invest.

In a bid to enhance irrigation efficiency, Bangladesh has tried to introduce and popularize the use of axial-flow pumps (AFPs) for surface water irrigation. These pumps can lift up to 55 percent more water than a conventional centrifugal pump, but despite the obvious benefits, there has been limited uptake in targeted areas of the country. From 2012-13, a CIMMYT initiative made AFPs available for purchase for farmers in the southern regions of Bangladesh, but as of September 2017 only 888 had been purchased by lead farmers and irrigation service providers.

A recent study by CIMMYT in Bangladesh used primary data collected from 70 irrigation service providers – each of whom was given a free AFP for one season under a demonstration program – to examine user perception of AFPs and the major constraints to their adoption. It found that even though the use of AFPs can significantly reduce irrigation and overall crop production costs, more demonstrations and awareness-raising programs are needed if uptake is to be increased in target areas.

The study also highlighted the need for continuous modification of new technologies based on farmers’ requirements, with Mottaleb emphasizing that these must be adapted to local demand specifications, and that prices must be competitive with those of alternative technologies in order to ensure rapid uptake.

This study was supported by USAID through the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project. It was also supported by USAID and the Bill and Melinda Gates Foundation through the Cereal Systems Initiative for South Asia (CSISA) Phase II project. 

Read the full article in Science Direct: “Perception and adoption of a new agricultural technology: Evidence from a developing country.”

A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)
A farmer in Bangladesh irrigates his land using an axial-flow pump. (Photo: Ranak Martin)

Check out other recent publications by CIMMYT researchers below:

  1. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. 2018. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
  2. Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. 2018. Celesti, M., van der‏ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
  3. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. 2018. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
  4. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2018. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
  5. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. 2018. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
  6. Major biotic maize production stresses in Ethiopia and their management through host resistance. 2018. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
  7. Detection of aflatoxigenic and atoxigenic mexican aspergillus strains by the dichlorvos–ammonia (DV–AM) method. 2018. Masayo Kushiro, Hidemi Hatabayashi, Kimiko Yabe, Loladze, A. In: Toxins v. 10, no. 7, art. 263.
  8. Excessive pruning and limited regeneration: Are Faidherbia albida parklands heading for extinction in the Central Rift Valley of Ethiopia? 2018. Tesfaye Shiferaw Sida, Baudron, F., Dejene Adugna Deme, Motuma Tolera, Giller, K.E. In: Land Degradation and Development v. 29, no. 6, p. 1623-1633.
  9. Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content. 2018. Rodrigues, F., Blasch, G., Defourny, P., Ortiz-Monasterio, I., Schulthess, U., Zarco-Tejada, P.J., Taylor, J.A., Gerard, B. In: Remote Sensing v. 10, no. 6, art 930.
  10. Screening and validation of fertility restoration genes (Rf) in wild abortive CMS system of rice (Oryza sativa L.) using microsatellite markers. 2018. Bhati, P.K., Singh, S.K., Kumar, U. In: Indian Journal of Genetics and Plant Breeding v. 78, no. 2, p. 270-274.
  11. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. 2018. Hassan, M.A., Mengjiao Yang, Rasheed, A., Xiuliang Jin, Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Remote Sensing v. 10, no. 6, art. 809.
  12. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). 2018. Sharma, S., Ranabir Sahu, Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
  13. Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. 2018. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
  14. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case–control study from Mexico City. 2018. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.

New Publications: Increasing food and nutrition security in Sub-Saharan African maize-based food systems, a technological perspective

Two experimental lines of provitamin A-enriched orange maize, Zambia. Photo: CIMMYT.
Two experimental lines of provitamin A-enriched orange maize, Zambia. Photo: CIMMYT.

A new study from the International Maize and Wheat Improvement Center (CIMMYT) and Wageningen University examines the preferences and needs of maize processors and consumers in Sub-Saharan Africa (SSA). According to the authors, the demand for maize, a staple crop in SSA, will triple by 2050 due to rapid population growth. At the same time, the effects of climate change, such as erratic rainfall and drought, threaten agricultural productivity and the ability to meet this growing demand, while persistently high malnutrition pose additional challenges to the region. The authors suggest six objectives to enhance maize breeding programs for better food security and nutrition in SSA.

First, they recommend breeding programs enhance the nutrient density of maize through biofortification to help reduce deficiencies in vitamin A, zinc and protein. Since wheat is difficult to grow in most of SSA and expensive to import, they also suggest that programs breed to enhance the suitability of maize for making bread and snacks. The authors recommend breeding to improve maize for use as ‘green maize’ – the first crop to reach the marketplace after the dry season. If suitable green maize varieties are available, the hunger gap between seasons could be significantly reduced.

The authors’ fourth suggestion is breeding to improve characteristics that enhance the efficiency of local processing. For example, soft maize is preferred for traditional dry and wet milling, but hard maize is usually preferred for pounding or refining processes in the home. Lastly, the authors suggest breeding to reduce waste by maximizing useful product yield and minimizing nutrient losses, and breeding to reduce anti-nutrient concentrations in grains. For example, phytate or phytic acid is a naturally occurring compound found in cereals that binds with minerals and prevents their absorption. Transgenic and gene editing approaches may offer viable options for reducing phytate production.

The authors emphasize that none of these opportunities to enhance breeding strategies are “magic bullet” solutions. Sustainable, diversified crop production and post-harvest management strategies will play an important role in improving nutrition, food security and livelihoods.

Check out the full article: “Sub-Saharan African maize-based foods: Technological perspectives to increase the Food and nutrition Security impacts of maize Breeding programmes” 2018. Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V., Linnemann, A. (2018). In: Global Food Security, v. 17, pp. 48-56 and check out other recent publication by CIMMYT staff below:

  1. Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
  2. Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. Celesti, M., van der‏ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
  3. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
  4. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J.,  Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
  5. IPM to control soil-borne pests on wheat and sustainable food production. Dababat, A.A., Erginbas-Orakci, G., Toumi, F., Braun, H.J., Morgounov, A.I., Sikora, R.A. In: Arab Journal of Plant Protection v. 36, no. 1, p. 37-44.
  6. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
  7. Major biotic maize production stresses in Ethiopia and their management through host resistance. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
  8. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). Sharma, S., Ranabir Sahu,  Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
  9. Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
  10. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case–control study from Mexico City. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.

New Publications: Biofortified maize to reduce malnutrition

Screenshot 2018-05-17 at 6.23.40 PM
A farmer carries maize back from the field.

A new science brief, written by scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partner organizations details the use of naturally occurring diversity in maize to breed higher levels of Vitamin A into the crop.

Diets high in cereal crops are often lacking in vitamins and minerals, leading to malnutrition. However, maize, which is eaten widely in developing countries, and provides nearly one third of total calories to over 4.5 billion people globally, can be bred to naturally produce nutritionally adequate levels of VA.

Vitamin A (VA) deficiency is the leading cause of preventable childhood blindness and nearly one third of children under the age of five are at risk of developing VA deficiency. ProVA maize has been shown to be effective at increasing VA status in at-risk children, reducing the likelihood that they will suffer from complications such as blindness.

The science brief details the use of the naturally occurring genetic diversity, found in the nearly 30,000 maize cultivars held between the germplasm banks at CIMMYT and at the International Institute of Tropical Agriculture (IITA), to breed higher levels of VA into maize which is more suited for the tropical environments where VA deficiencies are more common.

This initiative to increase VA in maize is part of a larger CGIAR-wide initiative for biofortification with HarvestPlus and Crop Trust. This article is part of a series on biofortification by Crop Trust, find the rest of the series here.

Check out the full article: “Vitamin A-Biofortified Maize: Exploiting Native Genetic Variation for Nutrient Enrichment. Science Brief: Biofortification No. 2. 2018. Menkir, A., Palacios-Rojas, N., Alamu, O., Dias Paes, M.c., Dhliwayo, T., Maziya-Dixon, B., Mengesha, W., Ndhlela, T., Oliveira Guimarães, P.E., Pixley, K., Rocheford, T. (February 2018). CIMMYT, IITA, EMBRAPA, HarvestPlus, and Crop Trust. Bonn, Germany.

Check out other recent publication by CIMMYT staff below:

  1. Do mature innovation platforms make a difference in agricultural research for development? a meta-analysis of case studies. 2018. Schut, M., Cadilhon, J. J., Misiko, M., Dror, I. In: Experimental Agriculture v. 54, no. 1, p. 96-119.
  2. Nematode management in rain-fed smallholder maize production systems under Conservation Agriculture in Zimbabwe. 2018. Madamombe, S.M., Nyagumbo, I., Mvumi, B.M., Nyamugafata, P., Wuta, M., Chinheya, C.C. In: Experimental Agriculture v. 54, no. 3, p. 452-466.
  3. High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. 2018. Morgounov, A.I., Abugalieva, A.I., Akan, K., Akın, B., Baenziger, S., Bhatta, M.R., Dababat, A.A., Dutbayev, Y., Moustapha El Bouhssini, Erginbas-Orakci, G., Kishii, M., Keser, M., Koc, E., Kurespek, A., Mujeeb-Kazi, A., Yorgancılar, A., Ozdemir, F., Ozturk, I., Payne, T.S., Qadimaliyeva, G., Shamanin, V., Subasi, K., Suleymanova, G., Yakisir, E., Zelenskiy, Y., Demir, L. In: Plant Genetic Resources v. 16, no. 3, p. 273-278.
  4. Measuring farm and market level economic impacts of improved maize production technologies in Ethiopia : evidence from Panel Data. 2018. Kassie, M., Marenya, P., Tessema, Y., Jaleta Debello Moti, Zeng, D., Erenstein, O., Dil Bahadur Rahut. In: Journal of Agricultural Economics v. 69, no. 1, p. 76–95.
  5. Cereal cyst nematodes : importance, distribution, identification, quantification, and control. 2018. Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A.A., Nicol, J.M., Moens, M., Ogbonnaya, F.C. In: European Journal of Plant Pathology v. 150, no. 1, p. 1-24.

New Publications: Adopting climate-smart agricultural practices

Farmers in a climate-smart village in Bihar use the leaf colour chart to judge the nitrogen content required for crops. Photo: V.Reddy, ViDocs, CCAFS.
Farmers in a climate-smart village in Bihar use the leaf colour chart to judge the nitrogen content required for crops. Photo: V.Reddy, ViDocs, CCAFS.

Since the 1960s and the Green Revolution in India, agricultural production has been steadily increasing. Much of this increase is due to widespread adoption of high-yielding varieties, chemical fertilizers, pesticides, irrigation and mechanization. However, recently sustaining yield gains has become increasingly difficult as India faces a number of climate-related problems, which put pressure on sustaining the existing production system.

Many scientists have proposed that the best way to counter this stagnation in yield gains is through promotion and adoption of climate-smart agricultural practices. However, uptake of these practices in India is very low despite national and international promotion efforts.

A new study examines the factors behind the likelihood of adoption of climate-smart agricultural practices in the eastern Indian province of Bihar.

The authors found a number of confounding factors that limit adoption of new agricultural practices, such as perceived climate or market risk and limited access to extension services and training. They suggest that policy changes to strengthen extension services and market access would likely boost farmers willingness and ability to adopt these practices.

Check out the full article: Precision for Smallholder Farmers: Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. 2018. J.P. Aryal, M.L. Jat, T.B. Sapkota, A. Khatri-Chhetri, M. Kassie, D.B. Rahut, S. Maharjan. Vol. 10, Issue: 3. pp.407-427. In: International Journal of Climate Change Strategies and Management and check out other recent publication by CIMMYT staff below:

1. Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat. 2017. Vasistha, N.K., Balasubramaniam, A., Vinod Kumar Mishra., Srinivasa, J., Chand, R., Joshi, A.K. In: Euphytica no. 213, 262.

2. Biology of B. sorokiniana (syn. Cochliobolus sativus) in genomics era. 2018. Pushpendra Kumar Gupta, Vasistha, N.K., Aggarwal, R., Joshi, A.K. In: Journal of Plant Biochemistry and Biotechnology v.27, no. 2, p. 123–138.

3. Enhancing genetic gain in the era of molecular breeding. 2017. Yunbi Xu, Ping Li, Cheng Zou, Yanli Lu, Chuanxiao Xie, Zhang, X., Prasanna, B.M., Olsen, M. In: Journal of Experimental Botany v. 68, no. 11, p. 2641-2666.

4. Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia. 2018. Jaleta Debello Moti, Kassie, M., Marenya, P., Yirga, C., Erenstein, O. In: Food security v. 10, no. 1, p. 81–93.

5. Land ownership and technology adoption revisited : improved maize varieties in Ethiopia. 2018. Zeng, D., Alwang, J.R., Norton, G.W., Jaleta Debello Moti, Shiferaw, B., Yirga, C. In: Land Use Policy v. 72, p. 270-279.

6. Integrating quantified risk in efficiency analysis : evidence from rice production in East and Southern Africa. 2017. Mujawamariya, G., Medagbe, F. M. K., Karimov, A. In: Agrekon v. 56, no. 4, p. 383-401.

7. Adoption and farm-level impact of conservation agriculture in Central Ethiopia. 2017. Tsegaye, W., LaRovere, R., Mwabu, G., Kassie, G.T. In: Environment, Development and Sustainability v. 19, no. 6, p. 2517–2533.

8. Yield effects of rust-resistant wheat varieties in Ethiopia. 2017. Abro, Z. A., Jaleta Debello Moti, Qaim, M. In: Food security v. 9, no. 6, p. 1343–1357.

9. Rapid cycling genomics selection in a multiparental tropical maize population. 2017. Zhang, X., Pérez-Rodríguez, P., Burgueño, J., Olsen, M., Buckler, E., Atlin, G.N., Prasanna, B.M., Vargas, M., San Vicente, F.M., Crossa, J. In: G3 : genes – genomes – genetics v. 7, no. 7, p. 2315-2326.

10. Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. 2018. Sukumaran, S., Reynolds, M.P., Sansaloni, C.P. In: Frontiers in Plant Science no. 9 : 81.

CIMMYTNEWSlayer1

New Publications: Precision agriculture for smallholder farmers

Overview of the external components of the developed VRA-fertilizer kit, including (A) electric actuator piston; (B) control box; (C) 12V Battery; (D) Bluetooth transmitter; (E) magnetic calibration sensor; (F) N-sensor; (G) ON/OFF-switch.
Overview of the external components of the developed VRA-fertilizer kit, including (A) electric actuator piston; (B) control box; (C) 12V Battery; (D) Bluetooth transmitter; (E) magnetic calibration sensor; (F) N-sensor; (G) ON/OFF-switch.

A new study tests a stepping-stone for small-scale precision agriculture fertilizer application.

The authors of the study write that precision agriculture for smallholder farmers is often seen as a far-fetched idea, but that these farmers are the most vulnerable to climate-change-related issues and would benefit most from this technology.

Hundreds of millions of smallholder farmers feed one-third of the global population. According to the authors, addressing future food security and growing pressure on natural resources will require sustainable intensification, including precision agriculture.

Precision agriculture uses technologies in the attempt to apply nearly exact required inputs, such as fertilizer, to crops. This is a much more targeted approach than that of conventional farming, in which a constant amount of fertilizer is applied across all cultivated land, regardless of actual need.

Since nitrogen is often the limiting nutrient for plant growth and in particular grain yield, it is a key fertilization target. When applied in traditional methods, up to 70 percent of applied nitrogen is lost into the surrounding environment, resulting in pollution of air and water leading to algae blooms in nearby bodies of water.

For this study, scientists attached a small nitrogen sensor called the GreenSeeker® Handheld to conventional farming equipment in the attempt to create a real-time, informed fertilizer placement system that would be accessible to most farmers.

The GreenSeeker® sensor measures the greenness of a plant. This is determined by the production of chlorophyll, which is limited by nitrogen availability. Based on the color of the plant, scientists use an algorithm to determine how much nitrogen should be applied to return the plant to optimal health.

The authors found that while there was room for improvement in operational efficiency and responsiveness of the setup, this approach was promising. They said the kit used was meant to be a low-level investment farmers could add onto existing equipment to enable better control of daily operations. They say that if farmers invest in the equipment and fine-tune the distribution of fertilizer to their fields, they should be able to “transform themselves into precise high output agro-entrepreneurs.”

As usual many people are involved during the development of projects as these, and in this case a special mention to Louis Gabarra would like to be made by the authors for his contribution during his student internship in making the first prototype versions presented here come to reality.

Check out the full article: Precision for Smallholder Farmers: A Small-Scale-Tailored Variable Rate Fertilizer Application Kit. 2018. Van Loon, J. Speratti, A.B., Govaerts, B. In: Agriculture and check out other recent publication by CIMMYT staff below:

  1. Volume and value of postharvest losses : the case of tomatoes in Nepal. Gautam, S., Acedo, A. L. Jr., Schreinemachers, P., Subedi, B. P. In: British Food Journal v. 119, no. 12, p. 2547-2558.
  2. Prioritizing climate-smart agricultural land use options at a regional scale. Shirsath, P.B., Aggarwal, P.K., Thornton, P. K., Dunnett, A. In: Agricultural Systems v. 151, p. 174-183.
  3. Soil processes and wheat cropping under emerging climate change scenarios in South Asia. Jat, M.L., Singh, B., Stirling, C., Jat, H. S., Tetarwal, J. P., Jat, R.K., Singh, R., Lopez-Ridaura, S., Shirsath, P.B. In: Advances in Agronomy v. 148, p. 111-171.
  4. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia : carbon dynamics and productivity. Samal, S. K., Rao, K. K., Poonia, S. P., Kumar, R., Mishra, J. S., Prakash, V., Mondal, S., Dwivedi, S. K., Bhatt, B. P., Naik, S. K., Choubey, A. K., Kumar, V., Malik, R.K., McDonald, A. In: European Journal of Agronomy v. 90, p. 198-208.
  5. Analyzing the variability and genotype x season interaction to assess the biological homeostasis in yellow maize (Zea Mays L.) germplasm using advanced biometrical inferences. Maqbool, M. A., Aslam, M., Issa, A.B., Khan, M. In: Pakistan Journal of Botany v. 49, no. 6, p. 2405-2418.
  6. Exploring farmer perceptions of agricultural innovations for maize-legume intensification in the mid-hills region of Nepal. Alomia-Hinojosa, V., Speelman, E. N., Thapa, A., Hisiang-En Wei, McDonald, A., Tittonell, P., Groot, J. C. J. In: International Journal of Agricultural Sustainability v. 16, no. 1, p. 74-93
  7. Evaluation of single cross yellow maize hybrids for agronomic and carotenoid traits. Maqbool, M. A., Aslam, M., Khan, M. S., Issa, A.B., Ahsan, M. In: International Journal of Agriculture and Biology v. 19, no. 5, p. 1087-1098.
  8. Simulated bermudagrass production and nitrate leaching affected by El Niño Southern oscillation, soil and clipping frequency. Woli, P., Rouquette, F. M., Long, C. R., Gowda, P., Pequeño, D. N. L. In: Agronomy Journal v. 109, no. 6, p. 2649-2661.
  9. Evolving food consumption patterns of rural and urban households in developing countries : a Bangladesh case. Mottaleb, K.A., Dil Bahadur Rahut, Kruseman, G., Erenstein, O. In: British Food Journal v. 120, no. 2, p. 392-408.
  10. Patterns and determinants of private tutoring : the case of Bangladesh households. Pallegedara, A., Mottaleb, K.A. In: International Journal of Educational Development v. 59, p. 43-50.

New publications: The importance of wheat in the global food supply to a growing population

Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT
Wheat surrounds the border of the Volcanoes National Park in Rwanda. Photo: F. Baudron/CIMMYT

A series of publications, titled the “CIMMYT Series on Carbohydrates”, aims to address the importance of carbohydrates and grain in relation to good health. One publication of this series focuses on wheat-based foods and their importance to regional food supplies, nutrition and health.

The paper describes how wheat-based foods make up a major portion of total global calories, proteins and micronutrients that support growth and development. It argues that both whole- and refined-grain wheat products contribute to healthy nutrition globally.

Wheat is grown in nearly every region of the world and represents a main source of food and income for millions of smallholder farmers. The authors say wheat-based foods are therefore critical for food security and nutritional security worldwide.

The authors draw attention to the predicted upcoming food crisis, as populations in developing countries expand rapidly, especially in Africa and South Asia. They note that population growth is likely to outpace yield gains in wheat and call for larger investments in wheat and other cereal crops to keep pace with future demand.

The task of feeding 9.2 billion people by 2050 is daunting, but breeding has met this challenge before, during the green revolution. Hans Braun, head of the global wheat program at the International Maize and Wheat Improvement Center (CIMMYT) is calling for a “new green revolution” to meet this new challenge.

Braun described a required 1.2 percent yield gain per year and said this is higher than the recent global average. However, promising programs, such as the durum wheat program at CIMMYT have achieved this goal consistently over the last several decades. The CIMMYT durum wheat program has achieved 3.4 percent yield gain per year over the last 43 years, over double the required gain over the next 30 years.

Check out the full article: CIMMYT Series on Carbohydrates, Wheat, Grains, and Health: Wheat-Based Foods: Their Global and Regional Importance in the Food Supply, Nutrition, and Health. 2017. Peña-Bautista, R. J., Hernandez-Espinosa, N., Jones, J. M., Guzman, C., Braun, H. J., in Cereal Foods World and check out other recent publication by CIMMYT staff below:

  1. A ladder within a ladder : understanding the factors influencing a household’s domestic use of electricity in four African countries. 2017. Dil Bahadur Rahut, Behera, B., Ali, A., Marenya, P. In: Energy Economics v. 66, p. 167-181.
  2. Conservation agriculture in the indogenetic plains of India : past, present and future. 2017. Hobbs, P., Gupta, R.K., Jat, R.K., Malik, R.K. In: Experimental Agriculture v. 10, no. 11:14, p. 1-19.
  3. Gene action controlling normalized difference vegetation index in crosses of elite maize (Zea mays L.) inbred lines. 2017. Adebayo, M. A., Menkir, A., Hearne, S., Kolawole, A. O. In: Cereal Research Communications v. 45, no. 4, p. 675–686.
  4. Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. 2017. Abdulmalik, R.O., Menkir, A., Meseka, S., Unachukwu, N., Ado, S., Olarewaju, J.D., Aba, D.A., Hearne, S., Crossa, J., Gedil, M. In: Frontiers in Plant Science no. 8:841.
  5. Heat stress and yield stability of wheat genotypes under different sowing dates across agro-ecosystems in India. Jat, R.K., Singh, P., Jat, M.L., Dia, M., Sidhu, H.S., Jat, S.L.,  Bijarniya, D., Jat, H. S., Parihar, C.M., Kumar, U., Lopez-Ridaura, S. In: Field Crops Research v. 218, p. 33-50.
  6. Influence of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies of Eastern Indo-Gangetic Plains. 2017. Rishi Raj, Kumar, A., Solanki, I.S., Dhar, S., Dass, A., Kumar Gupta, A., Kumar, V., Singh, C.B., Jat, R.K.,  Pandey, U.C. In: Paddy and Water Environment v. 15, no. 4, p. 861–877.
  7. The goat grass genome’s role in wheat improvement. 2018. Rasheed, A., Ogbonnaya, F.C.,  Lagudah, E.S., Appels, R., He Zhonghu. In: Nature Plants v. 4, p. 56-58.
  8. Use of remote sensing in the assessment of resistance of maize to tar spot complex. (2017). Rodrigues Jr, F.A., Defourny, P., Gérard, B., San Vicente, F., Loladze, A. In: Proceedings of the 11th European Conference on Precision Agriculture, Advances in Animal Bioscience 8(2) pp. 259-263.
  9. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt. 2017. Meha Jain, Singh, B., Srivastava, A., Malik, R., McDonald, A., Lobell, D.B. In: Environmental Research Letters v. 12, no. 9, 094011.
  10. Yield and yield attributes as affected by different sowing dates and different maturity classes cultivar on direct seeded rice. 2017. Dahiya, S., Punia, S.S., Singh, J., Kakraliya, S.K., Singh, B., Jat, H.S., Malik, R. In: Chemical Science Review and Letters v. 6, no. 21, p. 149-152.

CIMMYTNEWSlayer1

New Publications: Storage of maize products results in vitamin loss

New Pubs

Biofortification of crops through traditional breeding techniques has become very common in the fight against malnutrition globally. Biofortified provitamin A maize is bred to produce increased carotenoids (a naturally occurring molecule also found in carrots) to reduce vitamin A deficiency (VAD). VAD affects 190 million children globally and causes an estimated 500,000 cases of preventable blindness per year. A study in 2014 showed that provitamin A maize, was as effective as a high-dose supplement at increasing vitamin A stores in Zambian children.

However, processing and storage can drastically reduce the level of carotenoids in these foods by the time they are consumed. The authors of a new study explain that processing of maize grains makes vitamins more bioavailable, but that exposure to heat, light and air can oxidize carotenoids, reducing the amount remaining in food.

The study shows that when stored for six months in traditional conditions, up to 65 percent of provitamin A may be lost, but it differs among maize varieties, with some varieties losing 40 percent of their carotenoid content in the first two weeks.

The study also examined processing and cooking methods of biofortified maize and eggs from hens who ate this maize to find the best and worst conditions for carotenoid retention. They found that boiling whole grain maize into porridge had the best retention rates of any tested processing methods, with retention rates over 100 percent, and deep frying maize and scrambling eggs had the lowest retention rates of around 70 and 80 percent, respectively.

Overall, the authors say cooking allowed both maize and eggs to retain upwards of 80 percent of effects carotenoid content, but storage at or above room temperature quickly degraded the carotenoid content. They suggest that whole grain and courser ground maize may be a good way to retain more provitamin A while sitting on a shelf, but say more research is necessary.

Read the full study “Retention of Carotenoids in Biofortified Maize Flour and β-Cryptoxanthin-Enhanced Eggs after Household Cooking” and check out other publications by CIMMYT staff below:

  1. A white paper on global wheat health based on scenario development and analysis. Savary, S., Djurle, A., Yuen, J., Ficke, A., Rossi, V., Esker, P.D., Fernandes, J.M.C., Del Ponte, E.M., Kumar, J., Madden, L.V., Paul, P., McRoberts, N., Singh, P.K., Huber, L., Pope de Vallavielle, C., Saint-Jea, S., Willocquet, L. In: Phytopathology v. 107, no. 10, p. 1109-1122.
  2. Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero’. Ponce-Molina, L.J., Huerta-Espino, J., Singh, R.P., Basnet, B.R., Alvarado Beltrán, G., Randhawa, M.S., Caixia Lan, Aguilar Rincón, V.H., Lobato-Ortiz, R., García Zavala, J.J. In: Plant disease v. 102, no. 2, p. 421-427.
  3. Evaluation of grain yield of heat stress resilient maize hybrids in Nepal. Koirala, K.B., Giri, Y.P., Rijal, T.R., Zaidi, P.H., Ajanahalli, R.S., Shrestha, J. In: International Journal of Applied Sciences and Biotechnology v. 5, no. 4, p. 511-522.
  4. Genetic analysis of heat adaptive traits in tropical maize (Zea mays L.). Krishnaji Jodage., Kuchanur, P.H., Zaidi, P.H., Patil, A., Seetharam, K., Vinayan, M.T., Arunkumar, B.  In: International Journal of Current Microbiology and Applied Sciences v. 7, no. 1, p. 3237-3246.
  5. Genetic analysis of morpho-physiological traits and yield components in F2 partial diallel crosses of bread wheat (Triticum aestivum L.). Abidine Fellah, Z.E., Hannach, A., Bouzerzour, H., Dreisigacker, S., Yahyaoui, A.H., Sehgal, D. In: Revista Facultad Nacional de Agronomía v. 70, no. 3, p. 8237-8250.
  6. Genomics selection in plant breeding : methods, models, and perspectives. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-Lopez, O.A., Jarquín, D., De los Campos, G., Burgueño, J., Camacho-González, J. M., Perez-Elizalde, S., Beyene, Y., Dreisigacker, S., Ravi Gopal Singh, Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., Varshney, R. K. In: Trends in Plant Science v. 20, no. 11, p. 961-975.
  7. Grain yield and stability of white early maize hybrids in the highland valleys of Mexico. Torres Flores, J. L., Mendoza García, B., Prasanna, B.M., Alvarado Beltrán, G., San Vicente, F.M., Crossa, J. In: Crop Science v. 57, no. 6, p. 3002-3015.
  8. High-throughput measurement methodologies for developing nutrient-dense crops. Guild, G., Parkes, E., Nutti, M., Palacios-Rojas, N., Stangoulis, J. In: African Journal of Food, Agriculture, Nutrition and Development v. 17, no. 2, p. 11941-11954.
  9. Retention of carotenoids in biofortified maize flour and β-Cryptoxanthin-Enhanced eggs after household cooking. Sowa, M., Jiaoying Yu, Palacios-Rojas, N., Goltz, S. R., Howe, J. A., Davis, C.R., Rocheford, T., Tanumihardjo, S. A. In: ACS Omega no. 2, p. 7320-7328.
  10. Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala and Virgilio sp. Nov. using life-cycle simulation models : implications for phytosanitary measures and management. Tanga, C. M., Khamis, F. M., Tonnang, H., Rwomushana, I., Mosomtai, G., Mohamed, S. A., Ekesi, S. In: PLoS One v. 13, no. 1:e0189138CIMMYTNEWSlayer1

New Publications: Goat grass gives wheat breeders an edge

Chuanmai 42 at Zhongjiang. (Photo: Garry Rosewarne/CIMMYT)
Chuanmai 42 at Zhongjiang. (Photo: Garry Rosewarne/CIMMYT)

A new commentary published today in the leading science journal Nature Plants highlights the importance of an ancient grass species for wheat breeding. The commentary was sparked by the recent publication of a reference genome from Aegilops tauschii, also called goat grass.

Bread wheat was created some 10,000 years ago by a natural cross of more simple, primitive wheats with a sub-species of goat grass. As such, goat grass genes constitute a major component of the very large wheat genome. The sequencing of goat grass DNA opens the way for wheat breeders to apply a number of advanced approaches to improve the speed and precision of wheat breeding for important traits that may be found in the goat grass segment of the wheat genome.

The International Maize and Wheat Improvement Center (CIMMYT) has produced many wheat x grass crosses, recreating the original, natural cross but using other goat grass species and thus greatly expanding wheat’s diversity. Wheat lines derived from those crosses have since been used in breeding programs worldwide and have helped farmers to boost yields by up to 20 percent. Goat grass is known for being highly adaptable and disease tolerant, so the crosses endow wheat with similar qualities. Varieties from these crosses make up over 30 percent of international seed stores.

Researchers expect that the sequencing of this grass species’ DNA will facilitate advanced approaches such as “speed breeding” – a technique that uses controlled variables to achieve up to seven rounds of wheat crops in one year. This will help allow wheat breeding to keep up with the rising global demand for the crop and to address the challenges of new, virulent diseases and more extreme weather.

Check out the full article: The goat grass genome’s role in wheat improvement. 2018. Rasheed, A., Ogbonnaya, F.C., Lagudah, E., Appels, R., He, Z. in Nature Plants and check out other recent publication by CIMMYT staff below:

  • Molecular genetic diversity and population structure of Ethiopian white lupin landraces Implications for breeding and conservation. 2017. Atnaf, M., Yao, N., Kyalo, M. ,Kifle Dagne, Dagne Wegary Gissa, Tesfaye, K. In: PLoS One v. 12, no. 11, p. e0188696.
  • Determinants of participation in cavy marketing : evidence from the Democratic Republic of Congo. 2017. Simtowe, F., Paul, B. K., Wimba, B. M. M., Bacigale, S. B., Chiuri, W. L., Maass, B. L. In: Journal of Agriculture and Rural Development in the Tropics and Subtropics v. 118, no. 2, p. 245-257.
  • Food security, sweet potato production, and proximity to markets in northern Ghana. 2017. Glenna, L.L., Borlu, Y., Gill, T., Larson, J., Ricciardi, V., Adam, R. In: Facets v. 2, p. 919-936.
  • Evaluation of grain yield and related agronomic traits of quality protein maize hybrids in Southern Africa. 2017. Setimela, P.S., Gasura, E., Amsal Tesfaye Tarekegne. In: Euphytica v. 213, p. 289.
  • Medium-term effects of conservation agriculture on soil quality. 2017. Ivy Sichinga Ligowe, Patson Cleoups Nalivata, Njoloma, J., Makumba, W., Thierfelder, C. In: African Journal of Agricultural Research v. 12, no. 29, p. 2412-2420.
  • Predicting yield and stability analysis of wheat under different crop management systems across agro-ecosystems in India. 2017. Jat, M.L., Jat, R.K., Singh, P., Jat, S.L., Sidhu, H.S., Jat, H. S., Bijarniya, D.,  Parihar, C.M., Gupta, R.K. In: American Journal of Plant Sciences v. 8, p. 1977-2012.
  • Pathogenomic analysis of wheat yellow rust lineages detects seasonal variation and host specificity. 2017. Bueno Sancho, V., Persoons, A., Hubbard, A., Cabrera-Quio, L. E., Lewis, C. M., Corredor Moreno, P., Bunting, D. C. E., Sajid Ali, Soonie Chng, Hodson, D.P., Madariaga Burrows, R., Bryson, R., Thomas, J., Holdgate, S., Saunders, D. G. O. In: Genome Biology and Evolution v. 9, no. 12, p. 3282-3296.
  • Genotype by environment interactions and combining ability for strawberry families grown in diverse environments. 2017. Mathey, M.M., Mookerjee, S., Mahoney, L.L., Gündüz, K., Rosyara, U., Hancock, J.F., Stewart, P.J., Whitaker, V.M., Bassil, N.V., Davis, T.M., Finn, C.E. In: Euphytica v. 213, p. 112.
  • Genome-wide association study in Asia-adapted tropical maize reveals novel and explored genomic regions for sorghum downy mildew resistance. 2017. Rashid, Z., Kumar Singh, P., Vemuri, H., Zaidi, P.H., Prasanna, B.M., Nair, S.K. In: Scientific reports v. 8, p. 366.
  • Combining ability analysis in newly developed S6 inbred lines of maize (Zea mays L.). 2017. Gazala, P., Kuchanur, P.H., Zaidi, P.H., Arunkumar, B., Patil, A., Seetharam, K., Vinayan, M.T. In: Journal of Farm Sciences v. 3, no. 3, p. 315-319.

 

New Publications: Using prediction models to keep up with growing demand for wheat

Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: P. Lowe/CIMMYT)
Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: P. Lowe/CIMMYT)

With increasing global demand for wheat and increasing constraints (high temperatures, diseases) to wheat’s productivity, wheat breeders are looking for new methodologies to make breeding more efficient. A new study looks at refinements of genomic prediction models to help achieve this.

The authors write that genomic selection is becoming a standard approach to achieving genetic progress in plants, as it gets around the need to field-test the offspring at every cycle, but that the models commonly used in plant breeding are based on datasets of only a few hundred genotyped individual plants.

This study used pedigree and genomic data from nearly 59,000 wheat lines evaluated in different environments, as well as genomic and pedigree information in a model that incorporated genotype X environment interactions to predict the performance of wheat lines in Mexican and South Asian environments.

They found that models using markers (and pedigree) had higher prediction accuracies than models using only phenotypic data. Models that included genomic x environment had higher prediction accuracies than models that do not include interaction.

Read the full study “Single-Step Genomic and Pedigree Genotype × Environment Interaction Models for Predicting Wheat Lines in International Environments” and check out other publications by CIMMYT staff below:

  • Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat. 2017. Lozada, D. N., Mason, E.R., Md Ali Babar, Carver, B. F., Guedira, G. B., Merrill, K., Arguello, M. N., Acuna, A., Vieira, L., Holder, A., Addison, C., Moon, D. E., Miller, R. G., Dreisigacker, S. In: Euphytica v. 213 : 222.
  • Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. 2017. Ao Zhang, Hongwu Wang, Beyene, Y., Fentaye Kassa Semagn, Yubo Liu, Shiliang Cao, Zhenhai Cui, Yanye Ruan, Burgueño, J., San Vicente, F.M., Olsen, M., Prasanna, B.M., Crossa, J., Haiqiu Yu, Zhang, X. In: Frontiers in Plant Science v. 8 : 1916.
  • Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. 2017. Hickey, J.M., Tinashe Chiurugwi, Mackay, I., Powell, W., Eggen, A., Kilian, A., Jones, C., Canales, C., Grattapaglia, D., Bassi, F., Atlin, G.N., Gorjanc, G., Dawson, I., Rabbi, I.,  Ribaut, J.M., Rutkoski, J., Benzie, J., Lightner, J., Mwacharo, J., Parmentier, J., Robbins, K., Skot, L., Wolfe, M., Rouard, M., Clark, M., Amer, P., Gardiner, P., Hendre, P., Mrode, R., Sivasankar, S., Rasmussen, S., Groh, S., Jackson, V., Thomas, W., Beyene, Y. In: Nature Genetics v. 49, no. 9, p. 1297–1303.
  • Genomic selection in plant breeding : methods, models and perspectives. 2017. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-Lopez, O.A., Jarquín, D., De los Campos, G., Burgueño, J., Camacho-González, J. M., Perez-Elizalde, S., Beyene, Y., Dreisigacker, S., Singh, R.P., Zhang, X., Gowda, M., Rutkoski, J., Varshney, R. K. In: Trends in Plant Science v. 22, no. 11, p. 961-975.
  • Single-step genomic and pedigree genotype x environment interaction models for predicting wheat lines in international environments. 2017. Pérez-Rodríguez, P., Crossa, J., Rutkoski, J.,  Singh, R.P., Legarra, A., Autrique, E., De los Campos, G., Burgueño, J., Dreisigacker, S. In: The Plant Genome v. 10, no. 2.

New Publications: Mitigating climate change effects on food security

Long term conservation agriculture in practice. Photo: CIMMYT/X. Fonseca
Long term conservation agriculture in practice.
Photo: CIMMYT/X. Fonseca

A new study on climate change patterns indicates that climate change could reduce total crop production 23 percent by 2050, the same year in which human population is expected to increase past nine billion people.

Globally, one in nine people were unable to meet their dietary energy requirements in 2015 and that number is expected to increase. Food insecurity is exacerbated by unstable global food prices, which are a reflection of unpredictable crop production seasons due to extreme weather patterns like temperature shocks, drought and flooding.

Climate-resilient agriculture has been touted as essential to achieving food security in the future. The study shows that improvements in technology and agronomic practices have the capacity to increase global food production to adequate levels, even in extreme conditions.

The authors say that beginning to implement mitigation and adaptation technologies now is crucial to check climate change’s adverse impact on global crop production and food security.

Read the full study “Impact of climate change, weather extremes, and price risk on global food supply” and check out other publications by CIMMYT staff below:

Participatory integrated assessment of scenarios for organic farming at different scales in Camargue, France. 2016. Delmotte, S., Barbier, J.M., Mouret, J.C., Le Page, C., Wery, J., Chauvelon, P., Sandoz, A., Lopez-Ridaura, S. In: Agricultural Systems, vol.143, p.147-158.

Patterns and determinants of household use of fuels for cooking: empirical evidence from sub-Saharan Africa. 2016. Dil Bahadur Rahut, Behera, B., Ali, A. In: Energy, vol. 117, p. 93-104.

Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation. 2016. Sanchez-Bragado, R., Molero, G., Reynolds, M.P., Araus, J.L. In: Journal of Experimental Botany, vol. 67, no.9, p.2787-2798.

Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. 2016. Ruiqi Zhang, Bingxiao Sun, Chen, J., Aizhong Cao, Liping Xing, Yigao Feng, Caixia Lan, Peidu Chen. In: Theoretical and Applied Genetics, vol.129, p.1975-1984.

Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice. 2016. Taiichiro Ookawa, Ryo Aoba, Toshio Yamamoto, Tadamasa Ueda, Toshiyuki Takai, Shuichi Fukuoka, Tsuyu Ando, Shunsuke Adachi, Makoto Matsuoka, Takeshi Ebitani, Yoichiro Kato, Indria Wahyu Mulsanti, Kishii, M., Reynolds, M.P., Piñera Chavez, F.J., Toshihisa Kotake, Shinji Kawasaki, Takashi Motobayashi, Tadashi Hirasawa. In: Nature Scientific reports, vol.6, no. 30572.

Predicting hybrid performances for quality traits through genomic-assisted approaches in Central European wheat. 2016. Guozheng Liu, Yusheng Zhao, Gowda, M., Longin, F.H., Reif, J.C., Florian Mette, M. In: PLoS One, vol 11, no. 7.

Predicting Rift Valley fever inter-epidemic activities and outbreak patterns: insights from a stochastic Host-Vector Model. 2016. Pedro, S.A., Abelman, S., Tonnang, H. In: PLoS Neglected Tropical Diseases, vol.10, no.12, 1-26 p.

Household energy consumption and its determinants in Timor-Leste. 2017. Dil Bahadur Rahut, Mottaleb, K.A., Ali, A. In: Asian development review, v. 34, no. 1, p. 167-197.

Cover crop-based reduced tillage system influences Carabidae (Coleoptera) activity, diversity and trophic group during transition to organic production. 2017. Rivers, A., Mullen, C., Wallace, J., Barbercheck, M. In: Renewable Agriculture and Food Systems, v. 32, no. 6, p. 538-551.

Impact of climate change, weather extremes, and price risk on global food supply. 2017. Haile, M.G., Wossen, T., Kindie Tesfaye Fantaye, Joachim, vB. In: Economics of Disasters and Climate Change, v. 1, p. 55-75.

CIMMYTNEWSlayer1