Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries âSolving for Zero: The Search for Climate Innovation.â The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.
Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.
Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.
CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)
Breeding climate-smart crops
âClimate change has been a great disaster to us. Day by day itâs getting worse,â said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.
Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.
âSeed is basic to everything. The whole family is dependent on the produce from the farm,â explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.
Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.
âCurrently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,â Beyene said. âUsing molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.â
Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. âFall armyworm is a recent pest in the tropics and has affected a lot of countries,â said Moses Siambi, CIMMYT Regional Representative for Africa. âIncreased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.â
Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIARâs community-focused climate work. (Image: Wondrium.com)
Building on CGIARâs climate legacy
Ana MarĂa Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIARâs community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.
âTechnological innovations are critical to food system transformation,â said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). âBut if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.â
CCAFSâs impressive legacy â in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements â is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.
Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.
Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. âThis success would not have been possible if scientists hadnât gotten out of their labs to collaborate with producers in the field,â Loboguerrero said.
Climate adaptation solutions
Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.
Interested in learning more? The documentary âSolving for Zero: The Search for Climate Innovationâ is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.
Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.
Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex â that is, they are controlled by many genes and gene interactions â so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.
Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.
Is plant breeding a modern technique?
Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.
Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.
With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the cropsâ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered âbanks.â
The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.
Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.
Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.
Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.
Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.
Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plantâs genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA âfingerprintâ of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.
Plant breeders normally prefer to work with âeliteâ populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.
Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmersâ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.
Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
Selected impacts of maize and wheat breeding
In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa â a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought â was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.
Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.
Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.
Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.
Crosses of wheat with related crops (rye) or even wild grasses â the latter known as wide crosses â have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as âgoat grass,â that boost their resilience and provide other valuable traits to protect yield.
Biofortification â breeding to develop nutritionally enriched crops â has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Thefuture
Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.
Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information â also called phenotyping â to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles â or generations â to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.
Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.
Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIARâs Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.
A CIMMYT technician cuts a leaf sample for DNA extraction. (Photo: CIMMYT)
Wheat breeders from across the globe took a big step towards modernizing their molecular breeding skills at a recent workshop sponsored by the Wheat Initiative, with the CGIAR Excellence in Breeding Platform (EiB) and the International Maize and Wheat Improvement Center (CIMMYT).
The workshop focused on three open-source tools used in molecular breeding: GOBii-GDM for genomic data management, Flapjack for data visualization and breeding analysis, and Galaxy for Genomic Selection. These tools help breeders make selections more quickly and precisely, and ultimately lead to more cost effective and efficient improvement of varieties.
The Wheat Initiative â a global scientific collaboration whose goals are to create improved wheat varieties and disseminate better agronomic practices worldwide â and its Breeding Methods and Strategies expert working group had planned to host these trainings during the 2020 Borlaug Global Rust Initiative Technical Workshop in the United Kingdom. After it became obvious that in-person trainings were not possible, the course organizers â including CIMMYT molecular wheat breeder Susanne Dreisigacker and EiB Adoption Lead and former GOBii project director Elizabeth Jones â decided to come together to host online workshops.
Many of the tools will be incorporated into EiBâs Enterprise Breeding System (EBS), a new integrated data management system being developed for CGIAR breeders. Jones plans to also design training modules for these molecular breeding tools that will be accessible to anyone through the EiB Toolbox.
The first session of the workshop âTransforming Wheat Breeding Through Integrated Data Management with GOBii and Analysis in Flapjackâ benefited breeders from Australia, Canada, Ethiopia, France, India, Ireland, Italy, Morocco, Pakistan, Switzerland, Tunisia, the United Kingdom and the United States.
Susanne Dreisigacker presents during one of the sessions of the workshop.
Powering data analysis around the world
The workshop series, âTransforming Wheat Breeding Through Integrated Data Management with GOBii and Analysis in Flapjack,â aimed to benefit breeders from wheat producing countries all over the world, with sessions over two different time zones spread out over three days to reduce âZoom fatigue.â Participants joined the first session from Australia, Canada, Ethiopia, France, India, Ireland, Italy, Morocco, Pakistan, Switzerland, Tunisia, the United Kingdom and the United States.
âIt was wonderful to see the diversity of participants that we were able to train through an online workshop, many of whom otherwise might not have been able to travel to the UK for the original meeting,â said Jones. âParticipants were very engaged, making the workshop so rewarding.â
The workshop was guided by Teresa Saavedra, Wheat Initiative coordinator. Apart from Dreisigacker and Jones, other trainers explained specific tools and approaches. Iain Milne from the James Hutton Institute in Scotland gave more details about the Flapjack genotyping visualization tool, which includes analysis for pedigree verification, marker assisted backcrossing and forward breeding. Andrew Kowalczyk, developer at Diversity Arrays Technology, spoke about the genotyping data QC tool DArTView.
A CIMMYT technician performs one of the steps to extract DNA samples from plants. (Photo: CIMMYT)
Clay Sneller, wheat breeder at Ohio State University, contributed training materials for important molecular breeding tools. Carlos Ignacio, previously based at the International Rice Research Center (IRRI) and now working on a PhD in Genomic Selection at Ohio State University, contributed his experience as a GOBii team member and a major contributor towards the design of Flapjack tools. Star Gao, application specialist with GOBii and now a requirements analyst for the Enterprise Breeding System, also facilitated the sessions.
Gilles Charmet, research director at the Franceâs National Research Institute for Agriculture, Food and Environment (INRAE), introduced the sessions in the Americas/Europe time zone with welcome remarks and overview of the goals of the Wheat Initiative. Alison Bentley, director of the CIMMYT Global Wheat Program, briefed on the achievements and goals of the CIMMYT Wheat program and the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project.
âThis training will contribute towards us reaching our AGG goals of accelerating gains in wheat, by sharing technical knowledge, and allowing our beneficiary partners to have state-of-the-art know-how in the use of genetic and genomic data,â Bentley said.
The sessions continue in Australasia next week, and will be introduced by Peter Langridge, chair of the Scientific Board for the Wheat Initiative, and EiB director Michael Quinn. Sanjay Kumar Singh, incoming chair of the Breeding expert working group for the Wheat Initiative, will close the event.
Close up of a durum wheat spike. (Photo: Xochiquetzal Fonseca/CIMMYT)
In a landmark discovery for global wheat production, an international team led by the University of Saskatchewan and including scientists from the International Maize and Wheat Improvement Center (CIMMYT) has sequenced the genomes for 15 wheat varieties representing breeding programs around the world, enabling scientists and breeders to much more quickly identify influential genes for improved yield, pest resistance and other important crop traits.
The research results, just published in Nature, provide the most comprehensive atlas of wheat genome sequences ever reported. The 10+ Genome Project collaboration involved more than 95 scientists from universities and institutes in Australia, Canada, Germany, Israel, Japan, Mexico, Saudi Arabia, Switzerland, the UK and the US.
âItâs like finding the missing pieces for your favorite puzzle that you have been working on for decades,â said project leader Curtis Pozniak, wheat breeder and director of the USask Crop Development Centre (CDC). âBy having many complete gene assemblies available, we can now help solve the huge puzzle that is the massive wheat pan-genome and usher in a new era for wheat discovery and breeding.â
âThese discoveries pave the way to identifying genes responsible for traits wheat farmers in our partner countries are demanding, such as high yield, tolerance to heat and drought, and resistance to insect pests,â said Ravi Singh, head of global wheat improvement at CIMMYT and a study co-author.
One of the worldâs most cultivated cereal crops, wheat plays an important role in global food security, providing about 20 per cent of human caloric intake globally. Itâs estimated that wheat production must increase by more than 50% by 2050 to meet an increasing global demand.
The research team was also able to track the unique DNA signatures of genetic material incorporated into modern cultivars from wild wheat relatives over years of breeding.
âWith partners at Kansas State University, our CIMMYT team found that a DNA segment in modern wheat derived from a wild wheat relative can improve yields by as much as 10%,â said Philomin Juliana, CIMMYT wheat breeder and study co-author. âWe can now work to ensure this gene is included in the next generation of modern wheat cultivars.â
The team also used the genome sequences to isolate an insect-resistant gene called Sm1, that enables wheat plants to withstand the orange wheat blossom midge, a pest which can cause more than $60 million in annual losses to Western Canadian producers.
âUnderstanding a causal gene like this is a game-changer for breeding because you can select for pest resistance more efficiently by using a simple DNA test than by manual field testing,â explained Pozniak.
The 10+ Genome Project was sanctioned as a top priority by the Wheat Initiative, a coordinating body of international wheat researchers.
âThis project is an excellent example of coordination across leading research groups around the globe. Essentially every group working in wheat gene discovery, gene analysis and deployment of molecular breeding technologies will use the resource,â said Wheat Initiative Scientific Coordinator Peter Langridge.
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
ABOUT CDC:
The Crop Development Centre (CDC) in the USask College of Agriculture and Bioresources is known for research excellence in developing high-performing crop varieties and developing genomic resources and tools to support breeding programs. Its program is unique in that basic research is fully integrated into applied breeding to improve existing crops, create new uses for traditional crops, and develop new crops. The CDC has developed more than 400 commercialized crop varieties.
Usman Kadir and his family de-husk maize on their farm in Ethiopia. (Photo: Apollo Habtamu/ILRI)
The current COVID-19 pandemic â and associated measures to reduce its spread â is projected to increase extreme poverty by 20%, with the largest increase in sub-Saharan Africa, where 80 million more people would join the ranks of the extreme poor. Accelerating the process of delivering high-quality, climate resilient and nutritionally enriched maize seed is now more critical than ever.However, developing these varieties is not a rapid or cheap process. Over the course of five years, researchers on the Stress Tolerant Maize for Africa (STMA) project developed a range of tools and technologies to reduce the overall cost of producing a new high yielding, stress tolerant hybrids for smallholder farmers in the region.
Maize breeding starts with crossing two parents and essentially ends after testing their great-great-great-great grandchildren in as many locations as possible. This allows plant breeders to identify the new varieties which will perform well in the conditions faced by their target beneficiaries â in the case of STMA, smallholder farmers in Africa. In other parts of the world, new tools and technologies are routinely added to breeding programs to help reduce the cost and time it takes to produce new varieties.
Scientists on the STMA project focused on testing and scaling new tools specifically for maize breeding programs in sub-Saharan Africa and began by taking a closer look at the most expensive part of the breeding process: phenotyping or collecting precise information on plant traits.
âWithin a breeding program, phenotyping is the single most costly step,â explains CIMMYT molecular breeder Manje Gowda. âMolecular technologies provide opportunities to reduce this cost.â The research team tested two methods to speed up this step and make it more cost efficient: forward breeding and genomic selection.
Speeding up a long and costly process
Two important traits maize breeders look for in their plant progeny are susceptibility for two key maize diseases: maize streak virus (MSV) and maize lethal necrosis (MLN). In traditional breeding, breeders must extensively test lines in the field for their susceptibility to these diseases, and then remove them before the next round of crossing. This carries a significant cost.
Using a process called forward breeding, scientists can screen for DNA markers known to be associated with susceptibility to these diseases. This allows breeders to identify lines vulnerable to these diseases and remove them before field testing.
Scientists on the STMA project applied this approach in CIMMYT breeding programs in eastern and southern Africa over the past four years, saving an estimated $300,000 in field costs. Under the AGG project, research will now focus on applying forward breeding to identify susceptibility for another fast-spreading maize pest, fall armyworm, as well as extending use of this method in partnersâ breeding programs.
A CIMMYT research associate inspects maize damaged by fall army worm at KALRO Kiboko Research Station in Kenya. (Photo: Peter Lowe/CIMMYT)
Forward breeding is ideal for âsimpleâ traits which are controlled by a few genes. However, other desired traits, such as tolerance to drought and low nitrogen stress, are genetically complex. Many genes control these traits, with each gene only contributing a little towards overall stress tolerance.
In this case, a technology called genomic selection can be of service. Genomic selection estimates the performance, or breeding value, of a line based largely on genetic information. Genomic selection uses more than 5,000 DNA markers, without the need for precise information about what traits these markers control. The method is ideal for complicated traits such as drought and low nitrogen stress tolerance, where hundreds of small effect genes together largely control how a plant grows under these stresses.
CIMMYT scientists used this technology to select and advance lines for drought tolerance. They then tested these lines and compared their performance in the field to lines selected conventionally. They found that the two sets of resulting hybrid varieties â those advanced using genomic selection and those advanced in the field â showed the same grain yield under drought stress. However, genomic selection only required phenotyping half the lines, achieving the same outcome with half the budget.
Innovations in the field
While DNA technology is reducing the need for extensive field phenotyping, research is also underway to reduce the cost of the remaining necessary phenotyping in the field.
Typically, many traits â such as plant height or leaf drying under drought stress â are measured by hand, using the labor of large teams of people. For example, plant and ear height is traditionally measured by a team of two using a meter stick.
Mainasarra Zaman-Allah, a CIMMYT abiotic stress phenotyping specialist based in Zimbabwe, has been developing faster, more accurate ways to measure these traits. He implemented the use of a small laser sensor to measure plant and ear height which only requires one person. This simple yet cost effective tool has reduced the cost of measuring these traits by almost 60%. Similarly, using a UAV-based platform has reduced the cost of measuring a trait known as canopy senescence â leaf drying associated with drought susceptibility âby over 65%.
The identification of plants which are tolerant to key diseases has traditionally involved scoring the severity of disease in each plot visually, but walking through hundreds of plots daily can lead to errors in human judgement. To combat this, CIMMYT biotic stress phenotyping specialist LM Suresh collaborated with Jose Luis Araus and Shawn Kefauver, scientists at the University of Barcelona, Spain, to develop image analysis software that can quantify disease severity, thereby avoiding problems associated with unintentional human bias.
Plant breeders need uniform, or homozygous, lines for selection. With conventional plant breeding this is difficult: no matter how many times you cross a line, a small amount of DNA will remain heterozygous â having two different alleles of a particular gene â and reduce accuracy in line selection.
A technology called doubled haploid allows breeders to develop homozygous lines within two seasons. While this technology has been used in temperate maize breeding programs since the 1990s, it was not available for tropical environments until 10 years ago. In 2013, thanks to joint work with Kenyan partners at the CIMMYT Doubled Haploid facility in Kiboko, this technology was made available to African breeding programs. Now Vijay Chaikam, a CIMMYT doubled haploid specialist based in Kenya, is working towards reducing the cost of this technology as well.
The efforts begun by the STMA research team is now continuing under the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project. As this work is carried forward, the next crucial step is ensuring that the next generation of African maize breeders have access to these technologies and tools.
âImproving national breeding programs will really drive success in raising maize yields in the stress prone environments faced by many farmers in our target countries,â says Mike Olsen, CIMMYTâs upstream trait pipeline coordinator. Under AGG, in collaboration with the CGIAR Excellence in Breeding Program, these tools will be scaled out.
Stakeholders in the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project have pledged to strengthen efforts to deliver desirable stress tolerant, nutritious and high-yielding maize and wheat varieties to smallholder farmers in a much shorter time. The alliance, comprising funders, national agricultural research systems (NARS), private seed companies, non-governmental organizations, the International Maize and Wheat Improvement Center (CIMMYT) and, for the maize component the International Institute for Tropical Agriculture (IITA), made these assurances during virtual events held in July and August 2020, marking the inception of the 5-year AGG project.
The initiative seeks to fast-track the development of higher-yielding, climate resilient, demand-driven, gender-responsive and nutritious seed varieties for maize and wheat, two of the worldâs most important staple crops. The project is funded by the Bill & Melinda Gates Foundation, the Foreign, Commonwealth & Development Office (FCDO), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR).
Tackling current and emerging threats
Jeff Rosichan, scientific program director of the Foundation for Food and Agricultural Research (FFAR), acknowledged the significant and ambitious aim of the project in tackling the challenges facing maize and wheat currently and in the future. âWe are seeing the emergence of new pests and pathogens and viral diseases like never before. A lot of the work of this project is going to help us to tackle such challenges and to be better prepared to tackle emerging threats,â he said.
AGG builds on gains made in previous initiatives including Drought Tolerant Maize for Africa (DTMA), Improved Maize for African Soils (IMAS), Water Efficient Maize for Africa (WEMA), Stress Tolerant Maize for Africa (STMA) and Delivering Genetic Gain in Wheat (DGGW), with support from partners in 17 target countries in sub-Saharan Africa (SSA) and South Asia.
Hailu Wordofa, agricultural technology specialist at the USAID Bureau for Resilience and Food Security, underscored his expectation for CIMMYTâs global breeding program to use optimal breeding approaches and develop strong collaborative relationships with NARS partners, âfrom the development of product profiles to breeding, field trials and line advancement.â
Similarly, Gary Atlin, senior program officer at the Bill & Melinda Gates Foundation lauded the move toward stronger partnerships and greater emphasis on the CIMMYT and IITA breeding programs. âThe technical capacity of partners has increased through the years. It is prudent to ensure that national partnerships continue. It is always a challenging environment, this time multiplied by the COVID-19 crisis, but through this collaboration, there is a greater scope to strengthen such partnerships even more,â he said.
Anne Wangui, Maize Seed Health Technician, demonstrates how to test maize plants for maize dwarf mosaic virus (MDMV). (Photo: Joshua Masinde/CIMMYT)
Symbiotic partnerships with great impact
âFrom the NARS perspective, we are committed to doing our part as primary partners to deliver the right seed to the farmers,â said Godfrey Asea, director of the National Crops Resources Research Institute at the National Agriculture Research Organization (NARO), Uganda. âWe see an opportunity to review and to use a lot of previous historical data, both in-country and regionally and to continue making improved decisions. We also reiterate our commitment and support to continuously make improvement plans in our breeding programs.â
Martin Kropff, director general of CIMMYT, recognized the tremendous impact arising from the longstanding cooperation between CIMMYTâs maize and wheat programs and national programs in countries where CIMMYT works. âA wheat study in Ethiopia showed that 90% of all the wheat grown in the country is CIMMYT-related, while an impact study for the maize program shows that 50% of the maize varieties in Africa are CIMMYT-derived. We are very proud of that â not for ourselves but for the people that we work for, the hundreds of millions of poor people and smallholder farmers who really rely on wheat and maize for their living and for their incomes,â he said.
Founder and Chief Executive Officer of East Africa-based Western Seed Company Saleem Esmail expressed optimism at the opportunities the project offers to improve livelihoods of beneficiaries. âI believe we can do this by sharing experiences and by leveraging on the impacts that this project is going to bring, from new technologies to new science approaches, particularly those that help save costs of seed production.â
He, however, observed that while the target of fast-tracking varietal turnover was great, it was a tough call, too, âbecause farmers are very risk averse and to change their habits requires a great deal of effort.â
On his part, director of Crop Research at the Oromia Agricultural Research Institute (OARI) in Ethiopia Tesfaye Letta revealed that from collaborative research work undertaken with CIMMYT, the institute has had access to better-quality varieties especially for wheat (bread and durum). These have helped millions of farmers to improve their productivity even as Ethiopia aims for wheat self-sufficiency by expanding wheat production under irrigation.
âWe expect more support, from identifying wheat germplasm suitable for irrigation, developing disease resistant varieties and multiplying a sufficient quantity of early generation seed, to applying appropriate agronomic practices for yield improvement and organizing exposure field visits for farmers and experts,â he said.
Challenges and opportunities in a time of crisis
Alan Tollervey, head of agriculture research at Foreign, Commonwealth and Development Office (FCDO) and the UK representative to the CGIAR System Council, emphasized the need for continued investment in agricultural research to build a resilient food system that can cope with the demands and pressures of the coming decades. This way, organizations such as CIMMYT and its partners can adequately deliver products that are relevant not only to the immediate demands of poor farmers in developing countries â and the global demand for food generally â but also to address foreseen threats.
âWe are at a time of intense pressure on budgets, and that is when projects are most successful, most relevant to the objectives of any organization, and most able to demonstrate a track record of delivery. CIMMYT has a long track history of being able to respond to rapidly emerging threats,â he said.
Felister Makini, the deputy director general for crops at the Kenya Agricultural Research Organization (KALRO) lauded the fact that AGG not only brings together maize and wheat breeding and optimization tools and technologies, but also considers gender and socioeconomic insights, âwhich will be crucial to our envisioned strategy to achieve socioeconomic change.â
Zambia Agriculture Research Organization (ZARI) maize breeder Mwansa Kabamba noted that the inclusion of extension workers will help to get buy-in from farmers especially as far as helping with adoption of the improved varieties is concerned.
In its lifecycle, the AGG project aims to reduce the breeding cycles for both maize and wheat from 5-7 years currently to 3-4 years. By 2024, at least 150,000 metric tons of certified maize seed is expected to be produced, adopted by 10 million households, planted on 6 million hectares and benefit 64 million people. It also seeks to serve over 30 million households engaged in wheat farming the target countries.
Cover photo: CIMMYT researcher Demewoz Negera at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).
The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat â two of the world’s most important staple crops.
Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods â such as rapid cycling and molecular breeding approaches â that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmersâ specific needs.
The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaugâs Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.
âAGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,â said CIMMYT Interim Deputy Director for Research Kevin Pixley.
At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.
âThis program is probably the worldâs single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,â said Gary Atlin from the Bill & Melinda Gates Foundation. âThe AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.â
Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.
âThe AGG project helps build a case for funding wheat research based on wheatâs future,â he said.
Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.
Indiaâs farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
Reconnecting with trusted partners
The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.
âWith wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,â said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.
Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYTâs role in developing better wheat varieties for farmers in India.
âMost of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYTâs support on this,â he said.
Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepalâs wheat program.
âNepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,â he said.
The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a âmega projectâ to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in âvertical productionâ of wheat through speed breeding. âAGG will help us save 3 to 4 yearsâ in breeding time,â he said.
For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.
âI have met many of you over the last decades,â he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. âTogether we have achieved a lot â wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. â
Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.
âWe are at the beginning of a new era in breeding,â Braun noted. âWe are also initiating a new era of collaboration.â
The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.