Skip to main content

Tag: maize

Tecnologico De Monterrey Develops Nutraceutical Corn to Address the Global Food Crisis and Improve Health

CIMMYT collaborated with Tecnologico de Monterrey’s FEMSA Biotechnology Center in the development and validation of nutraceutical corn. By leveraging Mexico’s maize diversity through the world’s largest germplasm bank, CIMMYT contributed expertise in crossbreeding to help incorporate traits such as higher protein, fatty acids, and antioxidants, supporting advancements in food security and sustainable agriculture.

Read the full story.

Four New CIMMYT maize hybrids available from LATAM Breeding Program

CIMMYT is happy to announce four new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM22LAPP1A-10 Intermediate maturing, white, high yielding, and resistant to TSC, MLB and Ear rots Lowland tropics
CIM22LAPP1A-11
CIM22LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM22LAPP2A-28 Intermediate-maturing, white, high-yielding, and resistance to GLS and Ear rots. Mid-altitudes/

Spring-Summer season

 

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 31st, 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the LT23-STG5-THW, LT23-STG5-THY, and 01-23MASTCHSTW Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

 

Five New CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce five new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM23SAPP1A-02 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM23SAPP1A-11
CIM23SAPP1B-02 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22NUVA-75 Across maturity groups, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CIM23NUVA-13

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2021/22, 2022/23, and 2023/24 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline for submitting applications to be considered during the first round of allocations is 10 January 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023/24 Southern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored especially for smallholder farmers in stress-prone agroecologies of Southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

 

APPLY FOR A LICENSE

 

 

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

Prof. Jianbing Yan, Former CIMMYT maize scientist, appointed as the new President of Huazhong Agricultural University, China

Huazhong agricultural university (Photo: Wallhere)

Prof. Jianbing Yan, a former maize scientist at CIMMYT, has been appointed as the President of Huazhong Agricultural University (HZAU) in Wuhan, China on 20th August 2024. Jianbing was part of the CIMMYT family working on maize genetics and molecular breeding from 2006 to 2011. He worked as a Joint Post-Doctoral Associate between CIMMYT and Cornell University from October 2006 to September 2008, as an Associate Scientist from October 2008 to August 2009, and as a Scientist from September 2009 to March 2011. Due to his excellent work on Provitamin A biofortification in maize grain, Jianbing received the Japan International Award for Yong Agricultural Researchers in 2010, and the DuPont Young Professor Award in 2011. He also received the Outstanding CIMMYT Alumnus Award in 2014.

Jianbing joined HZAU as a full professor in April 2011. He served as the Vice Dean of the College of Life Science and Technology of HZAU from 2013 to 2017, as the Dean of the College of Plant Science and Technology of HZAU from 2017 to 2020, and as the Vice President of HZAU from 2019 to 2024.

Prof. Jianbing Yan

Jianbing is renowned in the research areas of maize genetics, genomics, and big data-driven breeding. He was the winner of the 2022 L. Stadler Mid-Career Award from the Maize Genetics Cooperation; the award is given to an outstanding maize scientist who has been in a permanent position for between nine and 20 years and has an outstanding track record of discovery research in maize genetics. Jianbing also received multiple national awards, including the National Natural Science Foundation for Excellent Youth in 2012, the National Youth Top-notch Talent Support Program in 2013, the National Science Fund for Distinguished Young Scholars and the Chair Professor of Cheung Kong Scholars Programme in 2015, etc.

Huazhong Agricultural University is recognized as a first-class agricultural university worldwide. It has a total of 14 disciplines listed as the Top 1% of ESI (Essential Science Indicators), including Plant & Animal Science, and Agricultural Sciences. HZAU and CIMMYT jointly hosted a webinar on Intelligent Agriculture in 2020. CIMMYT is one of the four funder institutes for the Global Food Security Association for Young Scientists hosted by HZAU, which was officially launched in December 2022 to connect young scientists around the world, working in the fields of food security. The 1st and 2nd Global Food Security Forums for Young Scientists were co-organized by HZAU and CIMMYT in Wuhan in 2022 and 2023, respectively, to inspire future generations of scientists to communicate and exchange ideas on cutting-edge agricultural research. Dr B.M. Prasanna, Director of CIMMYT Global Maize Program, CIMMYT, has been serving as the member of the International Advisory Committee of HZAU since 2022.

CIMMYT looks forward to building strong partnerships with HZAU in strategic and applied research of crop improvement, sustainable agrifood systems, and capacity building of next-generation agricultural researchers.

 

Enhancing farmer’s crop productivity with resilient maize varieties tailored to their needs

Dorothy Mandaza, local farmer from ward 19 of Seke District, inspecting her maize cobs (CIMMYT)

Maize productivity in eastern and southern Africa faces numerous challenges, including biotic and abiotic stresses, as well as socio-economic factors. To tackle these constraints, CIMMYT, in collaboration with partners, has been developing elite multiple stress-tolerant maize hybrids for different market segments. The hybrids are rigorously evaluated in research stations under managed stresses, especially those faced by farmers, including drought, heat, and low nitrogen. The process is complemented with evaluations conducted in actual farmer conditions through a participatory approach, which enables researchers to identify traits preferred by farmers.

Over the years, and through consistent engagement with farming communities, CIMMYT and partners have established a large on-farm testing network to allow farmers to test the best-performing hybrids within their own fields and management. This ensures that new varieties selected for commercialization suit the needs, constraints, and priorities of smallholder farmers.

Centrality of ROFT in the variety development process
Regional on-farm trials (ROFTs) are a crucial step towards maximizing the impact of breeding investments. ROFTs help scientists understand the performance of pipeline hybrids under diverse management conditions. The data and insights gathered from these trials, led by district leads, are instrumental in identifying the best varieties to release. In Zimbabwe, the extensive on-farm testing is conducted with support from Zimbabwe’s government extension arm, the Department of Agricultural, Technical, and Extension Services (Agritex), and selected seed companies.

To help track the progress or challenges in varietal performance evaluation at the farm level, CIMMYT has been convening feedback sessions with district agriculture extension officers (DAEOs) across 19 districts. These sessions have been instrumental in strengthening the collaboration with Agritex, standardizing data collection, and improving data quality and returns from the established on-farm testing network.

Conversations with district agriculture extension officers in Harare during a feedback session. (Photo/CIMMYT)

The ROFT trials have been ongoing in Zimbabwe for over a decade across 19 districts, located in natural regions I, II, and III. These trials have been implemented by more than 137 AEOs and have involved over 1,000 farmers. The network deliberately included a diverse range of farmers, with around 40% being female plot managers, to encompass a wide range of smallholder farming practices.

Participatory engagement is key
Every year, CIMMYT produces improved varieties that are then taken up by partners, including National Agricultural Research System (NARS) partners and seed companies. The on-farm trials aim to generate agronomic performance data in comparison to the widely grown commercial varieties and farmers’ own varieties. This data is used for a rigorous advancement process, where varieties that pass the test are then furthered for licensing and possible commercialization by CIMMYT’s partners.

Farmer involvement at the final stage of the variety selection process is key to the success of these trials. Farmers evaluate the varieties based on their specific needs, on their farms. This step is crucial as it empowers farmers to have a say in the variety development process. CIMMYT actively uses this participatory selection approach, seeking input from farmers and refining breeding targets as necessary. Farmers communicate their preferences and feedback through the farmer evaluation sheets, helping breeders fine-tune their targets and develop varieties that meet farmers’ needs.

Another key element of the on-farm trials is that they help assess breeding progress in farmers’ fields in terms of crop productivity and return on investment.

Potential for independent performance information to shape farmers’ seed choice for hybrid maize: Insights from Kenya

Maize production in Kenya is a critical component of the country’s agriculture and food security. However, climate change poses a serious threat to its production. Changes in temperature and precipitation patterns can affect maize growth, reduce yields, and increase the incidence of pests and diseases.

Prolonged droughts and unpredictable rainfall can lead to crop failures, while extreme weather events can damage crops and infrastructure. As the climate continues to change, it is essential for Kenyan farmers to adopt resilient agricultural practices and more adapted seed products to safeguard maize production and ensure food security for the population.

For decades, seed companies as well as governments and donors have invested in maize hybrid breeding. Dozens of new hybrids have been made available to seed companies throughout East Africa for multiplication and distribution. These hybrids are designed and tested to outperform older hybrids in terms of yield under rainfed conditions, to include tolerance to drought and pests.

However, the potential impact of these investments has been hampered by the slow turnover of hybrids among farmers. Research has shown that, despite the availability of newer, higher-performing varieties, farmers tend to purchase older, less productive hybrids. The ‘turnover problem’ in Kenya has been described by CIMMYT researchers in a recent publication.[1]

One of the constraints responsible for the low turnover of varieties is a lack of information among farmers on the performance of the newer products. Despite advancements in the development of new seeds and the retail infrastructure to reach farmers, neither the public nor the private sector is generating and disseminating information on the performance of different maize seed products across various agroecologies. Farmers therefore have choice overload but lack objective information on relative seed performance required to make informed seed choices across seasons and growing conditions.

CIMMYT conducted a field experiment to shed light on the potential influence of seed-product performance information on farmers’ seed choices. The study involved aggregating and packaging farmer reported yield data for some seed products and presenting this to randomly selected farmers at the point of sale to assess whether the new information would influence their choice of products. The study was conducted in Kirinyaga and Embu counties where, like many parts of Kenya, farmers have access to a diverse range of maize seed products from seed companies which promise benefits like higher yields and improved resilience but lack objective information on their performance which could support their choices, including when to switch and to what.

[1] https://journals.sagepub.com/doi/full/10.1177/0030727019900520

 

The experiment

The study was conducted in March 2024, at the onset of the long rain season. The research team collaborated with 36 local agro-dealers in five towns and surveyed over one thousand farmers.  Farmers were intercepted as they approached the agro-dealer outlets and briefed about the study. Upon consent, they were informed on the benefits of trying something new (experimenting with varieties) and  were offered a voucher for one free bag of maize seed to encourage them to try a seed product new to them. They then were randomly assigned to two experimental groups: treatment and comparison. Participants in the treatment group were shown a chart containing product-specific yield data on maize hybrids grown in their counties (see the chart below). The chart contained farmer-reported yields from the previous year’s long rain season aggregated at two levels: county average yield and the average yield of the top 25% of farmers who realized the highest yields. The latter demonstrated the actual potential of a seed product. They were asked that, if they wished, they could choose the voucher product for experimentation from the list but they were not required to. Participants in the comparison group were offered placebo information that would not affect their seed choice: they were given some fun facts about Kenya and agriculture in Kenya. We assess the effect of the information on the choice of the bag of seed they were buying with the voucher to experiment with.

Table 1: Product-specific performance information on maize seed products in Kirinyaga March-August 2023 *actual product names have been removed for this blog*

Before they made any purchases, the customers were asked about which maize seed they intended to buy. After purchase, they were interviewed again to find out which maize seeds they bought and how they had used the voucher.

 

 

 

 

 

 

What we found

Majority of the treatment farmers had a very positive evaluation of the information they received, indicating that they found it relevant and useful when making seed choice. Specifically, over 90% of them said that the information was trustworthy and easy to understand while about 80% said that the information was easy to recall. Over 80% of them disagreed that the list of varieties was too long to comprehend, the information on varieties was similar and hard to differentiate and that it was hard for them to choose a variety from the list.

This positive evaluation of the information is also reflected in their seed choices. Pre-purchases (before they entered the agrodealer store), farmers who were exposed to the performance information showed increased certainty in their choices and a higher inclination towards products listed in the product performance data, particularly the top-performing varieties. While 5% of the comparison farmers indicated that they did not know what to buy with their vouchers, only 2% of the treatment farmers suffered the same uncertainty. Such farmers relied mostly on agro-dealers to recommend a product they could experiment with.

As shown by the bar chat below, only 7% of comparison group farmers desired to use their vouchers on (or had an effective demand for) products which were the top two in the product performance lists. This increased to 27% among the information group farmers, representing an increase of 286% in the demand of top performing products.

However, although our intervention relaxed an essential constraint (product performance information) and increased the demand for some seed products, the actual purchases were subject to other constraints, stock-outs key among them. As a result, both groups showed shifts from initially desired products in their actual purchases. Even so, the treatment group maintained a stronger alignment with the listed products, exhibiting a higher likelihood of purchasing top-performing products. Only 5% of farmers in comparison group used their vouchers to purchase products which were top two in the product performance lists. This increased to 13% among farmers in the treatment group, representing a 160% increase in the likelihood of purchasing the best performing products in the lists.

Reflections

Slow varietal turnover among maize farmers in E. Africa is a pervasive problem and there is no one solution to it. This research shows that information on product performance can be an effective approach in bringing to the attention of farmers newer, more adapted and better yielding seed products. Dissemination of such information can be incorporated in extension programs, shared at the point of sale, shared through SMSs and WhatsApp messages, displayed in posters fixed in public places, etc.

The findings offer clear recommendations for future investments in seed systems development. These include the implementation of new product testing regimes to ensure quality and objectivity of performance data, testing what other information would be useful to farmers – beyond yield data, exploring new marketing options to reach farmers more effectively, and considering additional approaches to empower farmers with the knowledge they need to make informed decisions thus leading to improved agricultural productivity, resilience, and livelihoods.

Helping Colombia’s smallholder farmers to leverage and preserve maize diversity

In Colombia, maize is the most important cereal, integral to culture, tradition, and diet. In 2019, Colombia consumed 7.2 million tons of maize, a quarter of which was white-grain maize used for human food (the remainder was yellow-grain maize for animal feed, with a small portion for industrial uses). National production is concentrated in the departments of Meta, Tolima, Córdoba, Huila, and Valle del Cauca. Native and creole maize varieties—the latter comprising farmer varieties of mixed native and other ancestries—are grown for use in traditional dishes or for sale at local markets.

Due to climate change, socioeconomic pressures, and the out-migration of smallholder farmers seeking better livelihoods, native maize varieties and the unique genetic qualities those varieties embody are endangered. We aim to design strategies that benefit smallholders who wish to continue in agriculture and perhaps continue growing native varieties valued in their communities, fostering the conservation and production of native maize. CIMMYT in Mexico has already facilitated commercial linkages between chefs in Mexico City and tourist areas (for example, in the states of Oaxaca, Yucatán, and the State of Mexico), sourcing blue maize landrace grain from farmers in mutually beneficial arrangements.

CIMMYT and local partners have launched an ambitious initiative to map and strengthen the value chain of native maize in the departments of Nariño, Cundinamarca, Boyacá, Valle del Cauca, and Putumayo to promote beneficial farmer-market linkages and better understand Colombia’s maize value chain. Carried out under the Nature Positive Initiative of OneCGIAR, the project is documenting maize conservation, marketing, and consumption to design a critical path that strengthens the value chain of Colombian native maize and benefits agriculture and the economy of rural Colombian communities.

Most native maize varieties in Colombia are grown on small plots for home consumption, exchange, and the sale of surplus grain. “The production is planned so that the percentage of sales is lower than consumption,” explains a farmer from Nariño. “Maize grain is sold in traditional markets, typically on Saturdays or Sundays, most often as fresh white and yellow corn.”

In such markets, farmers may also sell their grain to intermediaries, but only in the markets of Nariño is the sale of creole and native maize varieties acknowledged. Varieties include yellow Capia, white Capia, yellow Morocho, and Granizo, with Chulpe being less common. The grain purchased is used to prepare a variety of traditional dishes and beverages.

The most commonly grown varieties are intended for the market and probably the regional and urban cultural groups that consume them, such as in Guaitarilla, Nariño, where large crops of white maize are marketed through intermediaries and traders to satisfy demand.

“A variety that is not widely grown may become more prominent due to market changes—such as the rise of niche markets,” the research team notes. Good examples are the departments of Pasto, Nariño, and Cundinamarca, where maize is increasingly grown to meet demand from buyers of purple or colored maize.

We have already identified several possible niche markets for smallholder maize varieties:

  • Fair trade enterprises. They promote the commercialization of national products at fair prices for farmers, offering maize in various forms from regions such as Boyacá and Cundinamarca.
  • Restaurants. They use maize in traditional dishes, reinterpretations of Colombian cuisine, and culinary experiments.
  • Small-scale local intermediaries. Without a fixed physical space, they distribute products to end users and other businesses.
Callanas and ricota, Pasto, Nariño. (Foto: Andrea Gómez)

Significant challenges may hamper these and other possible market opportunities in the maize value chain. Farmers, for example, face high production costs, climate change losses, competition from neighboring countries, dependence on intermediaries for sales, and a lack of land. For their part, buyers struggle with obtaining consistent production volumes from farmers, lack storage infrastructure, and face postharvest pest and disease management challenges.

While they are compelled by the need to feed their families and, if possible, grow enough grain to sell for a profit, smallholder maize farmers have also expressed interest in preserving maize diversity and their cultural practices.

“We are not interested in growing monocultures for marketing; we grow maize out of love to continue preserving it,” comments a farmer from Nariño. Another farmer adds: “I would grow or sell more if the production were aimed at protecting agrobiodiversity, food security, sovereignty, and preserving cultural practices.”

Focus group with farmers in Córdoba, Nariño on the importance of maize landrace conservation (Picture Janeth Bolaños)

To understand how niche markets could influence the conservation and rescue of native and creole maize in Colombia and, at the same time, design a critical path that strengthens the value chain and promotes fair and efficient niche markets, CIMMYT and its partners are conducting focus group interviews and buyer-meets-seller events. The aim is to mitigate challenges highlighted by the actors and create beneficial conditions for farmers and consumers, promoting a better future for Colombian smallholder farmers.

We deeply thank CIMMYT partners in Colombia for their contributions to this work: Andrea Gomez, Andrea Pinzón, and Jeisson Rodríguez.

SKUAST-K Maize Improvement Programme: Transforming Challenges into Bountiful Harvests

The SKUAST-K Maize Improvement Programme, in collaboration with CIMMYT, is making significant advancements in maize agriculture in Jammu and Kashmir. By developing resilient maize varieties and leveraging cutting-edge research, the programme addresses key challenges such as poor soil nutrition and erratic rainfall. This partnership has not only enhanced maize productivity and climate resilience but also secured substantial funding and facilitated the release of landmark varieties, ultimately contributing to a sustainable maize-based economy in the region.

Read the full story.

Unlocking Zambia’s maize potential through crop diversity

While maize is the primary staple food crop in Zambia, its productivity on farmers’ fields reaches on average only about 20 percent of what it could achieve with good agronomic practices. Some reasons for this inefficiency are use of traditional varieties, low fertilizer use, and ineffective weed and pest control.

Closing the gap between potential and realized yields would have major benefits for farmers in Zambia, both in terms of income and food security at the household and national levels. One possibility to increase maize productivity is by increasing crop diversity through the inclusion of legumes in maize-based farming systems. This could be done through intercropping, growing legumes in the rows between maize plants, or crop rotations and alternating maize and legumes in the same field from season to season.

CIMMYT scientists, along with collaborators from the Zambia Agriculture Research Institute (ZARI) and the University of Zambia’s School of Agricultural Science, set out to determine which cropping systems might lead to increased productivity for maize farmers in Zambia and their results were published in the journal Field Crops Research.

“There is great potential in Zambia to increase yields to help ensure food security,” said Mulundu Mwila, PhD candidate and scientist at ZARI. “We wanted to determine the cropping systems that offered the most benefits.”

Setting up the study

For this research, ZARI and CIMMYT scientists established maize-based cropping systems trials, comprising maize monocropping, and maize-legume rotations and intercrops under both ‘conventional’ tillage, and Conservation Agriculture, across 40 farms in a variety of agroecological zones in Zambia.  The team also conducted household surveys in the same communities hosting the on-farm trials to determine the share of households with enough cultivated land to benefit from the tested cropping systems.

Researchers found that the tested cropping systems produced more maize per hectare compared to non-trial host farms in the same region. The greatest positive effect uncovered was that maize-legume rotations in Zambia’s Eastern Province had the potential to increase maize yield by 1 to 2 tons per hectare, per growing season. “The Eastern Province trials showed better results because of stable and adequate rainfall amounts and distribution and because of using groundnut as a rotation crop,” said Mwila.

Researchers attributed the small effect of legumes on maize yield in the Southern Province to low levels of biomass production and nitrogen fixation, due to low and erratic rainfall, and to low residue incorporation because of livestock grazing. Conversely, the small effect of legumes on maize yield in the Northern Province might be attributed to the high rainfall amount in the region, leading to high rates of leaching of residual nitrogen during the growing season as well as the use of common beans as the preceding crop.

Finding the right amount of land

With evidence showing the potential benefits of maize-legume rotations, the availability of land is a constraint for small farms across sub-Saharan Africa, thus it is important to quantify the land area needed for farmers to implement maize-legume rotations.

“Our findings match prior research showing the benefits of maize-legume rotations in Eastern Zambia” said Silva. “However, implementing maize-legume rotations remains a challenge for many smallholders due to small farm sizes.”

Nearly 35, 50, and 70% of the surveyed farms in the Northern, Eastern, and Southern Provinces, respectively, had enough land to achieve the same level of maize production obtained on their farm with the yields of the maize-legume rotations tested in the on-farm trials. “With our findings showing increased maize yields, and our efforts to determine the amount of land needed for food and nutrition security at household level, the next steps can be to facilitate methods to disseminate this information to policy makers and to farmers that have enough land area to benefit from diversified cropping systems,” said Silva.

For farmers with not enough land to reap the benefits of maize-legume rotations, intercropping legumes within the maize has shown promising results. The researchers also call for further research to specify the contributing factors to small farms not seeing benefits from maize-legume rotations.

Mars delivers record carbon emissions reduction

CIMMYT contributes to Mars’ sustainability efforts by equipping Mexican maize producers with tools and training through the Next Generation Soil program. This collaboration supports Mars’ climate-smart agriculture initiatives, reducing agricultural greenhouse gas emissions, which make up 60% of its total GHG footprint. By promoting regenerative agriculture practices, CIMMYT helps Mars work towards a 50% GHG reduction by 2030 and achieving net-zero emissions by 2050.

Read the full story.

Climate Change And Growing Global Population Affects Food Security; Africa Most Affected Continent

Chris Ojiewo, from CIMMYT, emphasizes the urgent need for African farmers to produce more food within restricted areas to accommodate the continent’s growing population. He advocates for increasing crop productivity by developing resilient varieties and advanced production systems that can thrive in intensified and drought-prone conditions. Ojiewo suggests boosting maize yields from one ton per hectare to higher levels through innovative agricultural practices, highlighting CIMMYT’s role in addressing food security challenges exacerbated by climate change.

Read the full story.

Unlocking genetic innovations through collaborative pathways

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

The International Maize Improvement Consortium for Africa (IMIC-Africa) held its Southern Africa field day on 25 March 2024 at Harare, Zimbabwe. IMIC-Africa, launched by CIMMYT in 2018, is a public-private partnership designed to strengthen maize breeding programs of partner institutions in Africa. As part of this initiative, CIMMYT organizes annual field days which bring together representatives from seed companies and national agricultural research system (NARS) partners across Zimbabwe and Kenya.

At the heart of the IMIC-Africa field day lies a vibrant showcase of genetically diverse materials developed from various maize breeding pipelines of CIMMYT in Southern Africa. Such events serve as a catalyst to drive innovations in maize breeding programs, deliver solutions to stakeholders, and enable seed companies and NARS partners to make informed selections tailored to local contexts.

“It is an important forum to have organized discussions with partners, and redesign—where possible—our breeding approaches to deliver targeted products to stakeholders,” said Director of CIMMYT’s Global Maize Program, One CGIAR Global Maize Breeding Lead, and One CGIAR Plant Health Initiative Lead, B.M. Prasanna. “The main stakeholders here are our partners, including seed companies and public sector national programs, through whom we reach out to farming communities.”

The significance of these field days cannot be overstated. It allows the partners to have a critical look at the breeding materials on display and undertake selections of maize lines relevant to their breeding programs. In addition, the IMIC-Africa field days enable CIMMYT team to have structured dialogues with diverse stakeholders and to review and refine breeding (line and product development) strategies and approaches.

“It is key to bridge the gap between the national programs and private sector players. This platform allows us to stay ahead in terms of research, and innovative breakthroughs in the seed sector,” added Kabamba Mwansa, principal agriculture research officer, ZARI, Zambia and Southern Africa Breeding, and seed systems network coordinator.

Highlights from the Harare field day

With an impressive array of 737 CIMMYT maize lines on display, partners at the Harare field day gained insights about the performance of different materials. The materials span early-, intermediate-, and late- maturity groups to nutritious maize breeding pipelines. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their local contexts. The material on display ranged from early generation (one or two years of testing data) to advanced generation (more than three years of testing) coming from the Southern Africa breeding pipelines targeting multiple market segments.

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

One of the strategic priorities of CIMMYT’s maize breeding program in Africa is improving the nutritional quality of maize. This is exemplified by the development of provitamin A-enriched maize (PVA). On display were 169 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.

Felix Jumbe, a partner from Peacock Seeds in Malawi reflected on the importance of the IMIC-Africa partnership. “We have been part of IMIC-Africa since its inception, and we continue to appreciate the different climate-resilient lines emerging from CIMMYT maize breeding programs in Africa. Last year, we sold out of our seed as people continue to appreciate the need for resilient maize varieties. The drought-tolerant (DT) maize lines from the consortium have been a huge selling point as most farmers are happy with it,” he said.

The field day not only showcased cutting-edge breeding innovations but also offered a historical perspective by tracing the trajectory of the most popular lines taken up under IMIC-Africa from 2019 to 2023. This served as a crucial reference point for partners, enabling them to assess the performance of newly displayed lines against established benchmarks. Furthermore, partners considered the presence of trait donors as invaluable in improving resistance to key biotic stresses or tolerance to certain abiotic stresses prevalent in Africa.

CIMMYT, NARS, and seed company partners participate in the IMIC-Africa field day in Harare, Zimbabwe. (Photo: CIMMYT)

CIMMYT partnership continues to add value

In the face of escalating environmental pressures, including climate change and pest infestations such as the fall armyworm (FAW), CIMMYT breeders have been working tirelessly to develop resilient varieties capable of withstanding these challenges. Partners such as SeedCo have embraced these robust varieties. For breeder Tariro Kusada, it is her second year of attending the IMIC- Africa field day. “We continue to see value in getting breeding materials through IMIC. The vigor from the lines on display is outstanding as compared to last year. We hope the vigor translates to yield.”

Danny Mfula from Synergy Zambia reinforced the value of the partnership. “It is always good to tap into CIMMYT’s germplasm to supplement what we have. We are glad that more FAW-tolerant hybrids are coming on board. We want to leverage on these developments as farmers have gone through a lot of challenges to control FAW,” he said.

As the harvest stage approaches, partners can select their material by assessing the performance of the lines from flowering to grain filling stages. Each plot’s harvest provides invaluable insights, guiding partners in their selections. Partners are also given the opportunity to view the improved maize lines from CIMMYT through a virtual gallery of ears from each plot, ensuring informed decision-making. By fostering dialogue, facilitating partnerships, and highlighting genetic innovations, the field days catalyze progress towards a more sustainable and resilient future for African agriculture.

Heat tolerant maize: a solution for climate change-induced 360◦ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≥40C), at least 5C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.

Malawi faces a food crisis: why plans to avert hunger aren’t realistic and what can be done

Malawi faces a severe food crisis due to droughts from El Niño, severely impacting the maize harvest. CIMMYT experts, including Mazvita Chiduwa, highlight that importing food is the only viable solution to prevent widespread hunger. Immediate donor support is essential to avert disaster and ensure food security for the country.

Read the full story.