Skip to main content

Tag: irrigation

Beyond Survival: Thriving through solar innovation and empowerment in Sudan 

Under the scorching Sudanese sun, Salwa Suliman has become a symbol of transformation in Kasala. Her hands which once used to knead dough and prepare meals as a cook, are now shaping a brighter future for her family and community. A cook and trainer by trade, Salwa’s family relied on agriculture to make ends meet. But when the conflict disrupted their farming activities, their livelihood and future seemed uncertain.  

Through CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS), Salwa has embraced change, learning the secrets of organic fertilizer production, innovative food processing, and sustainable agriculture. With the support from the United States Agency for International Development (USAID), today Salwa now runs a vibrant business that produces food that nourishes the body as well as the soul. Her journey is proof that even in the harshest conditions, with the right support and determination, growth is always possible. Salwa’s success is more than a personal triumph—it’s a testament to the transformative power of hope and action rippling through Sudan. 

Building resilience in the midst of conflict

In Kassala and Gadaref states, solar-powered irrigation kits have replaced costly and unreliable diesel pumps, enabling more than 2,000 farmers to grow high-value crops such as vegetables year-round. These systems not only reduce operational costs, but farmers are trained to maintain and optimize them, ensuring long-term sustainability. 

Solar panels (Photo: Mercy crops)

Equally transformative are the eight solar-powered agro-processing hubs that provide essential machinery such as threshers, oil presses, and grinders. These hubs have become economic lifelines, especially for women, who use them to create micro-enterprises. From grinding and packaging dried vegetables to selling value-added products, women are driving economic growth while reducing post-harvest losses and strengthening food security. 

Commitment to gender equality and representation

Women’s empowerment is a cornerstone of the SASAS approach. Through gender awareness initiatives in 20 communities, more than 2,800 participants, including 2,485 women, have addressed negative social norms, women’s rights, and decision-making in economic activities. Activities such as theatrical performances and competitions have reinforced these messages and created gender-equitable environments. This groundwork has been further strengthened by the establishment of gender committees, each of which integrates men and women to advocate for equitable access to resources and leadership roles. 

The impact extends to grassroots leadership, where trained gender advocates facilitate sensitization sessions that benefit cooperative members and promote sustainable gender advocacy.  

Bridging partnerships for agricultural transformation

The World Vegetable Center (WorldVeg), in partnership with SASAS, has played a key role in integrating sustainable vegetable production into Sudan’s food systems. Their initiatives —from providing quality seeds to training farmers in integrated pest management and post-harvest practices — have reached thousands of beneficiaries, with women making up 50% of the participants. Through partnerships with local organizations and private sector actors, WorldVeg has expanded access to resources and knowledge, ensuring that even conflict-affected communities can thrive. 

ADRA and Mercy Corps have also been instrumental in the success of SASAS. Mercy Corps established solar-powered agro-processing centers and irrigation systems, providing critical infrastructure for sustainable agriculture. ADRA reinforced these efforts by implementing solar-powered cold storage facilities and establishing gender committees with equal representation of men and women to promote gender equity in decision-making and access to resources. 

(Photo: Mercy crops)
(Photo: Mercy crops)
A model for future growth

The success of SASAS demonstrates the power of combining innovative technologies, gender-focused initiatives, and strong partnerships to create lasting change. From the solar-powered cold storage facilities that preserve harvests to the empowered women who transform local economies, the program offers a blueprint for resilience and growth in fragile contexts. 

USAID support for recovery and resilience

None of these achievements would have been possible without the support of the United States Agency for International Development (USAID). By funding and guiding the SASAS program, USAID has enabled the integration of solar power, gender empowerment, and sustainable agriculture into Sudan’s recovery efforts. From solar-powered irrigation to the empowerment of women like Salwa, USAID’s commitment has been a beacon of hope for communities rebuilding in the midst of adversity. 

The increasing frequency of drought challenges agriculture sustainability and livelihood of smallholder farmers

Crops struggling to grow in drought conditions, Bihar (Photo: Moben Ignatius/CIMMYT)

Agriculture is one of the sectors most affected by droughts, which can last for months or even years. In Bihar, where rain-fed agriculture is the primary source of livelihood for many, droughts can be devastating for rural farmers. The growing threat of climate change to crop production and farming practices calls for adopting alternative farming methods. In 2022-23, many districts in Bihar experienced drought conditions.

To better understand the impact of drought on crop production practices and farmers’ livelihoods, researchers from CSISA, a CIMMYT-led project, conducted a survey in Bihar during both the Kharif and Rabi seasons of 2022-23, the year of the drought. In the Kharif season, 518 farmers from 11 districts, 39 blocks, and 79 villages were surveyed, while 339 farmers participated in the Rabi season survey. The primary goal of this data collection was to assess the impact of drought on agricultural practices and provide evidence to guide policy and decision-making processes.

The survey collected data on 123 variables related to rice production, including land preparation, cropping patterns for 2022 and 2021, crop establishment methods, irrigation management, fertilizer application, and weed management. Farmers also shared their perceptions of how the drought had altered their rice production practices and affected their livelihoods compared to the previous year.

For many farmers, the experience of the drought was harsh. Magni Singh from East Champaran reflected on the challenges: “This year (2022), the drought hit us hard. I could only plant paddy on a small piece of land, but with no rain, there was not much harvest. Our fragmented land makes efficient irrigation almost impossible, and relying on rain feels like gambling with each season. Farming in these conditions is becoming increasingly unsustainable.”

Similarly, Shanti Devi of Banka shared her struggles: “The season started with drought, and we struggled to get water to the crops. By the time the rain came, it was too late – it came during the harvest and damaged the crop. I couldn’t afford fertilizers in time, which made things worse. Every year, it feels like we’re battling both nature and rising costs.”

This drought impact assessment by CSISA is also valuable for further research, particularly for comparing rice production practices between drought and non-drought years. Such comparisons can help researchers and policymakers develop effective drought mitigation strategies tailored to farmers’ needs.

An electric pump used to irrigate a paddy field in Buxar, Bihar (Photo: Nima Chodon/CIMMYT)

Read more about these livelihoods framework at Drought Impact Assessment in Bihar – August 2024https://acrobat.adobe.com/id/urn:aaid:sc:AP:66f00f6f-df17-4b13-9fee-2e0050de12ea 

For further research and analysis, primary data from the survey can be accessed at CIMMYT data verse

Transforming Agriculture Together: Insights from the Ukama Ustawi Share Fair

CIMMYT participated in the Ukama Ustawi (UU) Share Fair in Zimbabwe, showcasing technologies like solar-powered irrigation and conservation agriculture. Emphasizing crop-livestock integration, gender-inclusive mechanization, and business models, CIMMYT aims to strengthen food system resilience and improve farmer livelihoods. Potential collaborations include youth engagement and alternative feed sources.

Read the full story.

Farmers trained in irrigation plot layout

As the effects of climate change intensify, rain dependent crop production is becoming more challenging for smallholder farmers in Malawi, Tanzania and Zambia. Farmers often experience either too little or too much rain to effectively grow their crops, which means growing crops under irrigation is becoming key to building resilience to climate shocks. However, smallholder farmers often lack the access to equipment and skills to implement low-cost irrigation technologies.

The Accelerated Innovation Delivery Initiative (AID-I) implemented by the International Center for Maize and Wheat Improvement (CIMMYT) with funding from the United States Agency for International Development (USAID) has partnered with Total LandCare (TLC) Malawi and Zambia to promote Sustainable Intensification practices in eastern and central Malawi. TLC conducted a training session on using treadle pumps for irrigation plot layout in Mumbi Village, Petauke District, Zambia.

Farmers setting up an irrigation plot as a live demonstration. (Photo : TLC)

Letting gravity do the work

The irrigation system operates on the principle of pumping water manually from a low point to a high point from which the water then flows by gravity through a system of channels to irrigate crops.

Properly managed, treadle pump irrigation can improve household food security, income, nutrition, and health sustainably without detrimental effects to the environment.

The training educated 12 farmers in establishing an irrigation layout using gravity-fed basins, with water pumped from a stream downhill using a treadle pump. Participants learned how to erect channels that directed water into basins.

During practical irrigation training in Muya village of Mondolo camp, Petauke district, one of the farmers, Magret Tembo said, “This method of irrigation will negate the burden associated with use of watering cans, a practice which has been giving us backaches. Through this technology, we will experience increased production through better water management and increased area coverage.”

Following the setup demonstration, participants received practical guidance on various aspects of irrigation and crop management, covering such topics as planting techniques and effective fertilizer use, and application of pesticides and fungicides.

Inexpensive and durable

“Treadle pump irrigation offers tremendous opportunities to dramatically increase agricultural production while enriching the livelihoods of many resource-poor farmers,” said Zwide Jere, Co-founder/Managing Director of TLC.

Treadle pumps are inexpensive, so individuals can afford to purchase one and they are durable and easy to maintain, so one pump will work for years for individual households.

“The pumps are also designed to work in many environments,” said Paul Malambo, Country Manager for TLC Zambia. “So, over the years, TLC has been able to distribute the pumps in Malawi, Mozambique, Tanzania and Zambia.”


A farmer demonstrating how to use the pump (top left and right) in Kasenengwa, Zambia (Photo: TLC)

“Providing access to technical knowledge and support for under-utilized land, water and labor resources is an important part of the AID-I project, said Kevin Kabunda, CIMMYT lead for the AID-I. “As is collaboration with local partners like TLC who facilitate the dissemination of expertise.”

TLC is a registered non-governmental organization based in Malawi and active in Zambia. Its mission is to empower self-reliance and prosperity for rural households in the Southern Africa region.

KALRO research station at Kiboko revamped to accelerate crop breeding

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna cutting a ribbon at the entrance of a new shed housing, marking the commissioning of five new seed drying machines courtesy of the of the Accelerating Genetic Gains (AGG) Project. (Photo: Susan Otieno/CIMMYT)

Kenya Agricultural and Livestock Research Organization (KALRO)’s research station at Kiboko, Kenya, where several partner institutions including the International Maize and Wheat Improvement Center (CIMMYT), conduct significant research activities on crop breeding and seed systems, is now equipped with five new seed drying machines along with a dedicated shed to house these units, a cold room for storing breeding materials, and an additional irrigation dam/reservoir. These infrastructural upgrades are worth approximately US $0.5 million.

During the commissioning of the new facilities on February 7, 2023, CIMMYT Global Maize Program Director, BM Prasanna thanked the donors, Crops to End Hunger (CtEH) Initiative and Accelerated Genetic Gains (AGG) project, that supported the upgrade of the research station, and recognized the strong partnership with KALRO.

“Today is a major milestone for CIMMYT, together with KALRO, hosting this center of excellence for crop breeding. This facility is one of the largest public sector crop breeding facilities in the world, with hundreds of hectares dedicated to crop breeding. These new facilities will enable CIMMYT and KALRO crop breeders to optimize their breeding and seed systems’ work and provide better varieties to the farming communities,” said Prasanna.

Kenya suffered one of its worst droughts ever in 2022, and the newly commissioned facilities will support expedited development of climate-resilient and nutritious crop varieties, including resistance to major diseases and pests.

Visitors at the KALRO research station in Kiboko, Kenya, looking at the newly commissioned cold room storage. (Photo: Susan Otieno/CIMMYT)

Improvements and enhancements

The efficiency of the seed driers capabilities to quickly reduce moisture content in seed from above 30% to 12% in two to three days, reducing the time taken for seed drying and allowing for more than two crop seasons per year in a crop like maize.

The additional water reservoir with a capacity of 16,500 cubic meters will eliminate irrigation emergencies and will also enhance the field research capacity at Kiboko. Reliable irrigation is essential for accelerating breeding cycles.

At the same time, the new cold room can preserve the seeds up to two years, preventing the loss of valuable genetic materials and saving costs associated with frequent regeneration of seeds.

KALRO Director General Eliud Kireger officiating the opening of the cold room storage facility at KALRO research station at Kiboko, Kenya. Looking on is CIMMYT Global Maize Program Director, BM Prasanna. (Photo: Susan Otieno/CIMMYT)

World-class research center

“The Kiboko Research Center is indeed growing into an elite research facility that can serve communities in entire sub-Saharan Africa through a pipeline of improved varieties, not only for maize but in other important crops. This will not only improve climate resilience and nutrition, but will contribute to enhanced food and income security for several million smallholder farmers,” said Prasanna.

KALRO Director General Eliud Kireger appreciated the establishment of the new facilities and thanked CIMMYT and its partners for their support.

“Today is a very important day for us because we are launching new and improved facilities for research to support breeding work and quality seed production. This research station is in Makueni County, a very dry area yet important place for research because there is adequate space, especially for breeding,” said Kireger. “We are significantly improving the infrastructure at Kiboko to produce and deliver better seed to our farmers.”

For more than three decades, CIMMYT has conducted research trials at the Kiboko Research Station, focusing on drought tolerance, nitrogen use efficiency, and resistance to pests and diseases, such as fall armyworm and stem borer. The maize Double Haploid (DH) facility established in 2013 at Kiboko, with the support of the Bill & Melinda Gates Foundation, offers DH line production service for organizations throughout Africa, and is key to increasing genetic gains in maize breeding.

India will have record wheat production, must plan for export, says Arun Kumar Joshi

A scientist from the International Maize and Wheat Improvement Center (CIMMYT) spoke to The Hindu about current challenges in wheat cultivation in India.

Arun Kumar Joshi, CIMMYT Country Representative for India, CIMMYT Regional Representative for South Asia and Managing Director of the Borlaug Institute for South Asia (BISA), predicted a bumper year for wheat in India.

“The feedback so far I am getting is that there will be record production of wheat,” he said. “The reason is that the area of cultivation has increased. According to government estimates, wheat has been sown in more than 34 million hectares so far in this rabi season.”

Reasons for this include no current threat from locusts or diseases, appropriate levels of soil moisture and humidity, and farmers shifting to planting crops earlier, explained Joshi.

Read the original article: India will have record wheat production, must plan for export, says Arun Kumar Joshi

More than a drop in the bucket: addressing food security in Nepal through improved sustainable irrigation

Agriculture is always impacted by war. However, Russia’s war in Ukraine, fought between two major agricultural producers in an era of globalized markets, poses unprecedented implications for global agriculture and food security. Russia and Ukraine are significant exporters of maize, wheat, fertilizers, edible oils and crude oil. These exports have been compromised by the war, with the greatest impact being on poor and low-income countries that rely most on food imports. Partly because of the Ukraine-Russia conflict and partly due to the decline in agricultural production caused by the climate emergency, food prices have increased between 9.5 and 10.5 percent over the past ten years. 

Nepal, where one in four families is impoverished, is an example of a low-income country impacted by the war’s disruption of trade in agricultural goods and inputs. Although wheat, maize and rice are staples, vegetables are also important for nutrition and income, and Nepal imports fuel and fertilizer for their domestic production. Uncertainty in global supply chains, combined with the Nepali rupee’s significant depreciation against the US dollar, has resulted in a 500% increase in the cost of diesel since 2012. ­­

Irrigation to boost homegrown production

Land irrigation is crucial to crop growth and to the capacity of famers to withstand the effects of the climate emergency and economic shock. However, the majority of Nepal’s groundwater resources are underutilized, leaving ample room for increasing climate-resilient agricultural production capable of withstanding an increasing number of drought events. With the right kind of management of its groundwater, Nepal can increase its domestic output, and bolster smallholder resilience and food security in times of economic and climate crisis.

As part of the first prong of this approach, the Cereal Systems Initiative for South Asia (CSISA) advises farmers (particularly women), governments and donors on the targeted support available to enable them to access existing low-cost and fuel-efficient engineering solutions. These solutions can contribute to the immediate goals of increasing agricultural productivity, intensifying groundwater irrigation and improving rural livelihoods. CSISA informs small producers about ways to access irrigation and develop water entrepreneurship. It also and empowers farmers, especially women, to improve service provision and gain access to services and irrigation pumps, including through access to finance.

Policymakers, businesses, researchers and farmers (especially women, youth and marginalized groups) will collaborate to co-create business models for sustainable and inclusive irrigation with development partners and Nepali public and private sector actors. While there are more than one million wells and pumps in Nepal, many of these are not used efficiently, and social barriers often preclude farmers from accessing services such as pump rentals when they need them. To address these constraints and support private investment in irrigation and water entrepreneurship models, CSISA will work with existing infrastructure investment programs and local stakeholders to build a dynamic and more inclusive irrigation sector over the course of the next year, positively impacting a projected 20,000 small farming households.

At the macro-level, these water entrepreneurship models will respond to prioritized irrigation scaling opportunities, while at the farm level they will respond to irrigation application scheduling advisories. CSISA will also create policy brief documents, in the form of an improved farm management advisory, to be distributed widely among partners and disseminated among farmers to support increases in production and resilience. CSISA’s sustainable and inclusive irrigation framework guides its crisis response.

Scaling digital groundwater monitoring to support adaptive water management

In growing resilience-building irrigation investments, there is always a risk of groundwater depletion, which means that accurate and efficient groundwater data collection is vital. However, Nepal doesn’t currently have a data or governance system for monitoring the impact of irrigation on groundwater resources.

To tackle the need for low-cost, context-specific data systems which improve groundwater data collection, as well as mechanisms for the translation of data into actionable information, and in response to farmer, cooperative and government agency stakeholder demands, the Government of Nepal Groundwater Resources Development Board (GWRDB) and CSISA have co-developed and piloted a digital groundwater monitoring system for Nepal.

In a recent ministerial level workshop, GWRDB executive director Bishnu Belbase said, “CSISA support for groundwater monitoring as well as the ongoing support for boosting sustainable and inclusive investments in groundwater irrigation are cornerstone to the country’s development efforts.”

A pilot study conducted jointly by the two organizations in 2021 identified several options for upgrading groundwater monitoring systems. Three approaches were piloted, and a phone-based monitoring system with a dashboard was evaluated and endorsed as the best fit for Nepal. To ensure the sustainability of the national response to the production crisis, the project will extend government monitoring to cover at least five Tarai districts within the Feed the Future Zone of Influence, collecting data on a total of 100 wells and conducting an assessment of potential network expansion in Nepal’s broad, inner-Tarai valleys and Mid-Hills regions. The goal is to utilize this data to strengthen the Feed the Future Zone of Influence in Nepal by increasing GWRDB’s capability to monitor groundwater in five districts.

Ensuring food security

These activities will be continued for next two years. During that time CSISA will increase GWRDB’s capacity to monitor groundwater and apply this to five districts in Nepal’s Feed the Future Zone of Influence, using an enhanced monitoring system which will assist planners and decision-makers in developing groundwater management plans. As a result, CSISA expects to support at least 20,000 farming households in gaining better irrigation access to achieve high yields and climate-resilient production, with 40 percent of them being women, youth and/or marginalized groups. This access will be made possible through the involvement of the private sector, as CSISA will develop at least two promising business models for sustainable and inclusive irrigation. Finally, through this activity government and private sector stakeholders in Western Nepal will have increased their capacity for inclusive irrigation and agricultural value chain development.

CSISA’s Ukraine Response Activities towards boosting sustainable and inclusive irrigation not only respond to crucial issues and challenges in Nepal, but will also contribute to the regional knowledge base for irrigation investments. Many regions in South Asia face similar challenges and the experience gained from this investment in Nepal will be applicable across the region. Given the importance of of groundwater resources for new farming systems and food system transformation, the project is mapped to Transforming Agrifood Systems in South Asia (TAFSSA), the One CGIAR regional integrated initiative for South Asia, that will act as a scaling platform for sharing lessons learned and coordinating with stakeholder regionally towards more sustainable groundwater management and irrigation investments.

Cover photo: Ram Bahadur Thapa managing water in his paddy field in Dailekh district of Nepal. (Photo: Nabin Baral)

The potential of conservation agriculture in increasing yield and tackling climate change

A multitude of research on the benefits of conservation agriculture in South Asia has predominantly focused on favorable environments where farmers have reliable access to energy supporting irrigation and inputs.

In this new publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) explore the performance of conservation agriculture in under-developed coastal environments in southern coastal Bangladesh over a period of three consecutive years, including under rainfed conditions and/or with limited application of irrigation.

Farmers calibrate their machines for strip tillage in communities participating in experiments. (Credit: Ranik Martin)

Responding to the identified research gap, this research tests the hypothesis that seasonally alternating tillage (SAT) practices that alternate between strip-tillage in the winter season for maize and conventional tillage (CT) prior to rice can reduce energy use, increase energy productivity, and reduce yield-scaled emissions while increasing or maintaining yield and profit, even under these challenging conditions.

Working with 35 farmers who managed experiments in partially irrigated and rainfed environments in southern coastal Bangladesh, researchers teamed up with farming communities to compare the full suite of conservation agriculture to SAT practices against CT and farmer’s own practices.

The research found that in these coastal environments, both conservation agriculture and SAT practices have the potential to increase cereal yields and energy productivity while reducing yield-scaled emissions, thereby enabling farmers even in challenging coastal environments to produce more while reducing energy use and mitigating greenhouse gas emissions.

However, in consideration of farmers’ aversion to the elimination of tillage in rice, the research suggests that adaptations in CA practices and seasonal tillage prior to rice may be a more practical fit for rice-maize systems managed by smallholders reluctant to eliminate tillage for rice in coastal Bangladesh.

This research gives implications for future research and development efforts to take into consideration farmers’ preferences or the trade-offs resulting from significant change to conservation agriculture management in otherwise fully tilled systems. It is also vital to integrate development efforts that focus not only on agronomic management, but also on building supportive value chains to improve availability and affordability of the inputs and farm machinery required to successfully establish crops with such practices.

Read the full study: Adapted Conservation Agriculture Practices Can Increase Energy Productivity and Lower Yield-Scaled Greenhouse Gas Emissions in Coastal Bangladesh

Cover photo: Long-term conservation agriculture in Rajshahi, Bangladesh. (Credit: CIMMYT/Sam Storr)

It is time to invest in the future of Afghanistan’s wheat system

A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

The UN High Commissioner Michelle Bachelet recently said of Afghanistan, “In the wake of years of conflict, and since the takeover by the Taliban in August last year, the country has been plunged into a deep economic, social, humanitarian and human rights crisis” (UN News 2022a). International humanitarian agencies and NGOs have persisted in supporting the population, half of whom are suffering food insecurity, and some of whom are facing unprecedented and catastrophic levels of hunger (UN News 2022b). The conflict in Ukraine is exacerbating the crises in poor import-dependent countries and humanitarian programmes, and Afghanistan will be among the most affected (Bentley and Donovan 2022).

The rural sector underlies Afghanistan’s economic potential, with agriculture as the foundation of the economy. Wheat, both irrigated and rainfed, is the principal agricultural crop, and bread is the major component of the Afghan diet. For decades the country has relied for food security on neighbors such as Kazakhstan and Pakistan and import dependence appears to be a permanent feature of the agricultural economy (Sharma and Nang 2018).

In a recent paper published in Plants, People, Planet, CIMMYT scientists and partners from SOAS University of London, Afghanistan Research and Evaluation Unit, FAO-Afghanistan, The HALO Trust, Afghanaid and the Agricultural Research Institute of Afghanistan call for renewed investment in Afghanistan’s wheat and agricultural sector.

Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

Improved CIMMYT wheat germplasm has supported agricultural development

CIMMYT’s activities in Afghanistan have focused primarily on supporting the national agricultural research system through the provision of elite, widely adapted germplasm with strong disease resistance. Recent estimates of genetic gains over 14 years (2002-2003 to 2015-2016) of testing of CIMMYT’s Elite Spring Wheat Yield Trial material across 11 locations in Afghanistan documents significant grain yield progress of 115 kg/year. Average yields across 11 testing locations ranged from 3.58 to 5.97 t/ha (Sharma et al., 2021). This indicates that yield potential can be increased through introduction and testing of internationally improved germplasm.

But such investment in research has come to a halt. Local public- and private-sector wheat breeding activities have been largely absent in Afghanistan for over a decade. Hence, wheat productivity remains low due to the limited availability of improved varieties, inadequate quality seed production and distribution. Although in the short term, humanitarian interventions are likely to be the major determinant of food security, we propose that strategic rebuilding of the wheat system will lay the foundation for restoring Afghanistan’s agricultural production, food supplies, nutrition and health. Here we signal opportunities for future improvement.

Opportunities to build climate resilience and enhance seed systems

The need for climate-resilient varieties that meet farmers’ varied requirements and consumer preferences is paramount. Afghan farmers need varieties with improved traits such as heat and drought resilience, incorporating functional variation from existing landrace collections. In addition, agronomic interventions such as conservation agriculture will offer substantial benefits in buffering environmental stresses.

The technological pathways for seed (re-)distribution are a critical part of the innovation pathway from plant breeding to production and productivity. Given the particularities of markets in Afghanistan, both the public sector and the private sector often fail to reach farming geographies that are remote, diverse, and unserved by physical and institutional infrastructure. For many years, basic public services and agricultural interventions have been provided by the NGO sector, and this form of delivery continues. Hence, local ‘informal’ systems for seed and inputs are important to smallholder farmers.

Investment to support both irrigated and rain-fed wheat production

Rehabilitation of ancient irrigation practices and infrastructure could once again serve local farming in a way that supports stable production, restores Afghan heritage, and rebuilds social cohesion. However, there are no easy solutions to the challenges of increasing irrigation to boost agriculture. Although yields are lower, there is potential to optimize breeding specifically for rain-fed production. We expect rain-fed agriculture to continue given the limitations of water and infrastructure access.

Wheat improvement must be embedded in the wider agricultural environment. There is a renewed need for a deep understanding of social, political, and cultural systems and how they vary between villages, and from districts, provinces, and regions to people groups. We need to re-envision the roles of men and women in agriculture, and investment in skills and capacity building to provide a stable foundation for the eradication of poverty and food insecurity.

A new wheat program for Afghanistan

We highlight the urgent need for:

  • Resumption of breeding of nutritious and climate-resilient varieties.
  • Development of a knowledge base on current wheat production systems, gendered agricultural roles, farmer needs for varietal change and consumer preferences for tasty and nutritious wheat-based products.
  • Development of seed information systems using new technologies to enhance farmer engagement in research.
  • Expansion of appropriate irrigation systems and development of nature-based solutions to protect soil and to preserve and conserve water.
  • Investment in capacity building among private, non-governmental, university and public stakeholders in seed systems and delivery of agricultural services.

These foundations will support the wider regeneration of Afghanistan’s agricultural sector and enhance food security, nutrition and health of some of the world’s most vulnerable populations.

Full paper

Poole, N., Sharma, R., Nemat, O.A., Trenchard, R., Scanlon, A., Davy, C., Ataei, N., Donovan, J. and Bentley, A.R. (in production). Sowing the wheat seeds of Afghanistan’s future. Plants, People, Planet DOI: https://doi.org/10.1002/ppp3.10277

References

Bentley, A. and Donovan, J. (2022). What price wheat? Crisis in Ukraine underscores the need for long-term solutions for global food security. Retrieved 16 June 2022, from https://staging.cimmyt.org/blogs/what-price-wheat/.

Sharma, R.K. and Nang, M. (2018). Afghanistan wheat seed scenario: Status and imperatives. International Journal of Agricultural Policy and Research 6(5): 71-75 DOI: https://doi.org/10.15739/IJAPR.18.008

UN News (2022a). Afghanistan facing ‘the darkest moments’ in a generation. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/06/1120492.

UN News (2022b). Afghanistan: Nearly 20 million going hungry. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/05/1117812.

Less water for better crops

In India, nearly one-sixth of groundwater reserves has been overexploited and almost one-fifth of them is either in critical or semi-critical condition. For a country that relies heavily on groundwater for drinking and irrigation, these statistics are close to a death sentence.

India’s water crisis, however, is not unique in the region. Population growth, coupled with increasing urbanization and industrialization, has made South Asia, one of the most heavily irrigated areas on earth, highly vulnerable to water stress. Moreover, as the effects of climate change are increasingly felt in those countries, agricultural production, even at the current level, may not be sustainable.

Against this background, ensuring that water resources are used efficiently and sustainably is key to meet the world’s growing demand. Over the last decades, traditional systems of irrigation have given way to more efficient drip irrigation systems that deliver the right amount of water and nutrients to the plant’s root zone. But as farm labor shortages become more severe, investing in automated irrigation systems — which promise increased production rates and product quality — will be the only way to ensure the sustainability of agricultural production systems worldwide.

A new article co-authored by a team of researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Thapar Institute of Engineering and Technology synthesizes the available information related to the automation of drip irrigation systems and explores recent advances in the science of wireless sensor networks (WSN), the internet of things (IoT) and other communication technologies that increase production capacity while reducing costs.

“Bundling both elements — drip irrigation and automation — in water application can lead to large savings in irrigation and boost water efficiency, especially in high water-consuming, cereal-based systems like the Indo-Gangetic Plains,” explained M.L. Jat, a principal scientist at CIMMYT and one of the authors of the review.

Investing in data and youth

Smart irrigation technologies, including sensors and the IoT, allow farmers to take informed decisions to improve the quality and quantity of their crops, providing them with site-specific data on factors like soil moisture, nutrient status, weed pressure or soil acidity.

However, this information is still limited to certain soil types and crops. “To upgrade drip irrigation systems elsewhere, especially in ‘water-stressed’ regions, we need additional agricultural background data in those areas,” Jat pointed out. “That’s the only way we can effectively customize innovations to each scenario, as one size does not fit all.”

Making this data available to and readable by farmers is also essential. Here, young people can become very good allies, as they tend to be more technologically savvy and used to working with large volumes of information. “Not only are they more skilled to integrate agricultural data into decision-making, but they can also help older farmers adopt and trust intelligent irrigation systems,” Jat concluded.

Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)
Long-term research platform in Karnal, India, by H.S. Jat, Principal Scientist at ICAR-CSSRI. (Photo: ICAR-CSSRI and CIMMYT)

Incentives against subsidies

With increasing water shortages worldwide, making the most out of every drop becomes an urgent priority. But in countries where irrigation systems are highly subsidized, farmers may struggle to see this urgency. India, for instance, subsidizes the cost of energy to pump water for farming, thus encouraging smallholders to extract more than they need.

How do we incentivize farmers in these countries to embrace water-efficient technologies?

According to Jat, using the “scientific card” can work with smallholders who, after having farmed for decades, may not change their minds automatically. “These people may be reluctant to accept incentives for water-efficient mechanisms at first, but they will surely be interested in more scientific approaches,” Jat explained, stressing that “the emphasis must be on the science, not on the technology.”

Designing profitable business models can also incentivize producers to embrace more efficient mechanisms. Farmers who have enjoyed irrigation subsidies for decades may not see any profit in trying out new technologies — but what if they are given the chance to become champions or ambassadors of these agricultural innovations? “That brings in a whole new perspective,” Jat said.

Apart from incentivizing farmers, good business models can also draw the attention of large companies, which would bring investment to boost research and innovation in drip irrigation. “More and more businesses are getting interested in smart agriculture and low emission farming, and their inputs can help conceptualize the future of this field,” he observed.

Climate-smart strategy for weed management proves to be extremely effective

Rice-wheat cropping rotations are the major agri-food system of the Indo-Gangetic Plains of South Asia, occupying the region known as the “food basket” of India. The continuous rice-wheat farming system is deceptively productive, however, under conventional management practices.

Over-exploitation of resources leaves little doubt that this system is unsustainable, evidenced by the rapid decline in soil and water resources, and environmental quality. Furthermore, continuous cultivation of the same two crops over the last five decades has allowed certain weed species to adapt and proliferate. This adversely affects resource-use efficiency and crop productivity, and has proven to negatively influence wheat production in the Western Indo-Gangetic Plains under conventional wheat management systems.

Studies suggest weed infestations could reduce wheat yields by 50-100% across the South Asian Indo-Gangetic Plains. Globally, yield losses from weeds reach 40%, which is more than the effects of diseases, insects, and pests combined.

Herbicides are not just expensive and environmentally hazardous, but this method of chemical control is becoming less reliable as some weeds become resistant to an increasing number common herbicides. Considering the food security implications of weed overgrowth, weed management is becoming increasingly important in future cropping systems.

How can weeds be managed sustainably?

Climate-smart agriculture-based management practices are becoming a viable and sustainable alternative to conventional rice-wheat cropping systems across South Asia, leading to better resource conservation and yield stability. In addition to zero-tillage and crop residue retention, crop diversification, precise water and nutrient management, and timing of interventions are all important indicators of climate-smart agriculture.

In a recently published 8-year study, scientists observed weed density and diversity under six different management scenarios with varying conditions. Conditions ranged from conventional, tillage-based rice-wheat system with flood irrigation (scenario one), to zero-tillage-based maize-wheat-mung bean systems with subsurface drip irrigation (scenario 6). Each scenario increased in their climate-smart agriculture characteristics all the way to fully climate-smart systems.

At the end of 8 years, scenario six had the lowest weed density, saw the most abundant species decrease dramatically, and seven weed species vanish entirely.  Scenario one, with conventional rice-wheat systems with tillage and flooding, experienced the highest weed density and infestation. This study highlights the potential of climate-smart agriculture as a promising solution for weed suppression in northwestern India.

Read the full study: Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains

Cover image: Farmer weeding in a maize field in India. (Photo: M. Defreese/CIMMYT)

Building resilient and sustainable irrigation for food security in Nepal

An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)
An irrigation canal in Nepal. (Photo: Jitendra Raj Bajracharya/ICIMOD)

In Nepal, agriculture contributes to a third of gross domestic product and employs about 80% of the rural labor force. The rural population is comprised mostly of smallholder farmers whose level of income from agricultural production is low by international standards and the countrys agricultural sector has become vulnerable to erratic monsoon rains. Farmers often experience unreliable rainfall and droughts that threaten their crop yields and are not resilient to climate change and water-induced hazard. This requires a rapid update of the sustainable irrigation development in Nepal. The Cereal Systems Initiative for South Asia (CSISA) Nepal COVID Response and Resilience short-term project puts emphasis on identifying and prioritizing entry points to build more efficient, reliable and flexible water services to farmers by providing a fundamental irrigation development assessment and framework at local, district and provincial levels.

Digital groundwater monitoring system and assessment of water use options

Digital system of groundwater data collection, monitoring and representation will be piloted with the government of Nepal to facilitate multi-stakeholder cooperation to provide enabling environments for inclusive irrigation development and COVID-19 response. When boosting the irrigation development, monitoring is fundamental to ensure sustainability. In addition, spatially targeted, ex-ante assessments of the potential benefits of irrigation interventions provide insights by applying machine-learning analytics and constructing data-driven models for yield and profitability responses to irrigation. Furthermore, a customized set of integrated hydrological modeling and scenario analyses can further strengthen local, district and provincial level assessment of water resources and how to build resilient and sustainable water services most productively from them.

Toward a systemic framework for sustainable scaling of irrigation in Nepal

Through interview and surveys, the project further builds systemic understanding of the technical, socioeconomic and institutional challenges and opportunities in scaling water access and irrigation technologies. This will contribute to the construction of a comprehensive irrigation development framework, achieved by the collective efforts from multiple stakeholders across different line ministries, levels of government and local stakeholders and water users. Together with the technical assessments and monitoring systems, the end goal is to provide policy guidelines and engage prioritized investments that ensure and accelerate the process of sustainable intensification in irrigation in Nepal.

This blog was originally published in Agrilinks.

New project to recharge aquifers and cut water use in agriculture by 30 percent

Irrigated fields under conservation agriculture practices at CIMMYT's experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)
Irrigated fields under conservation agriculture practices at CIMMYT’s experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) announced a new three-year public–private partnership with the German development agency GIZ and the beverage company Grupo Modelo (AB InBev) to recharge aquifers and encourage water-conserving farming practices in key Mexican states.

The partnership, launched today, aims to contribute to a more sustainable use of water in agriculture. The project will promote sustainable farming and financing for efficient irrigation systems in the states of Hidalgo and Zacatecas, where Grupo Modelo operates. CIMMYT’s goal is to facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years, to reduce the water footprint of participant farmers.

Mexico is at a high risk of facing a water crisis in the next few years, according to the World Resources Institute. The country needs to urgently begin reducing its use of available surface and ground water supplies if it is to avert the looming crisis.

Farming accounts for nearly 76% of Mexico’s annual water consumption, as estimated by Mexico’s Water Commission (CONAGUA). Farmers, therefore, have a key role to play in a more sustainable use of this valuable natural resource.

“We need to take care of the ecosystem and mitigate agriculture’s impact on the environment to address climate change by achieving more sustainable agri-food systems,” said Bram Govaerts, chief operating officer, deputy director general of research a.i. and director of the Integrated Development program at CIMMYT.

The project, called Aguas Firmes (Spanish for “Firm Waters”), also seeks to recharge two of Mexico’s most exploited aquifers, by restoring forests and building green infrastructure.

“Our priority is water, which is the basis of our business but, above all, the substance of life,” said Cassiano De Stefano, chair of Grupo Modelo, one of the Mexico’s leading beer companies. “We’ve decided to lead by example by investing considerably in restoring two aquifers that are essential to Zacatecas and Hidalgo’s development.”

The German development agency GIZ, one of CIMMYT’s top funders, is also investing in this alliance that will benefit 46,000 farmers in Hidalgo and 700,000 farmers in Zacatecas.

“We are very proud of this alliance for sustainable development that addresses a substantial problem in the region and strengthens our work on biodiversity conservation and sustainable use of natural resources in Mexico,” said Paulina Campos, Biodiversity director at GIZ Mexico.

CIMMYT undertakes participatory agricultural research activities with local farmers to collaboratively develop and implement sustainable farming practices and technologies that help reduce water consumption in grain production by up to 30%.


 

INTERVIEW OPPORTUNITIES:

Bram Govaerts – Chief Operating Officer, Deputy Director General of Research a.i. and Director of the Integrated Development program, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Ricardo Curiel, Senior Communications Specialist for Mexico, CIMMYT. r.curiel@cgiar.org, +52 (55) 5804 2004 ext. 1144

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Groundwater depletion in India could reduce winter cropped acreage significantly in years ahead

Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India's Gujarat state. (Photo: Meha Jain)
Water pumped from a deep irrigation well, called a tube well, at a wheat farm in west India’s Gujarat state. (Photo: Meha Jain)

India is the world’s second-largest producer of wheat and rice and is home to more than 600 million farmers. The country has achieved impressive food-production gains since the 1960s, due in part to an increased reliance on irrigation wells, which allowed Indian farmers to expand production into the mostly dry winter and summer seasons.

But those gains have come at a cost: The country that produces 10% of the world’s crops is now the world’s largest consumer of groundwater, and aquifers are rapidly becoming depleted across much of India. Indian government officials have suggested that switching from groundwater-depleting wells to irrigation canals, which divert surface water from lakes and rivers, is one way to overcome projected shortfalls.

In a study published in the journal Science Advances, scientists conclude that a switch to canal irrigation will not fully compensate for the expected loss of groundwater in Indian agriculture.

The authors estimate that if Indian farmers lose all access to groundwater in overexploited regions, and if that irrigation water is not replaced with water from other sources, then winter cropped acreage could be reduced by up to 20% nationwide. However, that scenario seems highly unlikely and was included in the study only as an upper-bound estimate.

It seems more likely that any future groundwater shortfalls would be at least partially offset by increases in canal irrigation. But even if all Indian regions currently using depleted groundwater switch to canal irrigation, winter cropped acreage could still decline by 7% nationwide and by 24% in the most severely affected locations, according to the researchers.

Water alternatives needed

“Our results highlight the critical importance of groundwater for Indian agriculture and rural livelihoods, and we were able to show that simply providing canal irrigation as a substitute irrigation source will likely not be enough to maintain current production levels in the face of groundwater depletion,” said study lead author Meha Jain, an assistant professor at the University of Michigan’s School for Environment and Sustainability.

“We need coordinated efforts to solve this water availability and food security issue, which should be supported by science-led policy decisions on what strategies and technology solutions to scale out to improve irrigation efficiency,” said co-author Balwinder Singh, a Cropping Systems Simulation Modeler at the International Maize and Wheat Improvement Center (CIMMYT).

The study analyzed high-resolution satellite imagery and village-level census data and focused on winter cropped acreage. While nearly all Indian farmers plant crops during the monsoon to take advantage of seasonal rains, winter agriculture is mainly reliant on groundwater irrigation and now accounts for 44% of the country’s annual cropped acreage for food grains.

“These findings suggest that other adaptation strategies, in addition to canal expansion, are needed to cope with ongoing groundwater losses,” Jain said.

The possibilities include switching from winter rice to less water-intensive cereals, increased adoption of sprinklers and drip irrigation to conserve water in the fields, and policies to increase the efficiency of irrigation canals.

While groundwater depletion is becoming a global threat to food security, and the extent of current and projected groundwater depletion are well documented, the potential impacts on food production remain poorly quantified. The study is the first to use high-resolution empirical data, including census data about the irrigation methods used in more than 500,000 Indian villages, to estimate the crop production losses that may occur when overexploited groundwater is lost.

“Understanding the complex relationship between food security and water availability is crucial as we prepare for future rainfall variability due to global climate change,” said co-author Gillian Galford of the University of Vermont.

The proliferation of deep (>30 meters) irrigation wells called tube wells since the 1960s has enabled Indian farmers to increase the number of seasons when crops are planted in a given year. This increase in “cropping intensity” is credited for much of the country’s food-production gains.

Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)
Maps showing state-by-state Indian winter cropped area loss estimates due to groundwater depletion in coming decades, with and without replacement by canals. Darker shades of pink and red indicate greater projected losses. The map on the left (A) shows projected winter cropped acreage losses if all critically depleted groundwater is lost, with no replacement. The map on the right (B) shows projected winter cropped acreage losses if groundwater irrigation is replaced with canals, using national-level regression coefficients. (Graph: Jain et al. in Science Advances 2021)

Big data for food security

The researchers used satellite data to measure Indian winter cropped area, a key determinant of cropping intensity. They then linked the satellite data to census information about the three main types of irrigation infrastructure in India: shallow “dug wells,” deeper tube wells and canals that divert surface water.

Linking the two datasets allowed them to determine the relative efficacy of each irrigation method. That, in turn, enabled them to estimate potential future acreage losses and the ability of canal expansion to fill the gap.

The study’s worst-case scenario found that winter cropped area could decrease by up to 20% nationwide and by 68% in the most severely affected regions, if farmers lose all access to groundwater and if that irrigation water is not replaced from another source. The expected losses would largely occur in northwest and central India, according to the study.

The researchers also found that increased distance from existing irrigation canals is strongly associated with decreased acreage planted with winter crops. In the future, a greater reliance on canals could increase inequities related to irrigation access, according to the authors.

“This suggests that while canals may be a viable form of irrigation for those who live near canals, they may lead to more unequal access to irrigation across villages compared to wells, with negative impacts for those who live farther from canals,” the authors wrote.

In addition, the lakes and rivers that feed irrigation canals rise and fall in response to rainfall variability, unlike deep groundwater wells. So, a greater reliance on canal irrigation in the future would result in increased sensitivity to year-to-year precipitation fluctuations, as well as any long-term trends due to human-caused climate change.

The authors of the Science Advances study, in addition to Jain and Galford, are Ram Fishman of Tel Aviv University; Pinki Mondal of the University of Delaware; Nishan Bhattarai of the U-M School for Environment and Sustainability; Shahid Naeem, Upmanu Lall and Ruth DeFries of Columbia University; and Balwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT).

The work was funded by a NASA New Investigator Award to Jain and two NASA Land Cover and Land Use Change grants, one awarded to R.S. DeFries and one to Jain.

——

RELATED RESEARCH PUBLICATIONS:

Groundwater depletion will reduce cropping intensity in India

INTERVIEW OPPORTUNITIES:

Balwinder Singh – Cropping Systems Simulation Modeler, CIMMYT

Meha Jain – Assistant Professor, University of Michigan

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Rodrigo Ordóñez – Communications Manager, CIMMYT. r.ordonez@cgiar.org

Jim Erickson – Lead Public Relations Representative, University of Michigan. ericksn@umich.edu