Skip to main content

Tag: integrated pest management

Plant Health Innovation Platform at Kiboko, Kenya: integrating and testing eco-friendly solutions against fall armyworm

Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)

CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.

The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.

“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”

CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)

Participatory assessment

Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.

“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.

Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.

The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.

Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.

”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”

A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)

Plant Health Innovation Platform catalyzes collaboration

The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.

“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.

Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.

Kenya: Scientists team up to control fall army worms

The Government of Kenya is working with the International Maize and Wheat Improvement Center (CIMMYT), Kenya Agricultural and Livestock Research Organization (KALRO) and the International Centre of Insect Physiology and Ecology (ICIPE) to develop eco-friendly pest management technology and contain the fall armyworm (FAW) pest.

Since the outbreak of FAW was reported in 2016, maize yields have dropped by between 30-50 percent, increasing the country’s challenges for food security.

Prasanna Boddupalli, Director of the Global Maize Program at CIMMYT, said, ″We want farmers to dissociate from application of synthetic toxic pesticides and chemicals but revert to use of combined approaches like use of resistant varieties, bio-pesticides and related biological control methods that are environmentally friendly.”

Preliminary assessment of the viability of naturally tolerant maize varieties from Mexico suggests that at least two or three resistant varieties may be approved after certification from the regulator.

Read the original article: Kenya: Scientists team up to control fall army worms

Plant health data is critical for effective policy change

Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)

With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.

The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.

Data-driven approaches

The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.

Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”

Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.

Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Establishing global networks

The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.

Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.

With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.

Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.

To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.

Removing the barriers for data sharing

The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.

These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.

Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.

“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”

About the Global Burden of Crop Loss:

The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data. 

The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.

About the Centre for Agriculture and Bioscience International (CABI):

CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.

Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.

Combatting soil-borne pathogens and nematodes vital for food security

Mustafa Alisarli, Bolu Abant Izzet Baysal University rector, is awarded for hosting this symposium by the representative of the Turkish Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies (GDAR), Dr Suat Kaymak.

The International Maize and Wheat Improvement Center (CIMMYT) coordinated the VIII International Cereal Nematode Symposium between September 26-29, in collaboration with the Turkish Ministry of Agriculture and Forestry, the General Directorate of Agricultural Research and Policies and Bolu Abant Izzet Baysal University.

As many as 828 million people struggle with hunger due to food shortages worldwide, while 345 million are facing acute food insecurity – a crisis underpinning discussions at this symposium in Turkey focused on controlling nematodes and soil-borne pathogens causing reduced wheat yields in semi-arid regions.

A major staple, healthy wheat crops are vital for food security because the grain provides about a fifth of calories and proteins in the human diet worldwide.

Seeking resources to feed a rapidly increasing world population is a key part of tackling global hunger, said Mustafa Alisarli, the rector of Turkey’s Bolu Abant Izzet Baysal University in his address to the 150 delegates attending the VIII International Cereal Nematode Symposium in the country’s province of Bolu.

Suat Kaymak, Head of the Plant Protection Department, on behalf of the director general of the General Directorate of Agricultural Research and Policies (GDAR), delivered an opening speech, emphasizing the urgent need to support the CIMMYT Soil-borne Pathogens (SBP) research. He stated that the SBP plays a crucial role in reducing the negative impact of nematodes and pathogens on wheat yield and ultimately improves food security. Therefore, the GDAR is supporting the SBP program by building a central soil-borne pathogens headquarters and a genebank in Ankara.

Discussions during the five-day conference were focused on strategies to improve resilience to the Cereal Cyst Nematodes (Heterodera spp.) and Root Lesion Nematodes (Pratylenchus spp.), which cause root-health degradation, and reduce moisture uptake needed for proper development of wheat.

Richard Smiley, a professor emeritus at Oregon State University, summarized his research on nematode diseases. He has studied nematodes and pathogenic fungi that invade wheat and barley roots in the Pacific Northwest of the United States for 40 years. “The grain yield gap – actual versus potential yield – in semiarid rainfed agriculture cannot be significantly reduced until water and nutrient uptake constraints caused by nematodes and Fusarium crown rot are overcome,” he said.

Experts also assessed patterns of global distribution, exchanging ideas on ways to boost international collaboration on research to curtail economic losses related to nematode and pathogen infestations.

A special session on soil-borne plant pathogenic fungi drew attention to the broad spectrum of diseases causing root rot, stem rot, crown rot and vascular wilts of wheat.

Soil-borne fungal and nematode parasites co-exist in the same ecological niche in cereal-crop field ecosystems, simultaneously attacking root systems and plant crowns thereby reducing the uptake of nutrients, especially under conditions of soil moisture stress.

Limited genetic and chemical control options exist to curtail the damage and spread of these soil-borne problems which is a challenge exacerbated by both synergistic and antagonistic interactions between nematodes and fungi.

Nematodes, by direct alteration of plant cells and consequent biochemical changes, can predispose wheat to invasion by soil borne pathogens. Some root rotting fungi can increase damage due to nematode parasites.

Integrated managementFor a holistic approach to addressing the challenge, the entire biotic community in the soil must be considered, said Hans Braun, former director of the Global Wheat Program at CIMMYT.

Braun presented efficient cereal breeding as a method for better soil-borne pathogen management. His insights highlighted the complexity of root-health problems across the region, throughout Central Asia, West Asia and North Africa (CWANA).

Richard A. Sikora, Professor emeritus and former Chairman of the Institute of Plant Protection at the University of Bonn, stated that the broad spectrum of nematode and pathogen species causing root-health problems in CWANA requires site-specific approaches for effective crop health management. Sikora added that no single technology will solve the complex root-health problems affecting wheat in the semi-arid regions. To solve all nematode and pathogen problems, all components of integrated management will be needed to improve wheat yields in the climate stressed semi-arid regions of CWANA.

Building on this theme, Timothy Paulitz, research plant pathologist at the United States Department of Agriculture Agricultural Research Service (USDA-ARS), presented on the relationship between soil biodiversity and wheat health and attempts to identify the bacterial and fungal drivers of wheat yield loss. Paulitz, who has researched soil-borne pathogens of wheat for more than 20 years stated that, “We need to understand how the complex soil biotic ecosystem impacts pathogens, nutrient uptake and efficiency and tolerance to abiotic stresses.”

Julie Nicol, former soil-borne pathologist at CIMMYT, who now coordinates the Germplasm Exchange (CAIGE) project between CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) at the University of Sydney’s Plant Breeding Institute, pointed out the power of collaboration and interdisciplinary expertise in both breeding and plant pathology. The CAIGE project clearly demonstrates how valuable sources of multiple soil-borne pathogen resistance in high-yielding adapted wheat backgrounds have been identified by the CIMMYT Turkey program, she said. Validated by Australian pathologists, related information is stored in a database and is available for use by Australian and international breeding communities.

Economic losses

Root-rotting fungi and cereal nematodes are particularly problematic in rainfed systems where post-anthesis drought stress is common. Other disruptive diseases in the same family include dryland crown and the foot rot complex, which are caused mainly by the pathogens Fusarium culmorum and F. pseudograminearum.

The root lesion nematode Pratylenchus thornei can cause yield losses in wheat from 38 to 85 percent in Australia and from 12 to 37 percent in Mexico. In southern Australia, grain losses caused by Pratylenchus neglectus ranged from 16 to 23 percent and from 56 to 74 percent in some areas.

The cereal cyst nematodes (Heterodera spp.) with serious economic consequences for wheat include Heterodera avenae, H. filipjevi and H. latipons. Yield losses due to H. avenae range from 15 to 20 percent in Pakistan, 40 to 92 percent in Saudi Arabia, and 23 to 50 percent in Australia.

In Turkey, Heterodera filipjevi has caused up to 50 percent crop losses in the Central Anatolia Plateau and Heterodera avenae has caused up to 24 percent crop losses in the Eastern Mediterranean.

The genus Fusarium which includes more than a hundred species, is a globally recognized plant pathogenic fungal complex that causes significant damage to wheat on a global scale.

In wheat, Fusarium spp. cause crown-, foot-, and root- rot as well as head blight. Yield losses from Fusarium crown-rot have been as high as 35 percent in the Pacific Northwest of America and 25 to 58 percent in Australia, adding up losses annually of $13 million and $400 million respectively, due to reduced grain yield and quality. The true extent of damage in CWANA needs to be determined.

Abdelfattah Dababat, CIMMYT’s Turkey representative and leader of the soil-borne pathogens research team said, “There are examples internationally, where plant pathologists, plant breeders and agronomists have worked collaboratively and successfully developed control strategies to limit the impact of soil borne pathogens on wheat.” He mentioned the example of the development and widespread deployment of cereal cyst nematode resistant cereals in Australia that has led to innovative approaches and long-term control of this devastating pathogen.

Dababat, who coordinated the symposium for CIMMYT, explained that, “Through this symposium, scientists had the opportunity to present their research results and to develop collaborations to facilitate the development of on-farm strategies for control of these intractable soil borne pathogens in their countries.”

Paulitz stated further that soil-borne diseases have world-wide impacts even in higher input wheat systems of the United States. “The germplasm provided by CIMMYT and other international collaborators is critical for breeding programs in the Pacific Northwest, as these diseases cannot be managed by chemical or cultural techniques,” he added.

Closing ceremony of the International Cereal Nematode Symposium. From left to right; Hans Braun, Brigitte Slaats, Richard Sikora, Grant Hollaway, Mesut Keser, Zahra Maafi, Richard Smiley, Mustafa Imren, Fatih Ozdemir, Amer Dababat. (Photo: CIMMYT)

Road ahead

Delegates gained a greater understanding of the scale of distribution of cereal cyst nematodes and soil borne pathogens in wheat production systems throughout West Asia, North Africa, parts of Central Asia, Northern India, and China.

After more than 20 years of study, researchers have recognized the benefits of planting wheat varieties that are more resistant. This means placing major emphasis on host resistance through validation and integration of resistant sources using traditional and molecular methods by incorporating them into wheat germplasm for global wheat production systems, particularly those dependent on rainfed or supplementary irrigation systems.

Sikora stated that more has to be done to improve Integrated Pest Management (IPM), taking into consideration all tools wherever resistant is not available. Crop rotations for example have shown some promise in helping to mitigate the spread and impact of these diseases.

“In order to develop new disease-resistant products featuring resilience to changing environmental stress factors and higher nutritional values, modern biotechnology interventions have also been explored,” Alisarli said.

Brigitte Slaats and Matthias Gaberthueel, who represent Swiss agrichemicals and seeds group Syngenta, introduced TYMIRIUM® technology, a new solution for nematode and crown rot management in cereals. “Syngenta is committed to developing novel seed-applied solutions to effectively control early soil borne diseases and pests,” Slaats said.

It was widely recognized at the event that providing training for scientists from the Global North and South is critical. Turkey, Austria, China, Morocco, and India have all hosted workshops, which were effective in identifying the global status of the problem of cereal nematodes and forming networks and partnerships to continue working on these challenges.

Refresher webinar on fall armyworm management in South Asia

Banner for the refresher webinar on fall armyworm management in South Asia. (Photo: CIMMYT)

The fall armyworm is a destructive polyphagous pest that feeds on more than 300 crop species, with a particular appetite for maize. The pest was first reported in Asia in 2018 and has been spreading in the region since then, especially in maize-producing countries of South Asia.

Several campaigns on identifying and managing fall armyworm have been conducted in South Asia, yet the challenge to control the pest remains. The damage caused by fall armyworm to farmers’ fields was reported widely during the 2022 spring maize season in Pakistan and Nepal’s Terai region. Many maize farmers complained about the current economic downturn, price hike of agricultural commodities and the unavailability of safe pesticides to reduce crop losses.

On 21 July 2022, the International Maize and Wheat Improvement Center (CIMMYT) initiated a refresher webinar to share the latest scientific advances and best practices for identifying and managing fall armyworm in South Asia. The platform extended an opportunity for the participants to understand and learn about effective integrated pest management (IPM) approaches being practiced in the region. It also addressed the importance of enabling policies that are crucial to foster innovations to reduce crop yield loss and save the environment from hazardous effects of toxic pesticides.

The Nepal Seed and Fertilizer Project (NSAF) team, supported by the United States Agency for International Development (USAID) and implemented by CIMMYT, organized the virtual event in collaboration with Nepal’s Plant Quarantine and Pesticide Management Center, the Nepal Agricultural Research Council, Nepal’s National Maize Research Program, the Maize and Millet Research Institute in Pakistan, the University of Agriculture Faisalabad and CGIAR’s Plant Health Initiative.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development and Jason Seuc, director of the Economic Growth Office at USAID Nepal, delivered their opening remarks during the inaugural session. The Secretary emphasized the use of safer methods, including but not limited to mass rearing and releasing of natural enemies of fall armyworm and the deployment of fall armyworm tolerant maize varieties.

“USAID will continue working with partners to advocate and promote IPM practices till the pest becomes of non-economic importance,” said Seuc.

BM Prasanna, director of CIMMYT’s Global Maize Program and OneCGIAR Plant Health Initiative lead emphasized the importance of IPM practices to manage the pest. Prasanna discussed the global efforts to control the pest and shared the progress of fall armyworm tolerant maize seeds which are being released and deployed by CIMMYT partners to help resource poor farmers, especially in Africa.

AbduRahman Beshir, NSAF’s seed systems lead, emphasized the importance of the event and acknowledged the participation of approximately 525 attendees from public and private research institutions, academicians, civil society, private sector, policy decision-makers, CGIAR centers and USAID Nepal. The webinar gathered attendees from 15 countries, including Nepal, India, Bangladesh, Pakistan, Thailand, Myanmar, Sri Lanka and China.

Experts from South Asia presented on a range of topics including the status of fall armyworm and its management in Nepal, Pakistan, Bangladesh and the Pacific Region, IPM practices and experience of using safe pesticides, breeding for native genetic resistance to fall armyworm, and biological control and push-pull strategies. The experts emphasized on the need for collective efforts to strengthen national and international coordination, favorable policies, deployment of fall armyworm tolerant maize varieties, and best response interventions to help farmers battle the fall armyworm and limit its spread.

Efforts to mitigate the impact of fall armyworm attacks are still ongoing. CIMMYT is continuously working to alert farmers and stakeholders on the IPM practices of fall armyworm in the region.

A new tool to strengthen the fight against fall armyworm in Asia

Together with the United States Agency for International Development (USAID) and Feed the Future, the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE) are pleased to announce the release of “Fall Armyworm in Asia: A Guide for Integrated Pest Management.”

The publication builds on intensive, science-based responses to fall armyworm in Africa and Asia.

Fall armyworm in Asia: A guide for integrated pest management“I have encountered few pests as alarming as the fall armyworm,” wrote USAID Chief Scientist Rob Bertram in the guide’s Foreword. “This publication … offers to a broad range of public and private stakeholders — including national plant protection, research and extension professionals — evidence-based approaches to sustainably manage fall armyworm,” Bertram adds.

“Partners from a wide array of national and international institutions have contributed to the mammoth task of formulating various chapters in the guide,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and of MAIZE. “While the publication is focused on Asia, it provides an updated understanding of various components of fall armyworm integrated pest management that could also benefit stakeholders in Africa.”

In January 2018, CIMMYT and USAID published a similar guide on integrated pest management of fall armyworm in Africa, which reached a large number of stakeholders globally and is widely cited. Prasanna spearheaded the development and publication of both guides.

The current publication also follows CIMMYT’s announcement of three fall armyworm-tolerant elite maize hybrids for sub-Saharan Africa.

Waging war against the fall armyworm

The fall armyworm is an invasive pest that eats more than 80 different crops, but has a particular preference for maize.

It is native to the Americas. It was first reported in Africa in 2016, and quickly spread throughout the continent. It reached India in 2018. It has since been reported in many other countries across Asia and the Pacific, and it reached Australia in 2020.

Millions of families in these regions are highly dependent on maize for their income and their livelihoods. If the fall armyworm keeps spreading, it will have disastrous consequences for them.

Scientists at CIMMYT have been working hard to find solutions to help farmers fight fall armyworm. Researchers have developed manuals for farmers, with guidelines on how to manage this pest. They have also formed an international research consortium, where experts from diverse institutions are sharing knowledge and best practices. Consortium members share updates on progress in finding new ways to tackle this global challenge. Scientists are now working on developing new maize varieties that are resistant to fall armyworm.

The fall armyworm can’t be eradicated — it is here to stay. CIMMYT and its partners worldwide will continue to work on this complex challenge, so millions of smallholder farmers can protect their crops and feed their families.

For more information on the fall armyworm and CIMMYT’s work, please visit staging.cimmyt.org/fallarmyworm.

How do we sustainably manage transboundary diseases and crop pests?

In our hyper-connected world, it should come as no surprise that recent years have shown a major uptick in the spread of transboundary pests and diseases. Integrated approaches have been effective in sustainably managing these border-jumping threats to farmers’ livelihoods and food security.

But a truly integrated approach accounts for not just the “cure,” but also how it can be sustainably incorporated into the agri-food system and social landscape.  For example, how do we know if the farmers who adopt disease- and pest-resistant seed will be able to derive better incomes? And how do we ensure that incentives are aligning with community norms and values to enable better adoption of integrated disease or pest management approaches?

Experts from across the CGIAR research system and its partners weighed in on this topic in the recent webinar on Integrated Pest and Disease Management, the third in the International Year of Plant Health Webinar series. Panelists shared valuable perspectives on the science of outbreaks, the social dimensions of crop pest and disease control, zoonotic disease risk, and how national, regional and global organizations can better coordinate their responses.

“The combination of science, global partnerships and knowledge helps all of us be better prepared to avoid the losses we’ve seen. . . Today, we’re going to see what this looks like in practice,” said Rob Bertram, chief scientist for the Bureau for Resilience and Food Security at USAID, and moderator of the event.

Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)
Participants on the webinar on Integrated Pest and Disease Management. (Photo: CIMMYT)

Understanding the sources

Wheat and maize, the key crops studied at the International Maize and Wheat Improvement Center (CIMMYT) are no stranger to destructive  diseases or pests, with fall armyworm, wheat blast, or maize lethal necrosis topping the list. But other staple crops and their respective economies are suffering as well — from infestations of cassava brown streak, potato cyst nematode, taro blight, desert locusts, and fusarium wilt, just to name a few.

What are the reasons for the expansion of these outbreaks? B.M. Prasanna, director of CIMMYT’s Global Maize Program explained that there are several: “Infected seed or planting material, vector movement, strong migratory capacity, contaminated field equipment, improper crop production commercialization practices, and global air and sea traffic” are all major causes.

Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)
Prevention and control of diseases and pests requires an integral strategy which mobilizes synergies of multiple institutions. (Graphic: B.M. Prasanna/CIMMYT)

Preventing outbreaks is always better than scrambling to find a cure, but as Prasanna pointed out, this requires a holistic, multi-institutional strategy including surveillance and early warning, quarantine and phytosanitary regulations, and technological solutions. Better access to monitoring and surveillance data, and sensitive, easy-to-use and affordable diagnostic equipment are essential, as is the proactive deployment of resistant crop varieties.

Building awareness about integrated disease and pest management is just as important, he told the attendees. “We must remember that IPM is not just Integrated Pest Management, but also ‘Integrating People’s Mindsets.’ That remains a major challenge. We need to think beyond our narrow disciplines and institutions and really come together to put IPM solutions into farmers’ fields,” Prasanna said.

Not all outbreaks are the same, but lessons can be shared

Regina Eddy, coordinator for the Fall Armyworm Interagency Task Force at USAID, works closely with the complex issue of scaling when it comes to disaster response and the roles of national, regional and global organizations.

“We need to develop inclusive partner stakeholder platforms, not designed ‘for them,’ but ‘with them,’” said Eddy. “We cannot tackle food security issues alone. Full stop.”

Closing the gap between social and biophysical science

Nozomi Kawarazuka, social anthropologist at the International Potato Center (CIP) explained how researchers can improve the uptake of their new seed, innovation, or agronomic practice by involving social scientists to understand the gender norms and social landscape at the beginning of the project — in the initial assessment phase.

Kawarazuka highlighted how involving women experts and extension workers in sectors that are typically male-dominated helps reduce bias and works towards changing perceptions.

“In South Asia, women farmers hesitate to engage with male government extension workers,” she said. “Women experts and extension workers reduce this barrier. Gender and social diversity in the plant health sector is an entry point to develop innovations that are acceptable to women as well as men and helps scale up adoption of innovations in the community.

Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)
Gender and social dimensions of pest and disease control: a call for collaboration (Graphic: Nozomi Kawarazuka/CIP)

The world is watching agriculture and livestock

Zoonotic diseases, or zoonoses, are caused by pathogens spread between animals and people. Understanding zoonotic disease risk is an essential and timely topic in the discussion of integrated pest management. Poor livestock management practices, lack of general knowledge on diseases and unsafe yet common food handling practices put populations at risk.

“It’s especially timely, [to have this] zoonosis discussion in our COVID-plagued planet. The whole world is going to be looking to the food and agricultural sectors to do better,” Bertram said.

Annet Mulema, a gender and social scientist at the International Livestock Research Institute (ILRI) described results of a study showing how community conversations transformed gender relations and zoonotic disease risk in rural Ethiopia, where 80% of the population depends on agriculture and has direct contact with livestock.

“There were noticeable changes in attitude and practices among men and women regarding unsafe handling of animals and consumption of animal-source foods,” Mulema explained. “Community conversations give men and women involved a voice, it allows for a variety of ideas to be expressed and discussed, leads to community ownership of conclusions and action plans, and opens communication channels among local service providers and community members.”

Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)
Proportion of women and men practicing safe handling of livestock and animal source foods, before and after community conversation intervention. (Graphic: Annet Mulema/ILRI)

Local to global, and global to local

Panelists agreed that improving capacity is the most powerful lever to advance approaches for integrated pest management and plant health, while connected and inclusive partnerships along the value chain make the whole system more resilient. The amount of scientific knowledge on ways to combat plant pests and diseases is increasing, and we have new tools to connect the global with the local and bring this knowledge to the community level.

The fourth and final CGIAR webinar on plant health is scheduled for March 31 and will focus on a the intersectional health of people, animals, plants and their environments in a “One Health” approach.

Somalia agriculture partners learn about integrated fall armyworm control practices

Fall armyworm continues to cause havoc in Africa. Farmers in Somalia have not been spared since this unwelcome guest showed up in the country over three years ago. As part of the mitigation measures, the Somali Agriculture Technical Group (SATG) in partnership with the International Maize and Wheat Improvement Center (CIMMYT) and the International Committee of the Red Cross (ICRC) recently conducted online trainings on fall armyworm management for sustainable crop protection. The online trainings, targeting national agriculture stakeholders in the country, took place on August 25 and September 30, 2020, with nearly 250 participants attending both webinars.

“This is the first of our efforts to reach out to our partners in Somalia, especially the Somali Agriculture Technical Group and the national agricultural research system, to increase the awareness on the integrated pest management approaches that can help combat this highly destructive pest,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

“This training was designed to help participants to gain a better understanding about fall armyworm, how to identify it, how to monitor and scout for it, how to effectively implement a management strategy that is environmentally and ecologically benign, in order to protect the food security and livelihoods of farmers and their families,” Prasanna said.

An integrated pest management strategy for sustainable control of fall armyworm should consider various interventions, including regular scouting and monitoring of the pest in the fields, host plant resistance, biological and biorational control, agroecological management, and use of environmentally safer pesticides and good agronomic practices tailored for the socio-cultural and economic contexts of the farmers. Ultimately, the purpose of a functional integrated pest management approach is to suppress pest population by applying techniques that minimize human and environmental harm, while protecting the crops from economic damage.

“I am happy to see the expertise from high levels of research at CIMMYT, icipe, IITA, universities, SATG and the humanitarian sector coming together to tackle and solve problems linked to food production and consumption. I believe that such important trainings have great value for Somalia, and should be further strengthened and encouraged,” said Abdalla Togola from the ICRC.

B.M. Prasanna presents at training.
B.M. Prasanna, Director of CIMMYT Global Maize Program and the CGIAR Research Program MAIZE, presents at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Hussein Haji presents at training.
Hussein Haji, the Executive Director of Somali Agriculture Technical Group speaks at the fall armyworm online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
Professor Dan McGrath presents at training.
Professor Dan McGrath of Oregon State University, USA, delivering a training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)
John Karonga presents at training.
John Karonga, an agronomist at the International Committee of the Red Cross (ICRC) speaks at the online training on integrated pest management-based fall armyworm control. (Photo: Joshua Masinde/CIMMYT)

Hussein Haji, the Executive Director of SATG was optimistic that the training would go a long way to empower farmers in Somalia, through their cooperatives, and could lead to better ways of tackling challenges such as fall armyworm, already made worse by other stresses like drought and desert locusts.

“Through our extension workers, we hope this information will trickle down to our cooperatives, who produce mainly maize and sorghum seed in Somalia,” he added.

This comes on the back of a partnership between the ICRC and SATG to implement activities intended to improve food production among rural communities in six regions of Somalia. The partnership would enhance quality seed production with a focus on maize and sorghum, the major staple crops in the country.

Besides Prasanna, the key resource persons included Dan McGrath (Professor Emeritus, Oregon State University, USA), Joseph Huesing (CIMMYT Consultant on integrated pest management) and Georg Goergen (Entomologist, International Institute of Tropical Agriculture), Frederic Baudron (CIMMYT Systems Agronomist), Anani Bruce (CIMMYT Entomologist), Yoseph Beyene (CIMMYT Regional Breeding Coordinator for Africa) and Saliou Niassy (Head of Agricultural Technology Transfer Unit, International Center of Insect Physiology and Ecology).

The fall armyworm, a voracious caterpillar officially reported for the first time in Africa in Nigeria in 2016, remains a serious pest with devastating consequences on millions of farmers’ food and livelihood security. The pest has spread quickly throughout sub-Saharan Africa, primarily attacking maize and sorghum, two main staple crops in the region. The Food and Agriculture Organization of the United Nations (FAO) estimates up to 18 million tons of maize are lost to the pest annually, at an estimated economic loss of $4.6 billion.

To reduce the losses, experts have been recommending a toolbox of integrated pest management (IPM) practices to minimize the damage on smallholder farmers’ fields. Scientists at CIMMYT are also working intensively to develop improved maize varieties with native genetic resistance to this devastating insect pest.

Cover photo: Kowthar Abdirahman Afyare studies agriculture at the Somali National University. (Photo: AMISOM Public Information)