Science without policy is just academia; policy without science is just guesswork. Through a blend of robust field research and policy advocacy, CIMMYT aims to bridge the gap between policy and practice in promoting sustainable agricultural practices through crop diversification in South Asia.
Taking Bangladesh as an example, CIMMYT’s work in the country highlights the critical need to link research with policy to achieve sustainable agricultural practices, enhance food security, and improve farmer livelihoods.
The power of research-informed policy
Bangladesh’s agriculture is highly rice-centric; although rational, this is risky and arguably unsustainable. This means there needs to be a focus on crop diversification, which is one of the approaches toward sustainable agriculture that can address socioeconomic and environmental challenges.
Recognizing these challenges, CIMMYT has been at the forefront of developing solutions by conducting extensive multi-location on-site and on-farm trials that consider the socioeconomic and pedoclimatic dimensions of farm households.
Additionally, CIMMYT analyzes historical policies and initiatives that have been implemented by the Bangladeshi government and international partners to promote crop diversification. Several opportunities for improvement were identified in past policies and project implementation; addressing these challenges requires bridging the gap between policies and research to scale up crop diversification efforts.
Through the RUPANTAR and CGIAR Transforming Agrifood Systems in South Asia (TAFSSA) projects, CIMMYT-Bangladesh has developed an analytical tool to understand the political economy of crop diversification policies and practices. When applied to agriculture policy research, this tool can be tailored to any country and policy context in South Asia.
For example, while the government recognizes crop diversification in its agriculture policies starting with the Fifth Five-Year Plan, substantial funding for crop diversification efforts was only recently allocated. Integration of crop diversification into the government’s annual funding systems is essential to mainstream crop diversification in agriculture.
Many crop diversification policies and projects primarily focus on production, neglecting market systems development for new crops. Similarly, research suggests insufficient attention is paid to cold storage and other infrastructure needed to support diversification.
Most initiatives appear to have been project-driven, resulting in short-lived action without long-lasting impact. Insufficient coordination and support from government agencies appears to have affected projects led by both governments and development partners.
Stakeholder engagement spreads awareness
Without translating research into policy, we leave innovation on the shelf. CIMMYT-Bangladesh disseminates research findings to policymakers through the country Priority Investment Plan for the crop sector at the Bangladesh Agricultural Research Council (BARC), and South Asian Association for Regional Cooperation (SAARC) member countries through regional consultation workshops on accelerating the transformation process for sustainable and nutrition-sensitive food systems.
Looking ahead, CIMMYT’s efforts in South Asia remain dedicated to bridging the gap between research and policy. Ongoing projects aim to generate robust evidence, advocate for informed policy decisions, and foster partnerships across sectors. By continuing to lead in this space, CIMMYT strives to contribute to a more resilient agrifood system for South Asia.
A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.
The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.
“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).
Paradigm shift for African National Agricultural Research Institutes
Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.
Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.
Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.
He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.
Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
Challenge to deliver effectively
During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.
Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.
CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.
The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.
PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.
Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.
A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)
International Year of Millets, 2023
The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.
High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).
AVISA Achievements
Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.
Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.
“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.
The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).
Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.
A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.
This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.
Here are some of the latest developments from our team of remote sensing experts.
An aerial view of the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)
Measuring plant height with high-powered drones
A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.
The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.
The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.
Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.
A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)
Advancing assessment of pests and diseases
CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.
Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.
CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)
Improving forecasts for crop disease early warning systems
CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.
Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.
CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.
CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)
Delivering expert irrigation and sowing advice to farmers phones
The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.
CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)
Detecting field boundaries using high-resolution satellite imagery
In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.
Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.
Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.
A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad Obregón, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)
Developing climate-resilient wheat
CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.
Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.
The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.
Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) operates five agricultural experiment stations in Mexico. Strategically located across the country to take advantage of different growing conditions — spanning arid northern plains to sub-tropical and temperate climatic zones — the stations offer unique and well-managed testing conditions for a variety of biotic and abiotic stresses.
Heat and drought tolerance in wheat is the focus of study at Ciudad Obregón, while the humid, cool conditions at Toluca are ideal for studying wheat resistance to foliar diseases. The tropical and sub-tropical settings of Agua Fría and Tlaltizapán respectively are suited to maize field trials, while at El Batán researchers carry out a wide variety of maize and wheat trials.
A new video highlights the important and valuable contribution of the five experimental stations in Mexico to CIMMYT’s goal of developing maize and wheat that can cope with demanding environments around the world, helping smallholder farmers in Africa, Asia and Latin America adapt to challenges like climate change, emerging pests and disease, and malnutrition.
Featuring aerial cinematography and interviews with each station’s manager, the video takes viewers on a journey to each experimental station to highlight the research and management practices specific to each location.
In addition to their role in breeding maize and wheat varieties, CIMMYT’s experimental stations host educational events throughout the year that train the next generation of farmers, policymakers and crop scientists. They also provide the canvas on which CIMMYT scientists develop and test farming practices and technologies to help farmers grow more with less.
Some of the stations also hold historical significance. Ciudad Obregón and Toluca are two of the sites where Norman Borlaug set up his shuttle breeding program that provided the foundations of the Green Revolution. It was also in Toluca, while at a trial plot alongside six young scientists from four developing nations, where Borlaug first received news of his 1970 Nobel Peace Prize award.
Wheat is the most important food crop worldwide and a principal source of nutrients in some of the poorest countries of Asia, Africa, and Latin America. But wheat, like all living organisms, is unimaginably complex.
CIMMYT scientist Matthew Reynolds believes that for this reason we need a whole consortium of scientists to improve its yield. This video highlights work that has already been done to increase the productivity of wheat through research in spike photosynthesis, roots and breeding. Because when it comes down to it, crop yields cannot be improved overnight, certainly not sustainably. It takes time and investment, and by planning ahead we are actually trying to preempt a disaster, with research and with partnership.