Skip to main content

Tag: hybrids

Seeds to beat the heat in lowland tropics

South Asia, a region heavily impacted by climate change, faces rising temperatures, erratic monsoon rains causing intermittent drought and excessive moisture within the season, and frequent episodes of heat waves. These extreme weather events are challenging agrarian practices and affecting millions, especially smallholder farmers dependent upon rainfed cultivations. The halcyon days of consistent environmental conditions are gone, and adaptation and mitigation strategies have become essential in South Asia.

In May 2024, over 20 districts in the Terai region of Nepal and many parts of northern India recorded maximum temperatures between 40°C and 45°C, with several districts also experiencing heat waves during the same period. The temperature rise is not limited to the lowland plains; the effects are also being felt in the mountains, where rapid snowmelt is becoming increasingly common. In the Hindu Kush Himalayas region of Pakistan, farmers have had to shift their cropping cycles by a month to cope with drought stress caused by rising temperatures, which are leading to the early melting of snow in the region.

Partners in South Asia visiting heat stress tolerant hybrids demonstration in Nepal (Photo: CIMMYT-Nepal)

Collaborating to rise above the challenge

Amid the growing climate crisis, the Heat Stress Tolerant Maize for Asia (HTMA) project was launched by CIMMYT in 2012, with support from the United States Agency for International Development (USAID) under the Feed the Future initiative of the U.S. Government. The overarching goal of the HTMA project was to help farm families, particularly maize growers, to adapt to the impacts of soaring heat on maize productivity in South Asia. The project was implemented in partnership with 28 public and private sector stakeholders across the region and beyond to develop a multipronged approach to overcoming these challenges.

“Our aim is to develop and deploy maize hybrids with high yield potential and possess traits resilient to heat and drought stresses,” said P.H. Zaidi, Principal Scientist, and HTMA project lead at CIMMYT. Zaidi noted that during heat stress “high temperatures alone are not the only limiting factor- it is the combination of high temperature with low atmospheric humidity (high vapor pressure deficit), that creates a “killer combination” for maize production in the Asian tropics.”

This was also emphasized in a recently published article that he co-authored.

The development of heat stress-tolerant maize involves the use of cutting-edge breeding tools and methods, including genomics-assisted breeding, double haploidy, field-based precision phenotyping, and trait-based selection. Over 20 such hybrids have been officially released in India, Nepal, Bangladesh, Pakistan, and Bhutan. Between 2023 and 2024, over 2,500 metric tons of seed from these hybrids were distributed to farmers, helping them beat the heat.

Agile partnerships-from discovery to scaling

The first phase of the project (2012-2017) focused on discovering heat-tolerant maize varieties. During this time, pipeline products underwent field evaluations in stress-prone environments, leveraging the project’s product evaluation network of public and private partners, who contributed by managing trials and generating performance data. In the second phase (2018-2023), the focus shifted toward the deployment and scaling of heat-tolerant hybrids and strengthening seed systems in target countries to enable large-scale delivery, benefiting millions of farm families, particularly in South Asia’s rainfed ecologies. For example, the seed produced in 2023-2024 sufficed to cover over 125,000 hectares and benefited nearly 2.5 million people in the region.

HTMA project partners gathered in Nepal for the annual and project closure meeting (Photo-CIMMYT-Nepal)

Hailu Tefera, from USAID, praised the project’s success during the annual review and project closure meeting held in Nepal from August 21-22, 2024. We have seen great strides in scaling heat stress tolerant hybrids in the region. This initiative aligns with the US Government’s Global Food Security Strategy, where building farmers’ resilience to shocks and climate vulnerability is central,said Tefera, acknowledging the adaptive and agile partnership demonstrated by the project’s partners throughout HTMA’s discovery and scaling phases.

One of the project’s key achievements was creating a multi-stakeholder platform and leveraging resources across the region. Partners, including national agricultural research systems, seed companies, and higher learning institutes, expanded the project’s impact. The collaboration we fostered under the HTMA project is a working example of effective partnerships,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program. He highlighted how synergies with other developmental projects in the region, especially projects supported by the USAID country mission in Nepal helped launch local hybrid seed production, transforming the country from a net importer of hybrid maize seeds to producing locally in just a few years, and such seeds of resilience cover nearly 10,000 hectares in 2023/24 alone. Using heat tolerant (HT) maize seed allows smallholder farmers to harvest nearly one metric ton per hectare additional yield than normal maize under stress conditions.

The value of the seed these new hybrids was validated by adopter farmers who grow maize in stress-vulnerable ecologies by expressing their willingness to pay a premium price for HT hybrid seed as per the study conducted in Nepal and India. “The spillover effect of the project is helping countries like Bhutan to strengthen their seed systems and initiate hybrid seed production for the first time,” added Prasanna, expressing gratitude to USAID and all project partners.

The salient achievements of the project, including technical know-how, outputs, outcomes, and learnings were compiled as an infographic, titled “HTML Tool‘ and it was formally released by Narahari Prasad Ghimire, Director General of the Department of Agriculture, Government of Nepal, during the HTMA meeting in Nepal.

Rewarding achievement

Subash Raj Upadhyay, Managing Director of Lumbini Seed Company in Nepal, recalls the early days of producing heat stress-tolerant hybrid maize seed in Nepal, which began in 2018. “Our journey started with just one hectare of seed production in 2018 and 2019, and we expanded to 30 hectares by 2022. This was the first time that we started hybrid maize seed production in Nepal, specifically RH-10, a heat stress tolerant hybrid from CIMMYT, released by the National Maize Research Program of Nepal. The support of USAID’s projects like the Nepal seed and fertilizer project was crucial for our success,” said Upadhyay, who was among the award recipients for setting a potent example in scaling up heat stress-tolerant hybrids.

HTMA TOOL- an infographic launched during the meeting (Photo-CIMMYT Nepal)

In addition to Lumbini Seed Company, Jullundur Seed Private Limited Company in Pakistan was also recognized for its efforts in seed scaling. The National Maize Research Program of Nepal and the University of Agricultural Sciences, Raichur, India, were acknowledged for their rewarding achievement in research and development during the project period.

“The recognition exemplifies the public-private partnership that we demonstrated under the HTMA project, where the public sector mainly focused on strategic research and product development, and seed companies took charge of seed delivery and scaling,” said Zaidi during the project’s phaseout meeting in Nepal, attended by over 60 participants from the project’s target and spillover countries. “Such partnership models need to be strengthened and replicated in other projects. It is important to consolidate the gains and maintain the momentum of the HTMA project in the years to come to benefit millions of smallholder farmers, echoed Prasanna, who presented certificates of recognition to the partners in the presence of USAID representatives, senior government officials from Nepal and project partners from South Asia and beyond.

Enhancing farmer’s crop productivity with resilient maize varieties tailored to their needs

Dorothy Mandaza, local farmer from ward 19 of Seke District, inspecting her maize cobs (CIMMYT)

Maize productivity in eastern and southern Africa faces numerous challenges, including biotic and abiotic stresses, as well as socio-economic factors. To tackle these constraints, CIMMYT, in collaboration with partners, has been developing elite multiple stress-tolerant maize hybrids for different market segments. The hybrids are rigorously evaluated in research stations under managed stresses, especially those faced by farmers, including drought, heat, and low nitrogen. The process is complemented with evaluations conducted in actual farmer conditions through a participatory approach, which enables researchers to identify traits preferred by farmers.

Over the years, and through consistent engagement with farming communities, CIMMYT and partners have established a large on-farm testing network to allow farmers to test the best-performing hybrids within their own fields and management. This ensures that new varieties selected for commercialization suit the needs, constraints, and priorities of smallholder farmers.

Centrality of ROFT in the variety development process
Regional on-farm trials (ROFTs) are a crucial step towards maximizing the impact of breeding investments. ROFTs help scientists understand the performance of pipeline hybrids under diverse management conditions. The data and insights gathered from these trials, led by district leads, are instrumental in identifying the best varieties to release. In Zimbabwe, the extensive on-farm testing is conducted with support from Zimbabwe’s government extension arm, the Department of Agricultural, Technical, and Extension Services (Agritex), and selected seed companies.

To help track the progress or challenges in varietal performance evaluation at the farm level, CIMMYT has been convening feedback sessions with district agriculture extension officers (DAEOs) across 19 districts. These sessions have been instrumental in strengthening the collaboration with Agritex, standardizing data collection, and improving data quality and returns from the established on-farm testing network.

Conversations with district agriculture extension officers in Harare during a feedback session. (Photo/CIMMYT)

The ROFT trials have been ongoing in Zimbabwe for over a decade across 19 districts, located in natural regions I, II, and III. These trials have been implemented by more than 137 AEOs and have involved over 1,000 farmers. The network deliberately included a diverse range of farmers, with around 40% being female plot managers, to encompass a wide range of smallholder farming practices.

Participatory engagement is key
Every year, CIMMYT produces improved varieties that are then taken up by partners, including National Agricultural Research System (NARS) partners and seed companies. The on-farm trials aim to generate agronomic performance data in comparison to the widely grown commercial varieties and farmers’ own varieties. This data is used for a rigorous advancement process, where varieties that pass the test are then furthered for licensing and possible commercialization by CIMMYT’s partners.

Farmer involvement at the final stage of the variety selection process is key to the success of these trials. Farmers evaluate the varieties based on their specific needs, on their farms. This step is crucial as it empowers farmers to have a say in the variety development process. CIMMYT actively uses this participatory selection approach, seeking input from farmers and refining breeding targets as necessary. Farmers communicate their preferences and feedback through the farmer evaluation sheets, helping breeders fine-tune their targets and develop varieties that meet farmers’ needs.

Another key element of the on-farm trials is that they help assess breeding progress in farmers’ fields in terms of crop productivity and return on investment.

Unlocking genetic innovations through collaborative pathways

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

The International Maize Improvement Consortium for Africa (IMIC-Africa) held its Southern Africa field day on 25 March 2024 at Harare, Zimbabwe. IMIC-Africa, launched by CIMMYT in 2018, is a public-private partnership designed to strengthen maize breeding programs of partner institutions in Africa. As part of this initiative, CIMMYT organizes annual field days which bring together representatives from seed companies and national agricultural research system (NARS) partners across Zimbabwe and Kenya.

At the heart of the IMIC-Africa field day lies a vibrant showcase of genetically diverse materials developed from various maize breeding pipelines of CIMMYT in Southern Africa. Such events serve as a catalyst to drive innovations in maize breeding programs, deliver solutions to stakeholders, and enable seed companies and NARS partners to make informed selections tailored to local contexts.

“It is an important forum to have organized discussions with partners, and redesign—where possible—our breeding approaches to deliver targeted products to stakeholders,” said Director of CIMMYT’s Global Maize Program, One CGIAR Global Maize Breeding Lead, and One CGIAR Plant Health Initiative Lead, B.M. Prasanna. “The main stakeholders here are our partners, including seed companies and public sector national programs, through whom we reach out to farming communities.”

The significance of these field days cannot be overstated. It allows the partners to have a critical look at the breeding materials on display and undertake selections of maize lines relevant to their breeding programs. In addition, the IMIC-Africa field days enable CIMMYT team to have structured dialogues with diverse stakeholders and to review and refine breeding (line and product development) strategies and approaches.

“It is key to bridge the gap between the national programs and private sector players. This platform allows us to stay ahead in terms of research, and innovative breakthroughs in the seed sector,” added Kabamba Mwansa, principal agriculture research officer, ZARI, Zambia and Southern Africa Breeding, and seed systems network coordinator.

Highlights from the Harare field day

With an impressive array of 737 CIMMYT maize lines on display, partners at the Harare field day gained insights about the performance of different materials. The materials span early-, intermediate-, and late- maturity groups to nutritious maize breeding pipelines. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their local contexts. The material on display ranged from early generation (one or two years of testing data) to advanced generation (more than three years of testing) coming from the Southern Africa breeding pipelines targeting multiple market segments.

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

One of the strategic priorities of CIMMYT’s maize breeding program in Africa is improving the nutritional quality of maize. This is exemplified by the development of provitamin A-enriched maize (PVA). On display were 169 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.

Felix Jumbe, a partner from Peacock Seeds in Malawi reflected on the importance of the IMIC-Africa partnership. “We have been part of IMIC-Africa since its inception, and we continue to appreciate the different climate-resilient lines emerging from CIMMYT maize breeding programs in Africa. Last year, we sold out of our seed as people continue to appreciate the need for resilient maize varieties. The drought-tolerant (DT) maize lines from the consortium have been a huge selling point as most farmers are happy with it,” he said.

The field day not only showcased cutting-edge breeding innovations but also offered a historical perspective by tracing the trajectory of the most popular lines taken up under IMIC-Africa from 2019 to 2023. This served as a crucial reference point for partners, enabling them to assess the performance of newly displayed lines against established benchmarks. Furthermore, partners considered the presence of trait donors as invaluable in improving resistance to key biotic stresses or tolerance to certain abiotic stresses prevalent in Africa.

CIMMYT, NARS, and seed company partners participate in the IMIC-Africa field day in Harare, Zimbabwe. (Photo: CIMMYT)

CIMMYT partnership continues to add value

In the face of escalating environmental pressures, including climate change and pest infestations such as the fall armyworm (FAW), CIMMYT breeders have been working tirelessly to develop resilient varieties capable of withstanding these challenges. Partners such as SeedCo have embraced these robust varieties. For breeder Tariro Kusada, it is her second year of attending the IMIC- Africa field day. “We continue to see value in getting breeding materials through IMIC. The vigor from the lines on display is outstanding as compared to last year. We hope the vigor translates to yield.”

Danny Mfula from Synergy Zambia reinforced the value of the partnership. “It is always good to tap into CIMMYT’s germplasm to supplement what we have. We are glad that more FAW-tolerant hybrids are coming on board. We want to leverage on these developments as farmers have gone through a lot of challenges to control FAW,” he said.

As the harvest stage approaches, partners can select their material by assessing the performance of the lines from flowering to grain filling stages. Each plot’s harvest provides invaluable insights, guiding partners in their selections. Partners are also given the opportunity to view the improved maize lines from CIMMYT through a virtual gallery of ears from each plot, ensuring informed decision-making. By fostering dialogue, facilitating partnerships, and highlighting genetic innovations, the field days catalyze progress towards a more sustainable and resilient future for African agriculture.

Heat tolerant maize: a solution for climate change-induced 360◦ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≥40C), at least 5C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.

Six new CIMMYT maize hybrids available from South Asia Breeding Program

CIMMYT is happy to announce six new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across the tropical lowlands of South Asia and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Product Profile Newly available CIMMYT hybrids Basic traits
South Asia Heat + Drought Tolerance (SAHDT) CAH219 Medium maturing, yellow, high yielding, drought and heat tolerant, to FER and TLB
CAH220
South Asia Waterlogging + Drought Tolerance (SAWLDT) CAH214 Medium maturing, yellow, high yielding, drought + waterlogging tolerant, and resistant to FER, TLB and FSR
CAH218
South Asia Drought Tolerance (SADT) CAH216 Medium maturing, yellow, high yielding, drought tolerant, and resistant to TLB and FER
CAH217

 

Performance data Download the CIMMYT-Asia Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022-2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 18 June 2024. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023 South Asia Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of South Asia.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, program manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Enhancing maize seed and feed security

Maize is the second most important cereal in Laos after rice, driven primarily by the demand for animal feed in neighboring countries such as China, Thailand, and Vietnam. Laos has an export-oriented maize sector, with most of the country’s production destined for these markets. The sector reached its peak in 2016, when production levels hit 6 metric tons per hectare across an area of 0.26 million hectares.

Over 90% of Laos’s maize production relies on rain-fed agriculture, with maize grain and stover serving as the primary source of feed for smallholder farmers who depend on mixed crop and livestock farming systems for their livelihoods. However, between 2016 and 2022, total maize area and production declined significantly, contracting by 64% and 70%, respectively. Several factors contributed to this decline, including volatile market prices, competition from cassava and other crops, rising production costs, and yield losses due to pests, diseases, and soil nutrient degradation because of monocropping.

Additionally, Laos relies on imported hybrid maize seed, primarily from Thailand and Vietnam, which creates a dependence on external suppliers and exposes farmers to price fluctuations. Recognizing the importance of improving maize productivity and sustainability, the Laotian government is taking steps to enhance local capacity for seed production and ensure access to affordable high-quality feed.

Enhancing local hybrid maize seed production  

Recognizing the importance of enhancing the availability and accessibility of quality maize seed and feed, CIMMYT and Laos’s National Agriculture and Forestry Research Institute (NAFRI) have initiated the evaluation of high-yielding maize hybrids for both grain and stover quality. In 2023, 12 yellow-kernel maize hybrids developed by the CIMMYT-Asia breeding program underwent evaluation in Laos. The same set of hybrids is undergoing evaluation in 2024 to identify stable and suitable germplasm. According to Siviengkhek Phommalath, director of the rice and cash crop research center at NAFRI, the 2023 evaluation provided promising results, with at least two hybrids performing better or on par with widely grown commercial ones in Laos. These hybrids exhibit high productivity, particularly in terms of grain and stover quality. However, further validation is planned for 2024, with the introduction of additional testing sites to assess performance across various environments.

Following thorough evaluations across multiple years and environments, the most suitable dual-purpose maize hybrids will be allocated to NAFRI by CIMMYT along with their parental lines, to kickstart local seed production. However, the capacity of national partners needs to be strengthened to initiate local hybrid maize seed production effectively, and this necessitates the integration and coordination of efforts among all stakeholders in the seed and feed value chains in Laos.

Capacity building across seed and feed value chains

In response to the need for capacity building in local hybrid seed production and ensuring a consistent supply of high-quality seed and feed to Laotian smallholder farmers, NAFRI has collaborated with CIMMYT under the CGIAR Sustainable Intensification of Mixed Farming Systems (SIMFS), Seed Equal, and Plant Health Initiatives to organize an international training workshop on enhancing access to quality maize seed and feed in the crop-livestock farming system of Lao PDR, which took place from May 7-9, 2024.

Workshop participants. (Photo: NAFRI)

The three-day interactive workshop, held in Vientiane, brought together 28 specialists from various organizations, including NAFRI, Souphanou Vong University, the Upland Agriculture Research Center (UARC), Provincial Agriculture and Forestry Offices (PAFO), as well as maize seed importers and grain traders from different provinces within the country.

The first day was dedicated to understanding the challenges and opportunities of the maize seed value chain. Participants were divided into three groups based on their practical backgrounds and invited to discuss challenges, stakeholder roles, and develop actionable recommendations for better coordination across value chains. This multi-stakeholder platform aimed to comprehend the challenges and opportunities of the crop-livestock farming nexus and integrate them into a more sustainable and productive system. It also served as a forum to promote synergistic partnerships among value-chain actors in enhancing local access to good quality seed and feed. The following days focused on various essential components of quality hybrid seed production, including understanding product profiles and market segments, realizing the economics of hybrid maize seed production, seed quality assurance, management of maize pests and diseases, and enhancing maize stover quality.

A collaborative approach

Workshop participants highlighted the challenges they face in acquiring maize seeds from external sources, citing inconsistent delivery times and limited availability of preferred varieties as factors that posed significant operational constraints. “The development of a competitive domestic maize seed system would ensure timely seed supply for farmers and save resources for the nation,” said Maisong Yodnuanchan, an agripreneur from Xiangkhouang province. His concerns resonated with fellow agripreneurs Bounmy Si and Teuang Sophapmixay, from Oudomxay and Hua Phan provinces, respectively, who both acknowledged the challenges associated with the current reliance on imported seeds and the potential benefits of a sustainable, locally produced seed supply.

CIMMYT and NAFRI open a workshop session. (Photo: NAFRI)

The training workshop offered valuable insights into addressing these concerns, providing a comprehensive overview of effective seed system development and the technical aspects of seed production applicable to a wide range of crops beyond maize. “This is the first ever training I received in my career and the knowledge gained will be directly applicable to my research activities at the UARC,” said researcher Malay Soukkhy. Recognizing the unique context of Laos compared to most of its neighboring countries with more established seed systems, AbduRahman Beshir, CIMMYT’s seed systems specialist for Asia and the lead trainer and facilitator for the workshop, emphasized the need for a collaborative approach to develop a custom solution for Laos. The workshop itself exemplified this collaborative spirit, incorporating a variety of engaging formats such as group discussions, lectures, assignments, and participant presentations. Subject matter specialists from CIMMYT offices in Nepal, India, and Kenya, as well as experts from Alliance Bioversity-CIAT and ILRI offices in Asia, shared valuable experiences applicable to Laos’s seed and feed systems.

Cementing partnerships

While addressing the participants, Timothy J. Krupnik, regional director for CIMMYT’s Sustainable Agrifood Systems Program in Asia, opened the workshop by acknowledging the invaluable support of NAFRI for organizing the event and collaborating under the CGIAR mixed farming initiative. He highlighted the imminent finalization of a Memorandum of Understanding (MoU) between CIMMYT and NAFRI, which will pave the way to further cement partnerships and establish a long term CIMMYT operations in Laos.

NAFRI’s Director General, Chanthakhone Bualaphan, presided over the workshop and emphasized the importance of continued collaboration between CIMMYT and NAFRI. Bualaphan requested CIMMYT’s continued focus on capacity building in Laos, encompassing both human resource development and institutional strengthening. She further highlighted the establishment of a specific target for domestic hybrid maize seed production, aligning with the government’s self-sufficiency goals.  To translate plans into action, Bualaphan emphasized the need for future training programs to be more action-oriented and practical. She concluded by reiterating NAFRI’s unwavering support for CIMMYT’s expanded activities in Laos, with the ultimate objective of significantly improving the livelihoods of Laotian farmers. The workshop culminated with the presentation of certificates to participants and the development of a collaborative follow-up plan for deploying well-tailored maize germplasm within the mixed farming system of Laos.

Eight new CIMMYT maize hybrids available from Eastern Africa breeding program

How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce eight new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across eastern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22EAPP1-01-08 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, MSV, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-01-16
CIM22EAPP1-02-02 Early maturing, white, high yielding, drought tolerant, NUE, and resistant to MLN, MSV, GLS, TLB, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-02-09
CIM22EAPP1-02-18
CIM22EAPP2-03 Late maturing, white, high yielding, drought tolerant, NUE, and resistant to MSV, GLS, TLB, rust, ear rots, and root & stalk lodging tolerance
CIM22EAPP2-07
CIM21EAPP3-38 Late-maturing, high-yielding, white-grain maize hybrid bred for the highlands, with resistance to GLS, TLB, rust, ear rots, and root & stalk lodging tolerance

 

Performance data Download CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 to 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details.
Application deadline The deadline to submit applications to be considered during the first round of allocations is 15 May 2024. Applications received after that deadline are still welcome but will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023 Eastern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of eastern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, program manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Siman hybrid: revolutionizing maize farming for prosperity in Somalia

In a significant breakthrough for Somalia’s agriculture, Filsan Seed Company and CIMMYT have introduced Siman, a high-yielding hybrid maize. Developed under CIMMYT’s Stress Tolerant Maize for Africa program, Siman marks a new era of enhanced productivity and food security in Somalia. Stay tuned for more on this game-changing agricultural innovation.

Read the full story.

Padma Shri for Kashi scientist Ravi Prakash Singh

Dr. Ravi Prakash Singh, associated with CIMMYT, is awarded the Padma Shri. He’s recognized for his global impact in agricultural science, notably developing over 730 climate-resilient, high-yield wheat varieties, benefiting small-holder farmers.

Read the full story.

How CGIAR maize breeding is improving the world’s major staple crop for tropical regions

Maize production is surging due to its diversified end uses. While it is already the first staple cereal globally, it is expected to emerge as the world’s predominant crop for cultivation and trade in the coming decade. Globally, it serves primarily as animal feed, but it is also a vital food crop, particularly in sub-Saharan Africa, Latin America, and in some areas in Asia. 

Climate change is, however, altering the conditions for maize cultivation, especially in the rainfed, stress-prone tropics. Abiotic stresses like heat, drought, and floods, as well as biotic threats such as diseases and insect pests are becoming more frequent. These have a disproportionate impact on the resource-constrained smallholders who depend on maize for their food, income, and livelihoods. 

In a race against time, crop breeders are working to enhance maize’s resilience to the changing climates. Among others, CIMMYT and the International Institute of Tropical Agriculture (IITA), working within CGIAR’s Accelerated Breeding Initiative, are utilizing breeding innovations to develop climate-resilient and nutritionally enriched maize varieties needed by the most vulnerable farmers and consumers.  

Better processes

Improving maize yields in the rainfed, stress-prone tropics is challenging. Nevertheless, CGIAR’s efforts have significant impacts, as breeding programs embraced continuous improvement and enhanced efficiency over the years.  

To increase genetic gains, CIMMYT maize breeding program implemented a systematic continuous improvement plan. Sixty percent of CIMMYT’s maize lines in Eastern and Southern Africa (ESA) are now developed through technologies that speed up breeding cycle and improve selection intensity and accuracythese include doubled haploid technologyhigh-throughput phenotyping, molecular marker-assisted forward breeding, and genomic selection. The breeding cycle time has been reduced from five or six years to only four years in most of the maize product profiles. Product advancement decisions now incorporate selection indexes, and specialized software aid in the selection of parental lines for new breeding starts. 

CIMMYT and IITA maize teams are working together to investigate several key traits in maize for discovery, validation, and deployment of molecular markers. CGIAR maize team developed a framework for implementing a stage-gate advancement process for marker-trait pipeline, which enables informed decision-making and data-driven advancements at multiple stages, from marker-trait discovery proposal to marker discovery, validation, and deployment. Consolidating research efforts and implementing this process is expected to increase efficiency and collaboration in maize breeding programs.

An example of maize biotic stress exacerbated by climate change: fall armyworm (FAW) larvae, highly destructive pests, emerge out from an egg mass placed on a maize leaf. (Photo: A. Cortés/CIMMYT)

At the end of the breeding process, breeders must ensure the quality assurance and quality control (QA/QC) of the parental lines of the new varieties. Seed quality, which includes genetic purity, genetic identity, and verification of parentage – is critical in maize breeding and commercial seed production.  

CIMMYT has worked to enhance the capacity of NARES and seed company partners in Eastern and South Africa (ESA), Asia, and Latin America, in utilizing molecular markers for QA/QC in breeding and commercial seed production. This has resulted in more reliable and accurate outcomes. In addition, webinars and user-friendly software have boosted results for NARES maize breeders, regulatory agencies, and seed companies. These combined efforts mean a dependable, cost-effective, and efficient QA/QC system for the maize seed value chain in the Global South. 

Better tools 

With traditional means, obtaining a genetically homozygous or true-to-type maize line requires six to eight generations of inbreeding, and thus, more than ten years for developing a new hybrid. The technique of doubled haploid (DH), which enables derivation of 100% genetically homozygous lines in just two generations, is now integral to modern maize breeding. CIMMYT has pioneered the development of tropical maize DH technology, by developing and disseminating tropicalized haploid inducers, establishing centralized DH facilities in Mexico, Kenya and India, and providing DH development service to partners.  

Regional on-farm trials (ROFTs) is a crucial step in maximizing the impact of breeding investments. ROFTs help scientists understand performance of the pipeline hybrids under diverse farmers’ management conditions, besides environment, soil variability, etc. 

In ESA, ROFT networks for maize are expanded significantly over the last few years, from 20-30 sites per product profile to up to 300 sites, encompassing a wide range of smallholder farming practices. The experimental design was simplified to use less germplasm entries to be tested per farm, making it easier for the farmers to participate in the network, while improving data quality. Collaboration with NARES, seed companies, NGOs, and development partners was significantly stepped up to capture the social diversity within the target market segments. Gender inclusion was prioritized.

Training workshop organized by CIMMYT at the Maize Doubled Haploid Facility in Kunigal, India. (Photo: CIMMYT)

Strengthening the capacity of NARES and SMEs to systematically access and utilize improved maize germplasm is critical for increasing genetic gains in the stress-prone tropics. But partner institutions are at different stages of evolution, which means capacity strengthening must be tailored to institutional strengths and constraints.  

Accelerated Breeding has been strengthening regional CGIAR-NARES-SME collaborative maize breeding networks via activities such as exchanging elite tropical germplasm (inbred lines, trait donors, and breeding populations) through field days, and widely disseminating CIMMYT maize lines (CMLs) requested by institutions globally.  

Partners participate in CGIAR maize stage-advancement meetings – they are given access to multi-location trial data and participate in the selection process of promising hybrids to be advanced from the different breeding stages. CGIAR maize teams also assessed the capacity of different NARES institutions, and formulated continuous improvement plans in consultation with respective NARES teams for further support.  

Better varieties

Systematic integration of new breeding techniques and innovations in CGIAR maize breeding pipelines are leading to better varieties, at a much faster pace, and at lower cost. Given the impacts of climate change, this is indeed the need of the hour.  

Maize breeders need to respond rapidly to emerging and highly destructive insect-pests and diseases. For instance, the invasion of fall armyworm (FAW) in Africa (since 2016) and Asia (since 2018) has ravaged maize crops across more than 60 countries. CGIAR maize team in Africa responded to this challenge and made progress in identifying diverse sources of native genetic resistance to FAW, resulting in elite hybrids and open-pollinated varieties (OPVs) adapted to African conditions. 

Since 2017, CIMMY has strengthened the maize insectary capacity of KALRO-Katumani by optimizing the FAW mass rearing protocol and screening of maize germplasm under FAW artificial infestation at Kiboko Station, Kenya. The station now has sixteen 1,000m net houses. The intensive work since 2018 led to identification of FAW-tolerant inbred lines by CIMMYT and their distribution to over 90 public and private institutions in 34 countries. 

NARES partners across 13 countries in Africa have undertaken national performance trials of three FAW-tolerant hybrids developed by CIMMYT. Kenya, Zambia, Malawi, South Sudan and Ghana released the three hybrids in 2022-23, while several more countries are expected to release these hybrids in the coming months.

Drought and heat tolerant maize ears are harvested through a CIMMYT project. (Photo: J.Siamachira/CIMMYT)

Climate change is also exacerbating maize diseases. Affecting at least 17 countries in the Americas, the Tar Spot Complex (TSC) disease affects maize in the cool and humid regions. It causes premature leaf death, weakens plants, and reduces yields by up to 50%. CIMMYT maize team in Mexico has mapped genomic regions conferring TSC resistance, and is using these markers in breeding programs 

The Global South is also particularly vulnerable to drought and high temperature stresses. In the past five years, 20 drought- and heat-tolerant maize hybrids have been released in Asia, including Bangladesh, Bhutan, India, Nepal, and Pakistan. Socio-economic studies in India and Nepal showed that farmers who adopted these hybrids realized higher grain yields, and increased income compared to the non-adopters. 

In 2022, certified seed production of CGIAR multiple stress-tolerant maize varieties reached 181,119 metric tons in sub-Saharan Africa (from 72,337 tons in 2016). This is estimated to cover ~7.4 million hectares, benefiting over 46 million people in 13 countries. 

With maize facing unprecedented threats from climate change-induced stresses in the rainfed stress-prone tropics, CGIAR maize breeding programs working closely with NARES and private sector have demonstrated remarkable success in breeding as well as deploying climate resilient maize.  These efforts rely on better processes and modern breeding tools, leading to drastically reduced breeding cycle time, cost saving, and improved efficiency.  

The resulting improved varieties–resilient to major environmental stresses, diseases and insect-pests–are increasingly adopted by smallholders across sub-Saharan Africa, South Asia, and Latin America, showing that tomorrow is already here. The work continues to ensure that maize remains a constant source of food security and prosperity for generations to come in the tropical regions.

Strengthening seed systems emphasized to enhance Bhutan’s seed and food security initiatives

Quality seed is a crucial agricultural input for enhancing crop production and productivity per unit of land. However, in many developing countries, including Bhutan, ensuring the availability, affordability, and accessibility of quality seed, especially of preferred varieties, remains a significant challenge for farmers. Maize is the second most important cereal in Bhutan after rice. However, the total area dedicated to cereal cultivation in Bhutan has been decreasing due to factors such as rural-urban migration, urban expansion, and the effects of climate change.

Between 2016 and 2021, the areas under rice and maize cultivation have contracted by 55% and 64%, respectively (FAOSTAT, 2022). This huge reduction in cereal cultivation, combined with relatively low productivity, has led Bhutan to rely on imports to bridge the gap and meet the demand for essential food crops, including maize. The Bhutanese government is committed to enhancing domestic capacity and fostering self-sufficiency in major food crops and discourages the import of seed, especially of hybrid maize.

AbduRahman Beshir, seed systems specialist at CIMMYT, displays incomplete fertilization of maize cobs. (Photo: Passang Wangmo/ARDC-Wengkhar)

Hybrid maize seed to offset deficit

Recognizing the significance of improving maize productivity, the Agriculture Research & Development Center (ARDC) in Bhutan is working on the development and deployment of hybrid maize that has the potential to double yields compared to non-hybrid varieties. In 2020, Bhutan officially released its first hybrid maize variety, Wengkhar Hybrid Maize-1 (WHM-1), which was sourced from CIMMYT. Furthermore, several other hybrid maize varieties from CIMMYT are currently in the pipeline for release and evaluation, including those tolerant to fall armyworm (Spodoptera frugiperda), the most important maize pest in Bhutan.

Despite the testing and release of hybrid maize varieties, the production of high-quality seed—vital for realizing the benefits of hybrid maize for Bhutanese farmers—has yet to take place. The seed industry in Bhutan is primarily informal, with the majority of farmers relying on farm-saved seed of often inferior quality. The absence of a formalized seed system, coupled with a lack of the necessary skills and technical expertise across the seed value chain, presents considerable challenges in building a competitive and vibrant seed sector in Bhutan.

Training workshop emphasizes the strengthening of seed systems

To ensure a consistent supply of high-quality maize seed to Bhutanese farmers, which is essential for seed and food security and improved productivity, ARDC in collaboration with CIMMYT, under the CGIAR Seed Equal Initiative, carried out an international training workshop on quality seed production and distribution, with the main focus on hybrid maize, from 13–15 November 2023 at ARDC-Wengkhar, Mongar.

The three-day workshop involved 30 participants from diverse organizations, including the National Seed Centre, the College of Natural Resources, extensions agents from the eastern region, the Bhutan Food and Drug Authority, and agriculture research and development centers. The workshop aimed to enhance participants’ technical skills in understanding and applying the principles and practices of quality hybrid maize seed production; to promote synergistic partnerships among various seed sector stakeholders for initiating and scaling up quality hybrid maize seed production in Bhutan; and to exchange experiences and lessons to be learned from South Asian countries that can be applied to strengthening Bhutan’s seed system.

Participants discuss during the workshop. (Photo: AbduRahman Beshir/CIMMYT)

“This is the first kind of training I have received on hybrid maize seed production, and it was very relevant, action-oriented and applicable to our condition in Bhutan,” says Kinley Sithup, a researcher at ARDC-Wengkhar, Mongar, and adds that the training workshop was a useful forum for identifying key challenges and the role of stakeholders across the seed value chain, which were discussed in detail during the group work in the training.

Recently, the Bhutanese government has restricted the import of hybrid maize seed in order to promote import substitution and enhance local seed production. “In light of the unavailability of imported hybrid seeds, it’s crucial for us to intensify our efforts in scaling up local seed production,” says Dorji Wangchuk, project director of the Commercial Agriculture and Resilient Livelihood Enhancement Program (CARLEP), while addressing the participants during the opening.

The training workshop covered courses on seed system components, maize breeding concepts, hybrid seed production principles, the development of a seed roadmap on production and marketing, hybrid seed pricing and marketing approaches, seed quality control and certification, among others. A field visit along with hands-on training at ARDSC Lingmethang enriched the learning experience. In addition, experiences from other South Asian countries on hybrid seed production and marketing were shared during the training.

A group photo with the participants of the seed systems training workshop in Bhutan. (Photo: ARDC)

Team up for seed production

A significant outcome is the planned initiation of the inaugural hybrid maize seed production group in Udzorong, Trashigang, scheduled for January 2024 in collaboration with extension, the National Seed Center, and the Bhutan Food and Drug Authority. This initiative, supported by CARLEP-IFAD and CIMMYT, reflects a dedicated effort to strengthen Bhutan’s seed sector and enhance maize production for the benefit of local farmers. Fast-track variety release and seed deployment are important to Bhutanese smallholder farmers to mitigate the challenges of lower productivity. “CIMMYT is ready to continue working with partners in Bhutan,” says Program Director of the Global Maize Program at CIMMYT and the One CGIAR Plant Health Initiative lead, BM Prasanna, while delivering his messages online. Prasanna added that CIMMYT has licensed three fall armyworm-tolerant hybrids for Bhutan, and partners need to team up for the release and seed-scaling of the hybrids.

The training workshop on hybrid maize seed was the first of its kind to be held in Bhutan and was conducted under the CGIAR Seed Equal Initiative in collaboration with ARDC and CARLEP. AbduRahman Beshir, seed systems specialist at CIMMYT, delivered the main courses, with additional virtual presentations from CIMMYT staff from India and Kenya.

Three new CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce three new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22SAPP1-15 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM22SAPP1-12 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22SAPP2-10 Extra-early to early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 26, 2024. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the southern Africa Stage 5 On Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced regarding the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Pamela Sithole, project coordinator, Global Maize Program, CIMMYT office in Zimbabwe.

APPLY FOR A LICENSE

Five new CIMMYT maize hybrids available from the Latin America breeding program

CIMMYT is happy to announce five new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM21LAPP1A-12 Intermediate maturing, white, high yielding, and resistant to TSC, MLB, and Ear rots Lowland tropics
CIM21LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM21LAPP2A-4 Intermediate-maturing, white, high-yielding, FSR, GLS, and Ear rots. Mid-altitudes/

Spring-Summer season

CIM21LAPP2A-8
CIM20LAPP2B-12 Intermediate-maturing, yellow, high-yielding, resistant to GLS, and Ear rots.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 03-22LTHTWM4M, 04-22LTHTYM4M, 01-22MASTCHSTW and 02-22MASTCHSTY Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2020 -2021 and 2022 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is December 1st, 2023. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Integrating gender into crop breeding

The Seed Production Technology for Africa (SPTA) project, led by CIMMYT, has been selected by the CGIAR Gender Impact Platform as a successful case study of integrating gender into crop breeding.

The case study, published in Frontiers in Sociology, is one of fourteen that the CGIAR Genetic Innovation Gender strategy is drawing on to showcase lessons learned from practical experience. These case studies form a critical part of the efforts to pursue gender responsive or gender-intentional breeding and explore how these can inform larger breeding pipelines.

Maize is widely grown by both women and men in Africa. Evidence of gender-differentiated preferences for maize varieties remains inconclusive; however, there is evidence of gendered differences in management practices. Hybrids produced using SPTA segregate 1:1 for pollen producing and non-pollen producing plants referred to as 50% non-pollen producing (FNP) varieties. Previous research showed FNP offered a yield benefit under low input conditions. In the early stage of its inception, the project quickly recognized the potential implications of hybrids produced using SPTA for women and other resource-constrained smallholders in Africa.

Understanding gender-based differences

From the start, the SPTA team conducted a gender review that underscored the fact that women in the region often use less fertilizer than men, a challenge that is further compounded by cultivation of smaller plots and lower quality soils. This review led the breeding team to explicitly target women and resource-poor farmers with an ambition to increase yields on women’s fields. From here henceforth, SPTA made it a priority to understand gender-based differences in performance and preference for new FNP maize varieties. This process involved ensuring both women and men farmers host trials to evaluate and attest to the performance of the FNP hybrids.

But these efforts were not without challenges. The team also found significant gender differences, particularly among women farmers in crop management practices and between farmers’ stated preferences during participatory varietal selection exercises and the varieties they used at home. This suggested that initial on-farm evaluations were not adequate for predicting real world demand for varieties. Moving forward, the evaluation strategy of SPTA evolved to enable variety evaluations under farmers’ preferred management practices.

The success of the SPTA team in ensuring that gender considerations were strongly embedded into the breeding program is attributed to strong collaboration across disciplines that included social scientists and gender researchers working closely with breeders, allocating funding to allow exploration, testing of gender topics and responsive variety evaluation tools and strong buy-in from leadership and donors. As the SPTA case highlights, there is value in starting small, building productive partnerships and collaborating to pilot and develop proof of concept for new models.