Skip to main content

Tag: greenhouse gas

Global science partnership promotes climate-smart pathways to address food security and climate crisis

Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) is refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

“Zero-tillage and residue management for cereals — that is, sowing the seed directly into unplowed soils and residues from the preceding rice crop — has been adopted on a significant area in the transact of Indo-Gangetic Plain, with positive impacts on crop yields, profitability, and resource-use efficiencies,” said Tek Sapkota, senior scientist in agricultural systems/climate change, CIMMYT.

Continuous maize plot in El Batán, Mexico (Photo: CIMMYT)

 

The paper “Conservation agriculture for sustainable intensification in South Asia,” published in the science journal Nature Sustainability reported that, compared to the conventional practice, conservation agriculture resulted overall in a 4.6% higher grain yield, a 14.6% improvement in water use efficiency, and a 25.6% greater net economic return. The net economic return was 40.5% higher for full conservation agriculture but, given the benefits of partial adoption of the practices, rigid adherence to an “all or nothing” approach to spread conservation agriculture in South Asia does not seem warranted.

Conservation agriculture also offers several ecosystem services. In the study data, global warming potential was reduced by as much as 33.5% in rice-wheat systems, values that are consistent with other research. Moreover, conservation agriculture-based practices provide an economically feasible alternative to burning rice residues, a serious public health threat in northwestern India given the roughly 23 million tons of residues that are burned each year in the region.

“More widespread adoption of zero-tillage in India has been made possible with the development of next-generation tractor-drawn implements that allow direct seeding into heavy residues, as well as business models whereby implement owners contract out with neighboring farmers to sow their crops and provide other services,” said Sapkota. “National governments in South Asia are actively promoting conservation agriculture to address residue burning and other farming sustainability problems.”

Aerial view of maize and wheat breeding plots (Photo: CIMMYT)

Fitting conservation agriculture to maize farming in Mexico

Efforts to adapt conservation agriculture and promote its adoption by farmers operating highly-diverse, mostly rainfed maize-based cropping systems in Mexico have had mixed results. A recent study assessed soil health in 20 trials in starting between 1991 and 2016 in agro-ecologies ranging from handplanted traditional systems to intensive irrigated systems, contrasting conservation agriculture effects with those of local conventional practices, which commonly involve tillage, residue removal, and continuous maize production.

As reported in the 2021 paper “Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico,” published in the science journal Land Degradation and Development, conservation agriculture increased maize yields at most sites by 0.85 tons per hectare, on average. Organic matter and nitrates were higher in topsoils under conservation agriculture and soil aggregate stability was greater, meaning the soil more effectively moved air and water to plant roots. For other soil health parameters, such as nutrient content, pH, or compaction, most values were determined more by local soil type than by crop management.

Maize plot in El Batán, Mexico (Photo: CIMMYT)

“Given the significant variation across agro-ecologies, local adaptive trials are important to assess the effects of conservation agriculture on soil health and fit it to local conditions,” said Simon Fonteyne, a CIMMYT cropping systems agronomist and first author of the paper.

Emissions control

Several recent studies have assessed the costs and potential of various sustainable intensification technologies for reducing greenhouse gas emissions in India, Bangladesh and Mexico. Their findings can help inform national policies on food security, economic development and environment, including those relating to the Paris Agreement.

In the 2019 study “Cost-effective opportunities for climate change mitigation in Indian agriculture,” published in the journal Science of the Total Environment, CIMMYT and partners found that estimated total emissions from Indian agriculture were 481 tons of CO2 equivalent (MtCO2e) in 2012, with crops contributing over 40% and livestock nearly 60%. Under a business-as-usual scenario, agricultural greenhouse gas emissions in India would be 515 MtCO2e by 2030. This annual emissions could be reduced by 85.5 MtCO2e through adoption of mitigation practices and about 80% of that reduction could be achieved through measures that would actually save money and, in many cases, could be implemented with current technology. The efficient use of fertilizer, zero-tillage, and rice-water management could deliver more than 50% of the technical abatement potential.

“Realization of this mitigation potential will depend largely on the extent adoption by farmers,” said Sapkota, who was lead author of the study. “Large-scale adoption of apparently win-win options is not happening, so the government of India will need to apply appropriate policy measures and incentives, consistent with its food security and emission reduction goals.

A similar study in Bangladesh, reported in the 2021 paper “Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh,” published in the journal Science of the Total Environment, found greenhouse gas emissions from agriculture in Bangladesh of 76.8 MtCO2e for 2014–15. Yearly emissions by 2030 under a business-as-usual approach would approximate 86.9 MtCO2e and, by 2050, about 100 MtCO2e. Adoption of realistic, climate-smart crop and livestock management options to reduce emissions offer mitigation opportunities of 9.51 MtCO2e per year by 2030 and 14.21 MtCO2e by 2050. As much as 75% of this potential can be achieved through cost-saving options that benefit smallholder farmers. As is the case for India, realization of this potential largely depends on the degree to which supportive policies and measures can encourage farmer adoption.

The Walmart Foundation and CIMMYT promote crop diversification in Oaxaca, Chiapas, and Campeche, Mexico. (Photo: CIMMYT)

A similar rapid assessment of costs for to mitigate greenhouse gas emissions from crops, livestock, and forestry in Mexico found a national mitigation potential of 87.9 MtCO2eq per year, fully 72.3 MtCO2eq from livestock. As reported in the 2022 paper, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico,” published in the science journal Carbon Management, implementing mitigation potential on Mexican cropland could bring net benefits, compared to livestock and forestry options, which involve net costs. In the 2021 paper “Reduced Water Use in Barley and Maize Production Through Conservation Agriculture and Drip Irrigation” a reduction of emissions caused by lower fuel use in conservation agriculture of 192 kg CO2 ha−1  was measured in farmers fields, as well as an increase in soil carbon and a reduction in water use.

Identifying climate mitigation strategies from AFOLU sector in Mexico

The vital tasks for each country to reduce its greenhouse gas (GHG) emissions and limited carbon outputs are daunting, especially with 2030 deadlines imposed by the Paris Climate Agreement only eight years away. National stakeholders would benefit greatly from roadmaps that identify realistic and achievable milestones to point the way forward.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have provided just such a road map. Using easily available data, they developed rapid assessment methods and adoption costs for mitigation related to crops, livestock, and forestry to identify priority locations and actions. Their article, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico”, was published in Carbon Management.

Applying these methods for Mexico, researchers found a national mitigation potential of 87.88 million metric tons (Mt) of carbon dioxide equivalents per year.

“Faced with such an overwhelming issue like climate change, it can be difficult for an individual, an organization, and especially an entire nation to know where to start. We developed a rapid assessment framework, tested in India, Bangladesh, and Mexico, but we believe other nations can use our methods as well,” said Tek Sapkota, the project leader and first author of the paper.

The research specifically focused on climate change mitigation in agriculture, forestry, and other land uses (AFOLU). Agriculture and related land use change contributed about 23% of the world’s anthropogenic GHG emissions in 2016, and that number is expected to increase as more food needs to be produced for the world’s growing population.

Chickpeas planted on wheat residue under conservation agriculture. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

The researchers’ starting point was to quantify baseline emissions and analyze the major sources of emissions. Mexico’s AFOLU sector is responsible for 14.5% of its total national GHG emissions. In Mexico’s agricultural sector, methane and nitrous oxide emissions arise from livestock activities (enteric fermentation and fertilizers), as well as from agricultural activities (soil management and field burning of crop residues). For land use, carbon dioxide emissions and removals result from changes in forest lands, pastures, agricultural land, wetlands, and settlements.

Activities identified for GHG mitigation in crop production included avoiding fertilizer subsidies, since those tend reward inefficient nitrogen use. Subsidies could be of use, however, in encouraging farmers to adopt more efficient nitrogen management. Precision levelling of crop fields can help to lower GHG emissions by reducing cultivation time and improving the efficiency of fertilizer and irrigation water and adoption of conservation agriculture practices, such as zero tillage.

“Adoptions of these practices will not only reduce GHG emissions, but they will also help increase productivity,” said Ivan Ortiz-Monasterio, co-author and Mexico coordinator of the study.

In the livestock sector, mitigation possibilities identified are the creation of official programs, financial support, and capacity building on composting and biodigester. In FOLU sector, researchers identified options such as zero deforestation and C offset in the C market.

In addition to mapping out the mitigation benefits of specific activities, researchers also considered the costs associated with implementing those activities. “Looking at these efforts together with the cost of their implementation provide a complete picture to the implementing bodies to identify and prioritize their mitigation efforts consistent with their development goals,” said Sapkota. For example, some efforts, like increasing nitrogen use efficiency, do not provide the most climate benefits but are relatively inexpensive to realize, while establishing and maintaining carbon capture markets provides large reductions in GHG, they can be expensive to implement.

Researchers examined publicly available AFLOU spatial data for each Mexican state. At the state level, AFOLU mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8Mt CO2eq), indicating these states can be considered the highest priority for alleviation efforts. They identified an additional 11 states (Oaxaca, Quintana Roo, Yucatan, Jalisco, Sonora, Veracruz, Durango, Chihuahua, Puebla, Michoacán, and Guerrero) as medium priorities with mitigation potentials of 2.5 to 6.5 Mt CO2eq.

“Our data driven, and evidence-based results can help the government of Mexico refine its national GHG inventory and its Nationally Determined Contributions target and monitor progress,” said Eva Wollenberg, the overall coordinator of the study and research professor of University of Vermont, USA. “This analysis further provides an example of a methodology and results to help inform future efforts in other countries in addition to Mexico.”

Read the study: Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico

Cover photo: Low nitrogen (at the front) and high nitrogen (at the back) maize planted to address nitrogen use efficiency. (Photo: Ivan Ortiz-Monasterio/CIMMYT)

Bringing voluntary carbon offset markets to smallholder Indian farmers

To mitigate their amount of greenhouse gas (GHG) emissions, companies and individuals have access to international voluntary carbon offset markets, which are trading systems that financially compensate credit producer participants for offsetting the amount of carbon emitted. An innovative new initiative from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research Institute (ICAR) is working to establish carbon markets among smallholder farmers in India, with the goal of reducing GHG emissions, encouraging climate smart farming practices through financial incentives.

In India, agriculture is one of the biggest sources of GHG emissions – between 14 and 21 percent of all GHGs are attributable to agricultural activities, which derive from the use of farm machinery, rice cultivation, fertilizer use, and other activities. Emissions from agriculture are increasing drastically due to synthetic fertilizers and enteric fermentation from livestock.

Within CIMMYT’s farmer-centered approach, participants in voluntary carbon markets will improve their own financial viability in two ways – through adopting sustainable practices and through receipt of payments from carbon markets. The approach will also employ regenerative interventions such as direct dry seeding of rice, minimal tillage, crop diversification, use of biofertilizers, and perennial cropping all while contributing to an overall reduction in GHG emissions.

“Working with ICAR to engage smallholder farmers with high-quality carbon offsets allows the farmers to offset their unavoidable emissions,” said Vijesh Krishna, senior CIMMYT scientist. “This program promotes inclusiveness because this newly created income is distributed among participating farmers, thereby improving their income.”

These regenerative agriculture interventions will increase and retain soil’s carbon content, water permeability and retention, resulting in crops’ ability to withstand drought, flooding, and temperature stresses. Only a small percentage of farmers currently implement these methods in India.

CIMMYT and ICAR researchers estimate that widespread adoption of these practices, combined with upgraded technologies, has the potential to return the carbon levels in agricultural soils from an average of 0.5 percent back to 1.5 percent. At present, the agricultural soils of India are poor with respect to soil organic carbon.

Carbon markets for smallholders

About 2,000 small holder farmers of Punjab, Haryana, and parts of Maharashtra, all in India, are enrolled in the project through individual partnership agreements. Once farmers implement regenerative agricultural methods, they will be eligible to receive payments for carbon credits generated for 10 to 20 years, conditional upon continuing to use climate-smart practices.

“We believe these efforts can be expanded to other regions of India, and other countries,” said Sieg Snapp, CIMMYT’s Sustainable Agrifood Systems (SAS) program director. “Helping farmers and reducing GHG emissions at the same time is the way forward in dealing the crisis of climate change.”

Farms are geo-tagged and monitored using remote sensing for regenerative farming practices, and soil carbon content will be measured at the beginning and end of the crop cycle. Those that produce rice and wheat with a lower carbon footprint will be identified, so their produce gets purchase and price preferences from those who want to promote lower carbon agriculture.

Digital agronomy tools and satellite imagery analysis to measure and verify soil carbon offsets and on-farm GHG emission levels are essential for scaling small farmer-centered carbon projects. The veracity, transparency, and traceability of each carbon offset have direct implications for its credibility and actual market value. CIMMYT will contribute towards a Measurement, Reporting, and Verification (MRV) platform to expand climate action country-wide.

So far, CIMMYT and ICAR researchers estimate that the enrolled smallholder famers have sequestered between four and five tons of carbon dioxide. After independent third-party auditors verify the data, farmers will be paid based on the amount of GHG reduction, with the first carbon offset payments expected to be issued in 2023.

Cover photo: A green maize seedling emerges from the soil (Photo: Wasim Iftikar/CIMMYT)

BNI-enhanced wheat research wins 2021 Cozzarelli Prize

The paper “Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution” received the 2021 Cozzarelli Prize, which recognizes outstanding articles published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The paper was published as a joint research collaboration of Japan International Research Center for Agricultural Sciences (JIRCAS), the International Maize and Wheat Improvement Center (CIMMYT), the University of the Basque Country (UPV/EHU) and Nihon University.

The study identifies of a chromosomal region that regulates the biological nitrification inhibition (BNI) ability of wheat grass (Leymus racemosus), a wild relative of wheat. It also outlines the development of the world’s first BNI-enhanced wheat, through intergeneric crossing with a high-yielding wheat cultivar.

This research result is expected to contribute to the prevention of nitrogen pollution that leads to water pollution and greenhouse gas emissions, reducing the use of nitrogen fertilizer while maintaining productivity.

Best of the year

PNAS is one of the most cited scientific journals in the world, publishing more than 3,000 papers per year on all aspects of science. A total of 3,476 papers were published in 2021, covering six fields: Physical and Mathematical Sciences, Biological Sciences, Engineering and Applied Sciences, Biomedical Sciences, Behavioral and Social Sciences, and Applied Biological, Agricultural and Environmental Sciences.

The Cozzarelli Prize was established in 2005 as the PNAS Paper of the Year Prize and renamed in 2007 to honor late editor-in-chief Nicholas R. Cozzarelli. It is awarded yearly by the journal’s Editorial Board to one paper from each field reflecting scientific excellence and originality. The BNI research paper received the award in the category of Applied Biological, Agricultural, and Environmental Sciences.

The awards ceremony will be held online on May 1, 2022, and a video introducing the results of this research will be available.

Recently, lead researcher Guntur V. Subbarao presented this research on a talk at Princeton University’s Center for Policy Research on Energy and the Environment: “Low-nitrifying agricultural systems are critical for the next Green Revolution.”

Fruitful collaboration

CIMMYT has collaborated with JIRCAS on BNI-enhanced wheat research since 2009, with funding from Japan’s Ministry of Agriculture, Forestry and Fisheries. CIMMYT is one of the founding members of the BNI Consortium, established in 2015.

The CGIAR Research Programs on Wheat (WHEAT) and Maize (MAIZE) co-funded BNI research since 2014 and 2019 respectively, until their conclusion at the end of 2021.

BNI research has been positioned in the “Measures for achievement of Decarbonization and Resilience with Innovation (MeaDRI)” strategy of Japan’s Ministry of Agriculture, Forestry and Fisheries, and was also selected as one of the ministry’s “Top 10 agricultural technology news for 2021.”

Read the full article:
Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

Bangladesh could largely reduce greenhouse gas emissions from agriculture while increasing efficiency in production

A graphic shows district-wide distribution of annual greenhouse gas mitigation potential through improved and more efficient fertilizer management in the crop sector of Bangladesh in 2030 and 2050. (Graphic: CIMMYT)

A number of readily-available farming methods could allow Bangladesh’s agriculture sector to decrease its greenhouse gas emissions while increasing productivity, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT) and partners.

The study, published in Science of the Total Environment, measured the country’s emissions due to agriculture, and identified and analyzed potential mitigation measures in crop and livestock farming. Pursuing these tactics could be a win-win for farmers and the climate, and the country’s government should encourage their adoption, the research suggests.

“Estimating the greenhouse gas emissions associated with agricultural production processes — complemented with identifying cost-effective abatement measures, quantifying the mitigation scope of such measures, and developing relevant policy recommendations — helps prioritize mitigation work consistent with the country’s food production and mitigation goals,” said CIMMYT climate scientist Tek Sapkota, who led this work.

To determine Bangladesh’s agricultural greenhouse gas emissions, the researchers analyzed 16,413 and 12,548 datapoints from crops and livestock, respectively, together with associated soil and climatic information. The paper also breaks down the emissions data region by region within the country. This could help Bangladesh’s government prioritize mitigation efforts in the places where they will be the most cost-effective.

“I believe that the scientific information, messages and knowledge generated from this study will be helpful in formulating and implementing the National Adaptation Plan (NAP) process in Bangladesh, the National Action Plan for Reducing Short-Lived Climate Pollutants (SLCPs) and Nationally Determined Contributions (NDC),” said Nathu Ram Sarker, director general of the Bangladesh Livestock Research Institute.

Policy implications

Agriculture in Bangladesh is heavily intensified, as the country produces up to three rice crops in a single year. Bangladesh also has the seventh highest livestock density in the world. In all, the greenhouse gas output of agriculture in Bangladesh was 76.79 million metric tons of carbon dioxide equivalent (Mt CO2e) in 2014-15, according to the research. This emission is equivalent to the emission from fossil fuel burning by 28 million cars for a year.  At the going rate, total agricultural emission from Bangladesh are expected to reach 86.87 Mt CO2e by 2030, and 100.44 Mt CO2e by 2050.

By deploying targeted and often readily-available methods, Bangladesh could mitigate 9.51 Mt and 14.21 Mt CO2e from its agriculture sector by 2030 and 2050, respectively, according to the paper. Further, the country can reach three-fourths of these outcomes by using mitigation strategies that also cut costs, a boon for smaller agricultural operations.

Adopting these mitigation strategies can reduce the country’s carbon emissions while contributing to food security and climate resilience in the future. However, realizing the estimated potential emission reductions may require support from the country’s government.

“Although Bangladesh has a primary and justified priority on climate change adaptation, mitigation is also an important national priority. This work will help governmental policy makers to identify and implement effective responses for greenhouse gas mitigation from the agricultural sector, with appropriate extension programs to aid in facilitating adoption by crop and livestock farmers,” said Timothy Krupnik, CIMMYT country representative in Bangladesh and coauthor of the paper.

Mitigation strategies

The research focused on eight crops and four livestock species that make up the vast majority of agriculture in Bangladesh. The crops — potato, wheat, jute, maize, lentils and three different types of rice — collectively cover more than 90% of cultivated land in the nation. Between 64 and 84% of total fertilizer used in Bangladesh is used to cultivate these crops. The paper also focuses on the four major kinds of livestock species in the country: cattle, buffalo, sheep and goats.

For crops, examples of mitigation strategies include alternate wetting and drying in rice (intermittently irrigating and draining rice fields, rather than having them continuously flooded) and improved nutrient use efficiency, particularly for nitrogen. The research shows that better nitrogen management could contribute 60-65% of the total mitigation potential from Bangladesh’s agricultural sector. Other options include adopting strip-tillage and using short duration rice varieties.

For livestock, mitigation strategies include using green fodder supplements, increased concentrate feeding and improved forage/diet management for ruminants. Improved manure storage, separation and aeration is another potential tool to reduce greenhouse gas emissions. The mitigation options for livestock would make up 22 and 28% of the total potential emission reductions in the sector by 2030 and 2050, respectively.

RELATED RESEARCH PUBLICATIONS:

Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh.

INTERVIEW OPPORTUNITIES:

Tek Sapkota, Agricultural Systems and Climate Change Scientist, CIMMYT

Tim Krupnik, Bangladesh Country Representative, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Interim Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Crop nutrient management using digital tool improves yield, reduces greenhouse gas emissions: Study

The use of field-specific fertiliser in the Indo-Gangetic Plains (IGP) can increase grain yield, reduce greenhouse gas emissions compared to traditional farmer fertilization practices (FFP), and lead to reduced costs and increased incomes for farmers.

These were the findings of a study conducted between 2013 and 2017 by the International Maize and Wheat Improvement Centre (CIMMYT) and published in Nature Scientific Report in January 2021.

Read more: https://www.downtoearth.org.in/news/agriculture/crop-nutrient-management-using-digital-tool-improves-yield-reduces-greenhouse-gas-emissions-study-75793

Global greenhouse gas emissions from the food system

Global schemes to fight climate change may miss their mark by ignoring the “fundamental connections” in how food is produced, supplied and consumed, say scientists in a new paper published in the journal Nature Food. Global bodies such as the Intergovernmental Panel on Climate Change (IPCC) and the UN Framework Convention on Climate Change (UNFCCC), handle the different components of the food system separately. This includes crop and livestock production; food processing, storage and transport; and food consumption. Scientists argue this disjointed approach may harm strategies to reduce food emissions and safeguard food from climate impacts, and that a “comprehensive” and “unified” approach is needed.

Food and climate change are deeply interlinked, but food emissions need to be tracked beyond the “farm gate,” that is, beyond the emissions arising from growing crops or raising livestock. Researchers are uncovering new insights on how the different subcomponents of the food system contribute to climate change mitigation and adaptation. They argue that we must understand how these components work together — or clash in some cases — in order to effectively address agriculture in a changing climate.

Read more:
Rosenzweig C et al. 2020. Climate change responses benefit from a global food system approach. Nature Food.

New study: India could cut nearly 18% of agricultural greenhouse gas emissions through cost-saving farming practices

NEW DELHI (CIMMYT) — India could reduce its greenhouse gas emissions from agriculture by almost 18 percent through the adoption of mitigation measures, according to a new study. Three improved farming practices would account for more than half of these emission reductions, researchers say: efficient use of fertilizer, zero tillage and better water management in rice farming.

In an article published in Science in the Total Environment, scientists estimate that, by 2030, “business-as-usual” greenhouse gas emissions from the agricultural sector in India would be 515 MtCO2e per year. The study indicates that Indian agriculture has the potential to mitigate 85.5 Megatonne CO2 equivalent (MtCO2e) per year without compromising food production and nutrition. Considering the 2012 estimates of 481 MtCO2e, that would represent a reduction of almost 18 percent. Researchers suggest mitigation options that are technically feasible but will require government efforts to be implemented at scale.

The study was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the University of Aberdeen and the Indian Council of Agricultural Research (ICAR), with support from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). They followed a “bottom-up” approach to estimate and analyze greenhouse gas emissions from agriculture, using large datasets related to crops (around 45,000 data points) and livestock production (around 1,600 data points) along with soil, climate and management information. To evaluate mitigation measures, associated costs and benefits of adoption, researchers used a variety of sources, including literature, stakeholder meetings and consultations with experts in crops, livestock and natural resource management.

The authors also identify “hotspots” where mitigation practices would have the highest potential for reduction of greenhouse gas emissions. For example, reduced fertilizer consumption through precision nutrient management shows the highest potential in the state of Uttar Pradesh, followed by Andhra Pradesh, Maharashtra and Punjab. Water management in rice farming has the highest mitigation potential in Andhra Pradesh, followed by Tamil Nadu, Orissa and West Bengal.

India is the world’s third largest emitter of greenhouse gases. Contributing almost one-fifth to the national total, agriculture has been identified as a priority in the country’s efforts to reduce emissions. The results from this study can help the country make great strides towards its goals. However, these climate change mitigation benefits can only work if farmers take up the new practices, some of which require an initial investment. Government policies and incentives will be crucial to help farmers take the first steps, ensure wide-scale adoption of these mitigation options, and help India meet its food security and greenhouse gas emission reduction goals.

Marginal abatement cost curve of Indian agriculture.
Marginal abatement cost curve of Indian agriculture.

Three feasible mitigation measures

Efficient use of fertilizer not only lowers emissions at the field, but also reduces the need for fertilizer and the emissions associated with production and transportation. It also represents savings for the farmer. Mitigation options would include applying fertilizer at the right time and the right place for plant uptake, or using slow-release fertilizer forms or nitrification inhibitors. “Efficient fertilizer use in the agriculture sector in India has potential to reduce around 17.5 MtCO2e per year,” said Tek Sapkota, CIMMYT scientist and lead author of the study.

Adoption of zero tillage farming and residue management — maintaining crop residues on the soil surface to protect the ground from erosion — in rice, wheat, maize, cotton and sugarcane was shown to reduce emissions by about 17 MtCO2e per year. “CIMMYT has successfully worked to develop and promote these practices in India,” said M.L. Jat, CIMMYT principal scientist and co-author of the study.

Better water management in rice farming — such as adopting alternate wetting and drying in rice fields that are currently continuously flooded — can offer mitigation of about 12 MtCo2e per year. Other water management techniques in major cereals, such as laser-levelling of fields, or using sprinkler or micro-sprinkler irrigation and fertigation together, also provide important greenhouse gas emissions savings, with a reduction of around 4 MtCO2e per year for laser levelling alone.

This work was jointly carried out by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Aberdeen. Research was funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements.


RELATED RESEARCH PUBLICATIONS:

Cost-effective opportunities for climate change mitigation in Indian agriculture

INTERVIEW OPPORTUNITIES:

Tek Sapkota – Scientist, International Maize and Wheat Improvement Center (CIMMYT)

M.L. Jat – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Geneviève Renard, Head of Communications, CIMMYT. g.renard@cgiar.org, +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.