Skip to main content

Tag: genomics

Retrospective quantitative genetic analysis and genomic prediction of global wheat yields

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago. Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the Obregón SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the Obregón yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the Obregón SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites. They also observed significant genetic correlations between one or more SEs in Obregón and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of Obregón than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of Obregón. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana.

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Cover photo: Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón, Mexico. (Photo: CIMMYT)

Massive-scale genomic study reveals wheat diversity for crop improvement

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Keith Ewing)

Researchers working on the Seeds of Discovery (SeeD) initiative, which aims to facilitate the effective use of genetic diversity of maize and wheat, have genetically characterized 79,191 samples of wheat from the germplasm banks of the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agricultural Research in the Dry Areas (ICARDA).

The findings of the study published today in Nature Communications are described as “a massive-scale genotyping and diversity analysis” of the two types of wheat grown globally — bread and pasta wheat — and of 27 known wild species.

Wheat is the most widely grown crop globally, with an annual production exceeding 600 million tons. Approximately 95% of the grain produced corresponds to bread wheat and the remaining 5% to durum or pasta wheat.

The main objective of the study was to characterize the genetic diversity of CIMMYT and ICARDA’s internationally available collections, which are considered the largest in the world. The researchers aimed to understand this diversity by mapping genetic variants to identify useful genes for wheat breeding.

From germplasm bank to breadbasket

The results show distinct biological groupings within bread wheats and suggest that a large proportion of the genetic diversity present in landraces has not been used to develop new high-yielding, resilient and nutritious varieties.

“The analysis of the bread wheat accessions reveals that relatively little of the diversity available in the landraces has been used in modern breeding, and this offers an opportunity to find untapped valuable variation for the development of new varieties from these landraces”, said Carolina Sansaloni, high-throughput genotyping and sequencing specialist at CIMMYT, who led the research team.

The study also found that the genetic diversity of pasta wheat is better represented in the modern varieties, with the exception of a subgroup of samples from Ethiopia.

The researchers mapped the genomic data obtained from the genotyping of the wheat samples to pinpoint the physical and genetic positions of molecular markers associated with characteristics that are present in both types of wheat and in the crop’s wild relatives.

According to Sansaloni, on average, 72% of the markers obtained are uniquely placed on three molecular reference maps and around half of these are in interesting regions with genes that control specific characteristics of value to breeders, farmers and consumers, such as heat and drought tolerance, yield potential and protein content.

Open access

The data, analysis and visualization tools of the study are freely available to the scientific community for advancing wheat research and breeding worldwide.

“These resources should be useful in gene discovery, cloning, marker development, genomic prediction or selection, marker-assisted selection, genome wide association studies and other applications,” Sansaloni said.


Read the study:

Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints.

Interview opportunities:

Carolina Sansaloni, High-throughput genotyping and sequencing specialist, CIMMYT.

Kevin Pixley, Genetic Resources Program Director, CIMMYT.

For more information, or to arrange interviews, contact the media team:

Ricardo Curiel, Communications Officer, CIMMYT. r.curiel@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

The study was part of the SeeD and MasAgro projects and the CGIAR Research Program on Wheat (WHEAT), with the support of Mexico’s Secretariat of Agriculture and Rural Development (SADER), the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors. Research and analysis was conducted in collaboration with the National Institute of Agricultural Botany (NIAB) and the James Hutton Institute (JHI).

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

Breaking Ground: Sudha Nair helps bridge gap between maize breeding and genetics

Sudha Nair is inspired every day by her passion for biology and genetics. The senior scientist at the International Maize and Wheat Improvement Center (CIMMYT) based in Hyderabad, India, works to define and practice the best strategies for applying genomics in agriculture.

“I always knew that science is what I would love to pursue,” said Sudha, an alumnus of both the Indian Agricultural Research Institute (IARI) in New Delhi and the National Institute of Agrobiological Sciences in Japan.

Originally from Kerala, India, Sudha did not expect a career in agriculture. “I studied for engineering after my high school as I was selected for that course before I was selected for the biology stream. It didn’t take me even a single moment to decide to leave the course six months later when I was selected for the undergraduate program in agriculture,” Sudha said. “I can’t say that it is love for agriculture that forced me to choose the field I am in, but it is the fascination for biological science. I love genetics and I love research; as long as I get to do this as part of my job, I am happy.”

Sudha’s first experience working with CIMMYT involved her PhD dissertation at IARI, which was a part of research conducted for the Asian Maize Biotechnology Network (AMBIONET), led by CIMMYT. “I had always looked at CIMMYT as an organization doing high quality applied science,” she said.

Starting in 2010 as a consultant for the Drought Tolerant Maize for Africa (DTMA) project, Sudha then interviewed for the position of maize fine-mapping specialist in 2011 and was selected as a scientist.  Her career at CIMMYT has now spanned close to a decade.

Her role involves implementation of molecular breeding in the maize breeding program in Asia. This includes discovery, validation and application of molecular markers for prioritized traits, genomic selection, and marker-based quality assurance and quality control in maize breeding – through current and past projects like Heat Tolerant Maize for Asia (HTMA), Climate Resilient Maize for Asia (CRMA) and the CGIAR Research Program on Maize (MAIZE).  Apart from this, she is currently involved in the Accelerating Genetic Gains in Maize and Wheat (AGG) project for incorporating elite and stress tolerance genetics from Asia in the elite African maize germplasm.

Sudha has been a part of a number of global maize projects including the Stress Tolerant Maize for Africa (STMA) project, which developed improved maize varieties tolerant to stresses such as drought and diseases, and HarvestPlus in maize, developing nutritionally enriched maize cultivars. She has also played a key role in developing CIMMYT’s second-generation tropicalized haploid inducers using marker-assisted breeding.

Sudha Nair speaking at a Heat Tolerant Maize for Asia (HTMA) annual review and planning meeting. (Photo: Sudha Nair/CIMMYT)
Sudha Nair speaking at a Heat Tolerant Maize for Asia (HTMA) annual review and planning meeting. (Photo: Sudha Nair/CIMMYT)

Bringing genetics and breeding together

Sudha is grateful for the role of CIMMYT in increasing acceptance and use of genomics in breeding programs. “When I started off as a graduate student, any work related to molecular genetics was called biotechnology, and we were considered as a different “breed”, who worked in silos to spend resources on “upstream research”, and whose results never saw any breeding applications. Breeding and molecular genetics were like parallel lines that would never meet,” she explained.

“In course of time, the research communities in applied breeding institutes like CIMMYT have brought about changes in strategies, goals, and more importantly, attitudes, and now all of us work towards one major goal of developing impactful products (varieties) for benefiting resource-constrained farming communities worldwide. All in all, I and my colleagues in the upstream research team in CIMMYT Global Maize Program have an important responsibility of providing core support to the breeding and seed systems teams in developing and delivering impactful products.”

When asked what the most enjoyable part of her work is, Sudha cited the practicality and applicability of her work. “Basically, my job responsibility is to design and implement the best strategies for applying genomics in maize breeding to achieve higher genetic gains,” she explained. “Being in an organization like CIMMYT, what is most satisfying about the role I am in is the translation of upstream research into tools for improving breeding efficiency and in turn into impactful maize varieties that the farming communities around the world cultivate.”

CIMMYT scientists join fellow experts in San Diego for world’s largest plant and animal genomics conference

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) presented last week at the International Plant and Animal Genome Conference (PAG) in San Diego, USA.

PAG is the largest agricultural genomics meeting in the world, bringing together over 3,000 leading genetic scientists and researchers from around the world to present their research and share the latest developments in plant and animal genome projects. It provides an important opportunity for CIMMYT scientists to highlight their work translating the latest molecular research developments into wheat and maize breeding solutions for better varieties.

To meet global food demand by 2050, agricultural production must increase by 60% — while at the same time minimizing harm to the environment. This is the process of sustainable intensification, recommended by organizations like the United Nations and the EAT Lancet Commission as a key strategy for transforming our struggling global food systems.

Genomics is crucial to sustainable intensification. By studying a plant or animal’s genetic architecture, researchers can better understand what drives crop or livestock productivity, quality, climate resilience, and resistance to pests and diseases. With this information scientists can speed up efforts to develop better varieties and stay ahead of climate- and disease-related threats.

Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)
Philomin Juliana stands next to the logo of the PAG conference. (Photo: CIMMYT)

At the conference, wheat scientist Philomin Juliana shared her findings on successfully identifying significant new chromosomal regions for wheat yield and disease resistance using the full wheat genome map. Juliana and her colleagues have created a freely-available collection of genetic information and markers for more than 40,000 wheat lines which will accelerate efforts to breed superior wheat varieties. She also discussed the value of genomic and high-throughput phenotyping tools for current breeding strategies adopted by CIMMYT to develop climate-resilient wheat.

Principal scientist Sarah Hearne discussed the smarter use of genebank exploration for breeding. Germplasm banks are reserves of native plant variation representing the evolutionary history of the crops we eat. They are a vital source of genetic information, which can accelerate the development of better, more resilient crops. However, it is not easy for breeders and scientists to identify or access the genetic information they need. Using the whole genebank genotypic data, long-term climate data from the origins of the genebank seeds and novel analysis methods, Hearne and her colleagues were able to identify elite genetic breeding material for improved, climate resilient maize varieties. They are now extending this approach to test the value of these data to improve breeding programs and accelerate the development of improved crops.

Distinguished scientist Jose Crossa discussed the latest models and methods for combining phenomic and genomic information to accelerate the development of climate-resilient crop varieties. He highlighted the use of the Artificial Neural Network — a model inspired by the human brain — to model the relationship between input signals and output signals in crops. He also discussed a phenotypic and genomic selection index which can improve response to selection and expected genetic gains for all of an individual plant’s genetic traits simultaneously.

Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)
Sarah Hearne presents on the smart use of germplasm banks to accelerate the development of better wheat and maize varieties. (Photo: Francisco Gomez)

Principal scientist Kanwarpal Dhugga gave a presentation on approaches to improve resistance against maize lethal necrosis (MLN) in Africa. MLN is an aggressive disease that first appeared in Kenya in 2011, devastating maize production. It has since spread to neighboring countries. Under a grant from the Bill & Melinda Gates Foundation, Dhugga and his colleagues at CIMMYT and Corteva Agriscience have identified a small genomic region explaining more than 50% of variation in MLN resistance. They are currently validating a few candidate genes in this region. Once done, they will use gene editing directly in elite lines from eastern Africa to accelerate the development of improved, disease resistant maize hybrids.

Genomic breeder Umesh Rosyara demonstrated the genomic selection pipeline and other tools at a workshop using the online Galaxy software. Galaxy is an open-source software that allows users to access powerful computational analysis tools. The CGIAR Excellence in Breeding Platform (EiB) has set up an instance of Galaxy that contains a suite of bioinformatics analysis tools, R-packages — a free software environment for statistical computing and graphics — and visualization tools to manage routine genomic selection (GS) and genome wide association studies (GWAS) analysis. This allows crop breeders and genomic scientists without a programming background to conduct these analyses and create crop-specific workflows.

“PAG is currently the main international meeting touching both crop and livestock genomics, so it’s an invaluable chance to connect and share insights with research and breeding colleagues around the world,” said Hearne. “It’s also an important forum to highlight how we are linking upstream and field, and help others do the same.”

Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)
Kanwarpal Dhugga (left) takes a selfie with his colleagues in the background during the PAG conference. (Photo: Kanwarpal Dhugga/CIMMYT)

Large-scale genomics will improve the yield, climate-resilience, and quality of bread wheat, new study shows

Bread wheat improvement using genomic tools will be critical to accelerate genetic gains in the crop's yield, disease resistance, and climate resilience. (Photo: Apollo Habtamu/CIMMYT)
Bread wheat improvement using genomic tools will be critical to accelerate genetic gains in the crop’s yield, disease resistance, and climate resilience. (Photo: Apollo Habtamu/CIMMYT)

Using the full wheat genome map published in 2018, combined with data from field testing of wheat breeding lines in multiple countries, an international team of scientists has identified significant new chromosomal regions for wheat yield and disease resistance and created a freely-available collection of genetic information and markers for more than 40,000 wheat lines.

Reported today in Nature Genetics, the results will speed up global efforts to breed more productive and climate-resilient varieties of bread wheat, a critical crop for world food security that is under threat from rising temperatures, rapidly-evolving fungal pathogens, and more frequent droughts, according to Philomin Juliana, wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the new study.

“This work directly connects the wheat genome reference map with wheat lines and extensive field data from CIMMYT’s global wheat breeding network,” said Juliana. “That network in turn links to over 200 breeding programs and research centers worldwide and contributes to yield and other key traits in varieties sown on nearly half the world’s wheat lands.”

The staple food for more than 2.5 billion people, wheat provides 20% of human dietary calories and protein worldwide and is critical for the nutrition and food security of hundreds of millions of poor persons in regions such as North Africa and South Asia.

“Farmers and societies today face new challenges to feed rising and rapidly-urbanizing populations, and wheat epitomizes the issues,” said Ravi Singh, CIMMYT wheat breeder and corresponding author of the study. “Higher temperatures are holding back yields in major wheat-growing areas, extreme weather events are common, crop diseases are spreading and becoming more virulent, and soil and water are being depleted.”

Juliana said the study results help pave the way to apply genomic selection, an approach that has transformed dairy cow husbandry, for more efficient wheat breeding.

“Molecular markers are getting cheaper to use; meanwhile, it’s very costly to do field testing and selection involving many thousands of wheat plants over successive generations,” Juliana said. “Genome-wide marker-based selection can help breeders to precisely identify good lines in early breeding generations and to test plantlets in greenhouses, thereby complementing and streamlining field testing.”

The new study found that genomic selection could be particularly effective in breeding for wheat end-use quality and for resistance to stem rust disease, whose causal pathogen has been evolving and spreading in the form of highly-virulent new races.

The new study also documents the effectiveness of the global public breeding efforts by CIMMYT and partners, showing that improved wheat varieties from this work have accumulated multiple gene variants that favor higher yields, according to Hans-Joachim Braun, director of CIMMYT’s global wheat program.

“This international collaboration, which is the world’s largest publicly-funded wheat breeding program, benefits farmers worldwide and offers high-quality wheat lines that are released directly to farmers in countries, such as Afghanistan, that are unable to run a full-fledged wheat breeding program,” Braun explained.

The study results are expected to support future gene discovery, molecular breeding, and gene editing in wheat, Braun said.

Together with more resource-efficient cropping systems, high-yielding and climate-resilient wheat varieties will constitute a key component of the sustainable intensification of food production described in Strategy 3 of the recent EAT-Lancet Commission recommendations to transform the global food system. Large-scale genomics will play a key role in developing these varieties and staying ahead of climate- and disease-related threats to food security.

Funders of this work include USAID’s Feed the Future Innovation Lab for Applied Wheat Genomics. Contributing to the research described are research teams engaged in wheat improvement at CIMMYT, and the lab of Jesse Poland, Associate Professor at Kansas State University and Director of the USAID Applied Wheat Genomics Innovation Lab.

For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Breaking Ground: Fernando H. Toledo researches new models of analysis under simulated scenarios

Postcard_Fernando Toledo

Genomics is a wide theme of interest for geneticists. As part of the efforts to advance on this subject, Fernando H. Toledo, associated scientist in agricultural statistics at the International Maize and Wheat Improvement Center (CIMMYT), is working on the research of genomic selection models to increase accuracy. His research considers several complex traits and environmental conditions under climate change scenarios.

The research in which Toledo works is multidisciplinary — it involves genetics and breeding knowledge, as well as statistics and computer science. “This work is fundamental for the breeding and farming community. Our aim is to allow breeders to pursue precise selection of new genetic materials with good performance and ensuring food security in the field under varying environmental conditions.”

Fernando H. Toledo was born in São Paulo, Brazil, but grew up in Curitiba, Paraná, one of the biggest agricultural states in the country. He obtained his engineering degree, with a major in crop science, at Paraná Federal University.

He got his master’s degree in genetics and plant breeding at Lavras Federal University, under the supervision of Magno Ramalho, one of the most prestigious breeders in Brazil. During his Ph.D. in quantitative genetics at the Agricultural College of the University of São Paulo, Fernando was advised by Roland Vencovsky, known as the father of quantitative genetics in the country. “The main lesson I took from both of them was that biometrics science must try to answer the breeders’ questions.”

Toledo got a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq) to spend a season at CIMMYT in 2013, where he developed part of his thesis about the use of selection indices under the supervision of José Crossa.

CIMMYT’s work is highly relevant to breeding activities in Brazil. It dates back to the 1950s when Brazilian breeders and geneticists took maize populations and varieties to be important resources of their current germplasm. “The public and private sectors in Brazil recognize the importance of CIMMYT, which awoke my interest in working in a relevant institute for agriculture in developing countries.”

In 2015, Toledo applied for a postdoctoral position at the Biometrics and Statistics Unit of the Genetic Recourses Program at CIMMYT. He started working as an associate scientist in 2017.

As part of this unit, Toledo is currently involved in the planning and analysis of field trials comprising phenotypic and genomic data. He is developing new models and methods for these analysis as well as plant breeding simulations. “Genomic selection has been used over CIMMYT’s breeding programs before but there are still a lot of improvements to implement, so new models of analysis can be tested under simulated scenarios, which results in better recommendations for breeders.”

On top of that, he is implementing new open-source high-performance software products to facilitate the use of cutting-edge methods for data analysis. “I really like the connection we can build at CIMMYT in terms of practical work for breeders and the development of new statistical methods, models, tools and software we release to attend their requirements, with the main aim of improving precision during the selection of the best genetic materials.”

Led by Juan Burgueño, senior biometrician and head of the Biometrics and Statistics Unit, Toledo is training students, scientists and partners regarding statistical concepts and data analysis. “These trainings courses are a great opportunity to share our work with others and to learn the scientists’ needs in order to improve our capabilities.”

Toledo’s main inspiration to continue his work at CIMMYT is having the opportunity to generate knowledge for others in developing countries. “Our work is driven by the breeders’ needs and that usually helps them to improve their understanding by using what we developed for them and making it a forward-backward relation, which is fascinating.”

How to get your high-impact research published in leading journals: top tips from the Senior Editor of Nature Genetics

At CIMMYT’s Science Week 2018, Nature Genetics Senior Editor Catherine Potenski spoke on how to publish plant genomics research that has broad, novel impact.

Catherine Potenski, Senior Editor of Nature Genetics, talks to participants of CIMMYT's Science Week on June 26, 2018. (Photo: Alfonso Cortés/CIMMYT)
Catherine Potenski, Senior Editor of Nature Genetics, talks to participants of CIMMYT’s Science Week on June 26, 2018. (Photo: Alfonso Cortés/CIMMYT)

Having research that is high-impact is not only critical to doing excellent science that has meaning, but also a premier way to let the research community know what you are doing and reach a broader audience, according to Catherine Potenski, Senior Editor at Nature Genetics, one of the more than 70 high-quality academic journals of publishing company Springer Nature.

“Plant genomics is an exciting field that is a priority for Nature Genetics given climate change and other challenges,” said Potenski. “We look for studies with novelty, a genetics scope and resource value.”

Nature Genetics is highly selective and publishes approximately 200 papers per year. Potenski wants to make the editorial review process more productive and simple for researchers so they can share their best work.

“You should organize your paper to highlight the impact of the findings and write a cover letter that places your work in context, highlighting what gap of knowledge it fills and how others will use this research,” explained Potenski. In addition, scientists should target the right journal for their research. In case of doubt, they can send a pre-submission inquiry and work with editors.

Impact is not always immediate, and the impact factor is not necessarily a good or proven metric. “The first CRISPR articles published in the early 2000s are now very impactful, but nobody knew the impact they would have then. Just because it is not in a high-impact journal, it does not mean it is not high-impact,” she said.

Potenski shared the six questions plant researchers should ask themselves when submitting research to Nature Genetics.

  1. Is my main approach genetic?

Your main analyses should be based on genetic screens, Quantitative Trait Locus (QTL) mapping, genome re-sequencing or other genetic approaches. If the main analysis of a paper is in transcriptomics, imaging or biochemistry, this could be considered off scope (but fine if they are secondary analyses).

  1. Are the findings highly novel?

Your research should reflect a new method or finding that is really groundbreaking. Findings that just provide insight into a known process, are confirmatory or incremental do not meet Nature’s standards. If the finding is only new for a specific crop, that might also not be sufficiently novel.

  1. Is there a large user group for the data?

Bigger is usually always better; you want your research to apply to or benefit as many people as possible. If the crop you are studying is widely consumed like wheat, or you have a large study scope such as large-scale GWAS (Genome-Wide Association Study) analysis, that will impact many more people than if you are studying watermelons using single QTL mapping.

  1. Is this a very large or unique dataset?

You want large, high-quality datasets and analyses that are unique and other groups cannot easily repeat. Ideally this leads to a new approach in your field. Data that are open and easily available, and studies using the latest technologies also get priority.

  1. Do the findings provide biological insights?

You want people reading your study to learn something new about plant biology. Instead of merely reporting domestication patterns, you want something new about the mechanisms of evolution or adaptation. Editors look for comprehensive, molecular mechanistic insight into the processes studied.

  1. Is there evidence for crop improvement?

Editors prioritize studies with potential for crop improvement, especially in the context of climate change and food security. You want your research to be demonstrated in a crop plant, ideally in the physical plant and not in a model simulation.