The Seed Production Technology for Africa (SPTA) project, led by CIMMYT, has been selected by the CGIAR Gender Impact Platform as a successful case study of integrating gender into crop breeding.
The case study, published in Frontiers in Sociology, is one of fourteen that the CGIAR Genetic Innovation Gender strategy is drawing on to showcase lessons learned from practical experience. These case studies form a critical part of the efforts to pursue gender responsive or gender-intentional breeding and explore how these can inform larger breeding pipelines.
Maize is widely grown by both women and men in Africa. Evidence of gender-differentiated preferences for maize varieties remains inconclusive; however, there is evidence of gendered differences in management practices. Hybrids produced using SPTA segregate 1:1 for pollen producing and non-pollen producing plants referred to as 50% non-pollen producing (FNP) varieties. Previous research showed FNP offered a yield benefit under low input conditions. In the early stage of its inception, the project quickly recognized the potential implications of hybrids produced using SPTA for women and other resource-constrained smallholders in Africa.
Understanding gender-based differences
From the start, the SPTA team conducted a gender review that underscored the fact that women in the region often use less fertilizer than men, a challenge that is further compounded by cultivation of smaller plots and lower quality soils. This review led the breeding team to explicitly target women and resource-poor farmers with an ambition to increase yields on women’s fields. From here henceforth, SPTA made it a priority to understand gender-based differences in performance and preference for new FNP maize varieties. This process involved ensuring both women and men farmers host trials to evaluate and attest to the performance of the FNP hybrids.
But these efforts were not without challenges. The team also found significant gender differences, particularly among women farmers in crop management practices and between farmers’ stated preferences during participatory varietal selection exercises and the varieties they used at home. This suggested that initial on-farm evaluations were not adequate for predicting real world demand for varieties. Moving forward, the evaluation strategy of SPTA evolved to enable variety evaluations under farmers’ preferred management practices.
The success of the SPTA team in ensuring that gender considerations were strongly embedded into the breeding program is attributed to strong collaboration across disciplines that included social scientists and gender researchers working closely with breeders, allocating funding to allow exploration, testing of gender topics and responsive variety evaluation tools and strong buy-in from leadership and donors. As the SPTA case highlights, there is value in starting small, building productive partnerships and collaborating to pilot and develop proof of concept for new models.
To provide a comprehensive overview of women and gender issues in agriculture, the Food and Agriculture Organization (FAO) recently released “The status of women in agri-food systems,” which provides compelling examples of policies and programs with a review of what has worked and specific recommendations. The report concludes that increasing women’s empowerment is essential for women’s well-being and has a positive impact on agricultural production, food security, diets, and child nutrition.
Despite the importance of agrifood systems for women’s livelihoods and the welfare of their families, women’s roles are marginalized, and their working conditions are likely to be worse than men’s–irregular, informal, part-time, low-skilled, labor intensive and thus vulnerable.
The International Center for Maize and Wheat Improvement (CIMMYT) recognizes the pressing need for gender equality measures in agri-food systems and has initiated many specific projects to address gender equality. In addition, CIMMYT is committed to introducing a gender component into all its research, programs, and interventions.
“It is an acknowledgment that gender and social equity has always been a critical component of the sustainability of any initiative, regardless of the crop and the geographic area affected,” said Bram Govaerts, CIMMYT’s Director General. “CIMMYT is now more intentional about addressing gender equality issues and we recognize the same old methods might not be the most effective.”
FAO: the collection of high-quality data are paramount for monitoring, evaluating and accelerating progress on gender equality in agrifood systems
In the past, many initiatives have relied on surveys to gather data from farmers, producers, consumers, and other stakeholders. However, in traditional rural societies, survey-based data collection might not be the best way to evaluate women’s agency, as the deeply rooted cultural restrictions might not allow them to talk openly about sensitive issues, like their relationship with a spouse.
As part of the Accelerating Genetic Gains in Maize and Wheat for improved livelihoods in Asia and Africa (AGG) project, in Bihar India, CIMMYT researchers developed an innovative storytelling approach to data collection: using vignettes, farmers are given short stories to relate to their household circumstances. Stories are also easier to remember and help build a connection with the characters quickly.
This storytelling method debunked some long-held ideas about women’s role in agriculture in this area of India, creating a more nuanced view of how and why women engage in agriculture. This method will lead to richer qualitative data, which can improve the development and sustainability of gender interventions.
FAO: Social protection programs have increased women’s employment and enhanced women’s resilience.
CIMMYT’s partnership with the Cereal Systems Initiative for South Asia (CSISA) specifically supports women farmers by improving their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills. CSISA works in synergy with regional and national efforts, collaborating with public and private-sector partners.
FAO: interventions must be designed to close gender inequalities and empower women.
While CIMMYT has produced many improved maize varieties, CIMMYT researchers discovered that these new varieties may fall short in meeting the needs of women and the poorest of farmers. We need to explore novel approaches to evaluating farmer demand for seed, considering new questions instead of continuing to look for gender-based differences in preferences.
A first step in that direction is to determine how demand for maize seed differs among farmers according to their needs, priorities, and resource limitations. Gender is a large part of that equation, but the CIMMYT researchers also advocate for other considerations, like how maize fits into household food security and livelihoods, decision-making dynamics around maize production, and seed accessibility.
Internal efforts at CIMMYT
While the FAO report is focused on women in the agri-food system, CIMMYT has also engaged several internal initiatives to ensure a more diverse portfolio of researchers and to cultivate a stronger sense of inclusion at CIMMYT and in the wider scientific community.
At CIMMYT, between 20 and 25 percent of staff in the science career track–careers involving field, lab, data, and socioeconomic work–are female. In 2022, Alison Bentley, Director of CIMMYT’s Global Wheat Program, and Nele Verhulst, cropping systems agronomist started Women in Crop Science at CIMMYT. The group aims to connect and build a network of women in the science career track and commits to achieving a more inclusive environment at CIMMYT and within the Consultative Group for International Agricultural Research (CGIAR).
CIMMYT is also helping to develop the next generation of women scientists through the annual Jeanie Borlaug Laube Women in Triticum Awards, which recognizes scientific excellence and leadership potential. To date., over 60 women scientists have received leadership training and professional development opportunities meant to support them as they join the community of scholars who are fighting hunger worldwide.
Cover photo: Women sorting out maize seed at the Mgom’mera Seed Company warehouse in Lilongwe, Malawi. (Photo: CIMMYT/Kipenz Films)
To mark International Women’s Day 2023, Nele Verhulst, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), shares progress from the Women in Crop Science group and how their work tries to contribute to gender equality in agriculture and science.
Growing up in the nineties in Belgium, I was interested in feminism, but I also assumed that the fight for equal rights for women and men had been fought and won. Studying bioscience engineering in the 2000s, more than half of the students were women, so this demonstrated to me that we were all set (although the large majority of professors were men, it seemed to be just a matter of time for that to be resolved). I have now been working in Latin America as an agronomist and researcher for more than 15 years and have come to realize that there is still a lot of work to do to achieve equal opportunities for female farmers, farm advisors, scientists, and other professionals in agriculture.
At CIMMYT, between 20 and 25 percent of staff in the science career track – careers involving field, lab, data, and socioeconomic work – are female. Because of that, Alison Bentley and I started a group of women in crop science at CIMMYT about one year ago on the International Day of Women and Girls in Science in 2022. In our first meeting, we aimed to connect, discussed how to build a network (we did not even have a list of all women in science at CIMMYT, so it was hard to know who to invite), and decided whether we wanted to commit to additional actions to achieve a more inclusive environment at CIMMYT.
Since that first meeting, we have organized coffee mornings and other events, and have split into smaller working groups to draft action plans on ten topics: gender in the workplace strategy development, advancement for locally recruited staff, mentorship, recruitment processes, microaggressions, harassment policies, work-life balance, family friendly work environment, raising external awareness about women in agriculture, and ensuring internal visibility.
I have enjoyed being able to make some first small changes – who knew sanitary facilities would turn out to be a recurring topic! – but most of all I have loved the opportunities over the past year to connect with women with a shared passion for crop science in all its aspects. That passion and the opportunities it creates to improve the lives of farmers and rural communities is the most important thing we are celebrating today.
Cover photo: Women participate in a public harvest event for timely sown wheat organized by the Cereal Systems Initiative for South Asia (CSISA) project with Krishi Vigyan Kendra (KVK) in in Nagwa village near Patna in Bihar, India. (Photo: Madhulika Singh/CIMMYT)
The United Nations International Day of Women and Girls in Science (IDWGIS) is observed annually on February 11 to highlight the gender gap in the disciplines of science, technology, engineering and mathematics (STEM).
Data shows that women are given smaller research grants than their male colleagues, are underrepresented in cutting edge fields, and account for a lower percentage of STEM graduates.
At the International Maize and Wheat Improvement Center (CIMMYT), women are leaders, mentors, and role models in agricultural science and research, helping to support the next generation. Across our global programs, women are making a difference to the lives of farmers and their communities every day.
Happy Makuru Daudi, Head of Groundnut Research Program at the Tanzania Agricultural Research Institute (TARI) based at Naliendele Research Center in Mtwara, is a plant breeder specializing in groundnut. For the United Nations International Day of Women and Girls in Science, she shares with us her passion for what she does and why more women should venture into plant breeding.
What inspired you to get into your career?
I was in love with science and my intention was to be a doctor but later I changed my mind. I loved biology a lot and that set my focus on my academic path. At university I had good mentors who influenced my career direction as well.
When I achieved my first degree, I was recruited by the Government of Tanzania as an agricultural officer. My then boss, Omar Mponda, inspired me to be a plant breeder. He encouraged me and I went ahead to study plant breeding for both my Masters and PhD. My first degree was in Agronomy, I then did a Masters in Crop Science, specializing in Plant Breeding, and eventually completed a PhD in Plant Breeding as well.
What did you love about plant breeding?
I realized breeders are very active people. Always trying to improve and change things. Always looking for ways to make a difference. This desire to make a change makes us active lifelong learners.
The other thing I learnt from breeders is that they can change the life of farmers. Most smallholder farmers are women. I love my crop (groundnut) because it is a ‘woman’s crop’. If the breeder develops a product such as groundnut with high impact, it means they have changed the life of women. I realized I work a lot with women in my field and even if I only change the smallest of things, it means I get to change their lives and boost them from one step to the next.
Please elaborate on why you refer to groundnut as a woman’s crop.
Groundnut is a nutritious crop and is used a lot in processing and preparing children’s food, hence most women value it and engage in farming the crop, even though in small plots of land, in order to have nutritious food for their families’ health.
Most women especially in Tanzania view groundnut as their ATM, in that when they need money for use at home, they only need to sell some of their harvested groundnut and get cash to meet their home’s needs, such as buying schoolbooks for their children.
Women are involved in the entire groundnut value chain, that is from farming the crop in the field up to the processing stages, unlike men who mostly only come in at the market stage to sell the produce. Therefore, groundnut is source of income for many women in Tanzania.
Happy Makuru Daudi presents at the Drylands Legumes and Cereals Crop Improvement Review and Planning meeting in Ghana in January 2023. (Photo: Susan Otieno/CIMMYT)
Has the International Maize and Wheat Center (CIMMYT) and the CGIAR at large contributed in any way to your career growth?
Yes! They have contributed a lot. First in building my capacity and, as I work with them in the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. My PhD was sponsored by the Tropical Legumes III Project. I remember when interacting with scientists from these organizations, I observed how they carried themselves with confidence, both the women and men; it motivated me and built my confidence.
What was the focus of your PhD?
My PhD was on breeding for groundnut resistance for rust and high yield in Tanzania.
What is your message for young women and girls interested in getting into science, technology, engineering, and mathematics (STEM) careers?
First, they need to trust themselves. They can do anything in this world. They should not be fearful. For instance, those interested in breeding might observe that most breeders are men, and they may tell themselves that it is a difficult career and run away from it. But I would like them to tell themselves they can be and do even better than men. They only need to trust themselves and build their confidence.
Tell me about the formation of your team – are you intentional in working with women in your team?
Yes, I’m usually intentional about this. I always give equal chance to both genders but when I get an opportunity to hire for my team, it makes me happier if a woman lands the job. I realized women are good workers and ready to learn. Most of my casual laborers on my team are also women. They work meticulously. The main work for breeders entails crossing. The best people for crossing are women! I have observed that the success rate of the crosses is higher with women! Crossing is intensive work, physically as well, and needs utmost concentration. So, I trust them in this.
Is there anything else you would like to add?
I want to encourage women not to run away from sciences, and especially agricultural sciences such as breeding. We want more women breeders. They can change this world and help more people put food on the table. The agricultural sector, especially the farms, are dominated by women, and it is easier for them when they interact with other women. When we go meet them in the fields, it is easier for us to understand their needs and change their lives. So, I call girls and women to come on board in this sector and change the lives of many.
Cover photo: Happy Makuru Daudi (center) discussing groundnut varieties with colleagues from TARI and CIMMYT in Mtwara, Tanzania, in 2022. (Photo: Susan Otieno/CIMMYT)
Solar powered peanut dryers in Togo are helping women-run cooperatives reduce their workload and increase their profits.
A number of West African countries have climate and soil well-suited to groundnut cultivation. In the second half of the twentieth century, the region became a world leader in peanut production. In Togo, peanuts do well, but problems with postharvest processing have kept this crop performing well below its potential.
However, the introduction of the solar powered dryers has had a significant positive impact on the production and preservation of a vital crop for the local population.
From peanut stews and sauces that are staples of national cuisine to overseas export of peanut products, there is no shortage of uses for this groundnut in Togo. However, smallholding farmers struggle to preserve their entire crop in large part because of aflatoxins, which thrive when conditions are too moist and ruin peanuts.
“Peanuts are a very perishable commodity and they can spoil if not stored properly for processing,” said Aïssetou Koura, president of the peanut farmer cooperative in Koumonde.
This is particularly true for smallholding peanut farmers, which in Togo includes many women. The established method for drying peanuts is to lay them out in the open air, which is a labor-intensive process that leaves the crop exposed to unexpected rains and contamination by pests. “In the past, we suffered huge losses,” Aïssetou explained.
Aicha Gaba from the N’kani N’kana cooperative works with a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)
A better way to dry
In 2021, the introduction of solar dryers began to change things dramatically for peanut farmers in cooperatives from Tovegan to Dapaong. In collaboration with the United Nations Food and Agriculture Organization (FAO), the Green Innovation Centers for the Agriculture and Food Sector (GIC) in Togo helped a local manufacturer, Guema Concept, develop solar dryer technology for local peanut farmers from plans made by the University of Hohenheim.
Launched in 2014 by Germany’s Federal Ministry for Economic Cooperation and Development’s special initiative One World No Hunger, GIC collaborates with the International Maize and Wheat Improvement Center (CIMMYT) to increase agricultural mechanization in 14 countries in Africa and two in Asia.
The dryers are equipped with a ventilation system and a power kit that includes solar panels and a battery so they can operate during periods of reduced sunlight. They have a capacity of 12 kilograms and can complete a drying cycle in as little as two hours, which is about one quarter of the time a manual drying cycle takes. Depending on the solar exposure, cooperatives like the one in Koumonde can perform three or four cycles in a day.
“We have found a solution by preserving our products with the solar dryer,” Aïssetou said.
GIC has helped five smallholding farmer cooperatives procure solar dyers across Togo, and more than 50 women farmers are members of these groups whose work is benefitting from this technology.
Farmers like Aicha Gaba are also increasing their profit because the solar dryers allow them to do more work with fewer laborers.
“Our cooperative dries peanuts with only two people via the solar dryer, unlike conventional open drying, which requires five people to spread, turn, monitor and collect the peanuts,” Gaba said.
“This process reduces the workers’ wages and then saves us the money of three workers, which is a good thing for us.”
The new technology is producing better peanuts thanks to consistent moisture and temperature levels and faster processing speeds, said Djéri Bossa, a member of the cooperative in Bassar.
“Thanks to the solar dryers offered by GIC Togo, we can freely dry our products in good conditions,” Bossa explained.
“The products derived from the processing of peanuts are of improved quality, unlike the conventional open-drying method we used.”
All is not sunny
Despite the initial success of the solar dryers, there are challenges that remain for scaling up this innovation. The dyers are quite heavy and, for smallholding women, it can be difficult to maneuver the machines by themselves. At the same time, farmers say that – even with the greater volume the dryers have helped them achieve – they would still like a higher-capacity machine.
But even with the need for lighter, harder-working dryers, there is enormous potential for this innovation to spread to new areas, bring additional production and income to smallholding farmers (including many women), and help make groundnuts a bigger piece of the economic pie in Togo.
Cover photo: Smallholding peanut farmers Aicha Gaba and Aïssetou Koura lay peanuts into a solar dryer in Koumonde, Togo. (Photo: Laré B. Penn/University of Lome)
Thank you to our partners, Laré B. Penn (University of Lomé) and Johanna Steinkuehler (GIZ Togo).
Mathuli drew attention to the innovations that are making her life easier, such as drought-tolerant maize seed varieties developed by the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture and Livestock Research Organization (KALRO). She also cited her mobile phone as a vital tool, allowing her access essential information, such as weather forecasts, market prices, and technical farming support.
“In sub-Saharan Africa, more than half of the population works in agriculture,” explains Gates. “Together, they produce about 80 percent of the continent’s food supply. And most of the people doing the backbreaking farm work—like the chores I performed—are women.”
In addition to managing her farm, Mathuli is a model farmer and Village Based Advisor with the Cereal Growers Association, encouraging other farmers to adopt new practices that will improve their productivity. “She is clearly doing a good job in this role because more than 90 percent of farmers in her area have embraced one of the new adaptation practices,” said Gates.
A team of women researchers that are part of the Latin American Maize Network participated in the training given by CIMMYT in the framework of the TechMaiz project. (Photo: Francisco Alarcón and Fernando Garcilazo/CIMMYT)
Female scientists from four different Latin American countries have come together to work on TechMaiz, a project supported by the International Maize and Wheat Improvement Center (CIMMYT), and continue the organization’s commitment to inclusivity and inclusion.
The scientists spent four days in November at CIMMYT’s headquarters in Mexico to contribute to the training plan, which focused on genetic improvement, soil conservation, seed storage, analysis of the nutritional quality of grain and innovation management in the hub model of maize cultivation.
This training allowed the researchers from Ecuador, Colombia, Guatemala and Peru to discuss the use of new technological tools for sustainable intensification of production systems of small and medium farmers, as well as the challenges on the road to moving from efficiency to resilience.
The scientists involved in this training within the framework of the TechMaiz project were:
Liliana Atencio S. – A Colombian who works at the Colombian Agricultural Research Corporation (AGROSAVIA). She is an agricultural engineer with a master’s degree in agronomic science. This includes an emphasis on plant physiology and she has additional experience in transient and forage crop improvement programs.
Ana Pincay – An Ecuadorian working at the Santa Catalina Experimental Station of the National Institute of Agricultural Research (INIAP) as an agricultural researcher. She’s also a biotechnology engineer.
Alicia Medina – A Peruvian who is based at the National Institute of Agrarian Innovation (INIA) as a researcher. She is an agricultural engineer and has a master’s degree in development planning.
María Gabriela Albán – She has several responsibilities, including co-investigator, coordinates the academic-financial part and is a professor of the agronomy engineering career at the San Francisco de Quito University (USFQ) in Ecuador. She is an agribusiness engineer with a master’s degree in agricultural sciences with an emphasis on agricultural business development. Albán also has a diploma in design, management, and evaluation of development projects.
Karen Agreda – An agronomist engineer in agri-production systems. She has a postgraduate degree in alternative fruit and vegetable production and works as a specialized researcher in the validation and technology of transference program at the Institute of Agricultural Science and Technology (ICTA) in Guatemala.
Visiting a research plot under the guidance of Nele Verhulst, Cropping Systems Agronomist with CIMMYT’s Sustainable Agrifood Systems (SAS) program. (Photo: Francisco Alarcón and Fernando Garcilazo/CIMMYT)
Weaving bonds of trust to generate changes
Following a period of continuous interaction, the researchers identified not only a number of shared challenges in their respective countries, but also how much complementary and concrete opportunities for teamwork are created when bonds of trust and teamwork are strengthened.
“In addition to strengthening knowledge, there’s also the relationship between researchers and institutions, understanding the role of each member of the team is important and allows us to make greater progress,” said Atencio. “For example, Alicia works on improvement, Ana on the use of bio-inputs, and Karen on transfers and linking. We all see that there are opportunities in agriculture for innovation by using tools such as e-agrology. The result of this is that generational change is becoming more and more urgent.”
Proposing more ambitious projects, but also clearer and more precise ones, is part of the learning the researchers plan to take with them. The scientists are determined to share this information with their teams and colleagues, along with integrative approaches that are designed to strengthen the human talent of each institution.
“In Ecuador, we practice the agriculture of conservation, but we didn’t know the concept of not removing the soil,” Picay said. “It is always a good decision to invest in training, as it refreshes the thought, opens the mind and triggers actions.”
The TechMaíz project will continue in 2023 with its third year of implementation, promoting national meetings to promote and disseminate the use of sustainable technologies for maize production. CIMMYT training for members of the Latin American Maize Network is also expected to continue.
For Charlotte Rambla, winning the 2022 Jeanie Borlaug Laube Women in Triticum (WIT) Early-Career Award was an “incredible, unreal experience.”
Each year, the Borlaug Global Rust Initiative (BGRI) honors five to six female early-career wheat researchers with the WIT award in recognition of scientific excellence and leadership potential. With the award, women scientists receive leadership training and professional development opportunities meant to support them as they join the community of scholars who are fighting hunger worldwide.
“The training I’ve received with this award has been one of the best experiences of my professional life,” said Rambla, an Italian native who recently completed her Ph.D. at the Queensland Alliance for Agriculture and Food Innovation in Australia and has begun a postdoctoral appointment at the Salk Institute for Biological Studies. “Meeting these incredible women working in the same field, sharing our knowledge and experiences, it felt like we belonged together and were working toward one shared purpose; We are all joined by this same passion for agriculture and science.”
The 2022 awards honored six early-career scientists from Morocco, Indonesia, Ethiopia, Italy, Pakistan and China. Since 2010, the WIT awards have recognized 66 early-career scientists from 29 different countries. The training and development opportunities offered to each year’s cohort varies, based on the needs and interests of the winners, said Maricelis Acevedo, director for science for the BGRI, research professor in the Department of Global Development at Cornell University, and a 2010 WIT awardee. The 2022 WIT cohort visited the World Food Prize Foundation in October, just before the foundation announced the winner of this year’s World Food Prize, widely considered the Nobel Prize for food and agriculture.
“The role of the WIT award is to recognize emerging scientific leadership and provide training and support for women working in wheat to create a cohesive group of hunger-fighters who have the skills to lead the next generation of scientists and create the solutions that we need at such a critical time,” Acevedo said. “As these women receive the award, we hope that they continue to support other women and other early-career scientists, and to train their students in a more open, diverse network.”
Meriem Aoun, a 2018 WIT awardee and native of Tunisia, was a postdoctoral associate at Cornell University when she won her award. Her cohort received a month-long training at the International Maize and Wheat Improvement Center (CIMMYT) – the center where Norman Borlaug did the research that earned him the 1970 Nobel Peace Prize – and attended the 2018 international BGRI conference in Morocco. Aoun believes that the WIT award supported her professional career development and gave her the opportunity to connect with other WIT winners from many countries. “I am thrilled to see more and more ambitious and career-interested wheat scientists and that our community of WIT winners is growing each year,” she said.
Now an assistant professor of wheat pathology at Oklahoma State University (OSU), Aoun studies the genetics of disease resistance to wheat pathogens. She is a key member of OSU’s wheat improvement team developing disease-resistant wheat varieties suited for Oklahoma and the Southern Great Plains of the U.S.
For 2013 winner and Swiss-Argentinian Sandra Dunckel, the fact that BGRI chooses a cohort of women each year, rather than a single winner, is one of the strengths of the award. Now head of Breeding Barley, Special Crops and Organics at KWS Group, a multinational seed company headquartered in Germany, Dunckel said the networking opportunities were among the most beneficial aspects of her WIT award training.
“There is this group of women who are working on a common goal, and even if you aren’t in touch for several years, you can contact someone from your year, or really any year, and say, ‘Hello, fellow WIT winner, I’m looking for a breeder with great potential for one of my teams, can you recommend someone, or I need help with this question.’ It’s always there to fall back on,” she said.
Dunckel won her WIT award while completing her PhD at Kansas State, then worked for two years as a wheat breeder in Australia before moving to her current role at KWS, where she oversees nine breeding teams across Europe who are working to develop new barley, peas, oats and protein crop varieties that are more tolerant to drought and heat, have desired quality profiles and can be grown more sustainably globally.
Paula Silva, a 2020 WIT awardee, also won her award while completing her PhD at Kansas State. She has since returned to her native Uruguay, where she leads the breeding team developing disease resistant varieties of barley and wheat for Uruguay’s National Institute of Agricultural Research (INIA). From 2019-2022, she coordinated breeding efforts with CIMMYT by leading the Precision field-based Phenotyping Platform (PWPP) for Multiple Resistance to Wheat Diseases.
One of the purposes of the WIT award is to help achieve gender parity among wheat scientists, and Silva said she believes the award “is playing a big part in building gender equality.”
Silva said that as a student, she was encouraged to apply for the WIT award by Sarah Evanega, who, along with Ronnie Coffman, international professor emeritus of plant breeding and genetics at Cornell, lobbied for the establishment of the WIT award. The BGRI now annually presents WIT honors to early-career scientists and a mentor award for excellence in advising of women working in wheat and its nearest relatives.
“Sarah was always advocating for young, female participation,” Silva said. “I remember her counting how many females there were in conference pictures, and I do that now, too. You can see, year by year, the female representation gets bigger and bigger.”
Full gender equality in science is still lacking, but progress is being made. The gains are seen in wider perspectives that challenge orthodoxy and improve scientific possibilities.
“The WIT awards are a fantastic way to recognize and support emerging leaders in our community. The impressive cohort of past and present WIT recipients are actively contributing to global efforts to improve crop production and food security,” said Alison Bentley, who now leads the Global Wheat Program at CIMMYT.
Part of Acevedo’s leadership role for BGRI is helping choose each year’s winner, as part of a panel that includes previous WIT awardees and globally recognized wheat scientists, and working with each cohort to develop appropriate training opportunities. Acevedo said as she progressed in her career, she realized how important it was to help young female scientists not only with traditional training and networking opportunities, but also with leadership, communication, and work-life balance.
“It’s really tough to be an isolated scientist: science can be very individualistic. It can be competitive. As women in science, we feel particularly isolated because a lot of our colleagues are males. So you may feel like, ‘This is only happening to me, I’m the only one struggling with this,’” Acevedo said. “In these trainings, we celebrate professional and personal successes but also share our challenges, normalize struggles, and find support. As we think about a more collaborative and open science, we need to be talking more about humbleness, the positive impact of recognizing and making peace with weakness, and seeking support from one another to thrive as a diverse research community.”
Figuring out what kinds of crops and crop varieties farmers want – high yielding, disease resistant, drought tolerant, early maturing, consumer-preferred, nutritious etc. – is a crucial step in developing locally adapted, farmer-friendly and market preferred varieties as part of more sustainable seed grain sectors.
While scientists aim to develop the best crop varieties with multiple traits, there are always trade-offs to be made due to the limits of genetics or competing preferences. For example, a variety may be more tolerant to drought but perform less well in consumer taste preferences such as sweet grains, or it may be higher yielding but more vulnerable to pests and diseases. Some of these trade-offs, such as vulnerability to pests or adverse climate, are not acceptable and must be overcome by crop scientists. The bundle of traits a crop variety offers is often a major consideration for farmers and can be the difference between a bumper harvest and a harvest lost to pests and diseases or extreme weather conditions.
Economists from the International Maize and Wheat Improvement Center (CIMMYT) have been working with smallholder farmers across sub-Saharan Africa to document their preferences when it comes to maize. Results from Ethiopia were recently published in the journal PLOS ONE.
In a survey with almost 1,500 participants in more than 800 households, researchers found that both male and female farmers valued drought tolerance over other traits. For many farmers in areas where high-yielding, medium-maturing hybrids were available, early maturity was not considered a priority, and sometimes even disliked, as farmers felt it made their harvests more vulnerable to theft or increased their social obligations to share the early crop with relatives and neighbors if they were the only ones harvesting an early maize crop. Farmers therefore preferred varieties which matured more in sync with other farmers.
The team also found some gender differences, with female farmers often preferring taste over other traits, while male farmers were more likely to prioritize plant architecture traits like closed tip and shorter plants that do not easily break in the wind or bend over to the ground. These differences, if confirmed by ongoing and further research, suggest that gender differences in maize variety choices may occur due to differentiated roles of men and women in the maize value chains. Any differences observed should be traced to such roles where these are distinctly and socially differentiated. In aspects where men and women’s roles are similar — for example, when women express preferences in their role as farmers as opposed to being custodians of household nutrition — they will prioritize similar aspects of maize varieties.
The results of the study show that overall, the most important traits for farmers in Ethiopia, in addition to those that improve yields, are varieties that are drought and disease tolerant, while in taste-sensitive markets with strong commercial opportunities in green maize selling, farmers may prioritize varieties that satisfy these specific consumer tastes. The findings of the study also highlight the impact of the local social environment on variety choices.
By taking farmers’ preferences on board, maize scientists can help develop more sustainable maize cropping systems which are adapted to the local environment and respond to global climatic and economic changes driven by farmers’ and consumers’ priorities.
Harvesting maize cobs at KALRO Katumani Research Station in Machakos, Kenya. (Photo: Peter Lowe/CIMMYT)
Drought and striga tolerance come out top for Kenyan farmers
In related research from western Kenya, published in June 2022 in Frontiers in Sustainable Food Systems, results showed that farmers highly valued tolerance to drought, as well as tolerance to striga weed, low nitrogen soils and fall armyworm, in that order. CIMMYT researchers surveyed 1,400 smallholder farmers across three districts in western Kenya.
The scientists called for a more nuanced approach to seed markets, where seed prices might reflect the attributes of varieties. Doing so, they argue, would allow farmers to decide whether to pay price premiums for specific seed products thereby achieving greater market segmentation based on relative values of new traits.
“Both studies show that farmers, scientists and development experts in the maize sector are grappling with a wide array of demands,” said Paswel Marenya, CIMMYT senior scientist and first author of both studies.
“Fortunately, the maize breeding systems in CIMMYT, CGIAR and National Agricultural Research Systems (NARS) have produced a wide range of locally adapted, stress tolerant and consumer preferred varieties.”
The results of both these studies provide a framework for the kinds of traits scientists should prioritize in maize improvement programs at least in similar regions as those studied here in central Ethiopia or western Kenya. However, as Marenya noted, there is still work to do in supporting farmers to make informed choices: “The challenge is to implement rigorous market targeting strategies that sort and organize this complex landscape for farmers, thereby reducing the information load, search costs and learning times about new varieties. This will accelerate the speed of adoption and genetic gains on farmers’ fields as envisaged in this project.”
COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.
Gender and food security
In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.
Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.
Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.
Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.
The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.
The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.
Addressing soil fertility management
Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.
Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.
In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.
Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)
IITA women nutrition scientists perfecting a new recipe. (Photo: IITA)
The CGIARWomen in Research and Science (WIRES) employee-led resource group recently had a virtual engagement to discuss the progress and new happenings in the group. The meeting, themed “Connecting and Mentoring, What’s new with WIRES!” was held on October 24.
Giving the opening remarks, The Alliance of Bioversity International and CIAT Knowledge Sharing Specialist Arwen Bailey stated that the group was launched in July 2020 to empower and increase the visibility of women research and science professionals across CGIAR.
Explaining the vision and mission of the group, Das stated that WIRES aims to provide tools and knowledge that support professional development. She added that this would create visibility for CGIAR women in science and research so their voices are heard and their contributions recognized. “We are an open community that accommodates both men and women who are willing to support the vision of WIRES,” she said.
HarvestPlus Cassava Breeder Dr Elizabeth Parkes is one of the WIRES coordinators. (Photo: IITA)
Discussing her reason for sponsoring WIRES, CGIAR Executive Managing Director Claudia Sadoff said she admires the efforts and engagement of the team in supporting women despite having other personal life activities. She added that the increase in the percentage of women scientists calls for more effort to train and empower these women. “Thanks for allowing me to be your sponsor,” she said. International Livestock Research Institute (ILRI) Director General Jimmy Smith, also a sponsor, stated that his motivation to join the cause stems from his experience raising daughters.
Highlighting how intending volunteers can support WIRES, Das spoke on mentorship as a promising strategy to advance Gender, Diversity and Inclusion (GDI) in the workplace as it offers access and advocacy for women. Explaining the criteria for engagement, she stated that a mentor must be passionate about advancing GDI, while the mentee must be a middle to senior-level career woman researcher/scientist with an appetite to learn. “Registration for the program will begin in November, and the program will kick off in December. Interested mentors and mentees who meet the criteria can register and be trained,” she said.
Other new WIRES initiatives coming up before the end of 2022 include “Random coffee,” where members can schedule to meet physically or virtually to build a vibrant relationship and network, and “Focus groups” for discussions that will ensure continuous improvement for WIRES.
Closing out the meeting, CGIAR Global Director of People and Culture, Fiona Bourdin-Farrell, summarized ways volunteers can help to advance women in science and research in CGIAR. She mentioned that it starts with joining the WIRES team, being a part of the mentoring program, engaging in the random coffee pilot, and joining focus groups. “You can contribute to the information in the newsletter. You can also register as both mentor and mentee as long as you meet the criteria,” she concluded.
The Eastern Gangetic Plains (EGP) are vulnerable to climate change and face tremendous challenges, including heat, drought, and floods. More than 400 million people in this region depend on agriculture for their livelihoods and food security; improvements to their farming systems on a wide scale can contribute to the Sustainable Development Goals (SDGs).
The Australian Centre for International Agricultural Research (ACIAR) has been supporting smallholder farmers to make agriculture more profitable, productive, and sustainable while also safeguarding the environment and encouraging women’s participation through a partnership with the International Maize and Wheat Improvement Center (CIMMYT). On World Food Day, these projects are more important than ever, as scientists strive to leave no one behind.
The EGP have the potential to significantly improve food security in South Asia, but agricultural production is still poor, and diversification opportunities are few. This is a result of underdeveloped markets, a lack of agricultural knowledge and service networks, insufficient development of available water resources, and low adoption of sustainable farming techniques.
Current food systems in the EGP fail to provide smallholder farmers with a viable means to prosper, do not provide recommended diets, and impose undue strain on the region’s natural resources. It is therefore crucial to transform the food system with practical technological solutions for smallholders and with scaling-up initiatives.
Zero tillage wheat growing in the field in Fatehgarh Sahib district, Punjab, India. It was sown with a zero tillage seeder known as a Happy Seeder, giving an excellent and uniform wheat crop. (Photo: Petr Kosina/CIMMYT)
ACIAR: Understanding and promoting sustainable transformation of food systems
Over the past ten years, ACIAR has extensively focused research on various agricultural techniques in this region. The Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project sought to understand local systems, demonstrate the efficacy of Conservation Agriculture-based Sustainable Intensification (CASI) approaches, and create an environment that would support and scale-up these technologies.
To establish a connection between research outputs and development goals, the Transforming Smallholder Food Systems in the Eastern Gangetic Plains (Rupantar) project expands on previous work and partnership networks. This is a collaborative venture with CIMMYT that demonstrates inclusive diversification pathways, defines scaling up procedures for millions of smallholder farmers in the region, and produces a better understanding of the policies that support diversification.
Building the future and inspiring communities
Men and women both contribute substantially to farming activities in the EGP of India, Bangladesh, and Nepal, but gender roles differ according to location, crops and opportunities. It is a prevalent perception supported by culture, tradition, and social biases that women cannot be head of the household.
In Coochbehar, India, the unfortunate passing of Jahanara Bibi’s husband left her as head of her household and sole guardian of her only son. Though a tragic event, Bibi never gave up hope.
Going through hardships of a rural single female farmer intensified by poverty, Bibi came to know about CASI techniques and the use of zero-till machines.
Though it seemed like a far-fetched technique at first and with no large network to rely on for advice, Bibi decided to gather all her courage and give it a try. Being lower cost, more productive, adding income, and saving her time and energy all encouraged Bibi to adopt this zero-till machine in 2013, which she uses to this day. Today, she advocates for CASI technology-based farming and has stood tall as an inspiration to men and women.
“I feel happy when people come to me for advice – the same people who once thought I was good for nothing,” said Bibi.
With no regrets from life and grateful for all the support she received, Bibi dreams of her future as a female agro-entrepreneur. Being a lead female farmer of her community and having good contact with the agriculture office and conducive connection with local service providers, she believes that her dream is completely achievable and can inspire many single rural female farmers like herself to encourage them to change perceptions about the role of women.
Cover photo: Jahanara Bibi standing by her farm, Coochbehar, India. (Photo: Manisha Shrestha/CIMMYT)
In Mexico there is an indigenous poem that says, “We are grains of maize from the same cob; we are one root of the same path.” So, it is not surprising that the path of Alicia Medina Hoyos, a researcher with the National Maize Research Program at El Instituto Nacional de Innovación Agraria (INIA), began life in a rural community in Cupisnique, Cajamarca, Peru, at 1,800 meters above sea level.
At an early age, she realized the importance of maize as a feature of identity. This prompted her to dedicate her life to contribute to food security through research on starchy maize, soft maize types used for human consumption with 80% starch in their composition.
Medina studied Agronomy at the National University of Cajamarca, where her thesis brought her into contact with Luis Narro, a Peruvian researcher linked to the International Maize and Wheat Improvement Center (CIMMYT), which she has been associated with ever since.
“This permanent contact has been key to strengthening my capacities to actively participate in the co-creation of better opportunities for producers in Peru and Latin America,” said Medina. Her connection with CIMMYT has helped her to maintain an enriching exchange of knowledge and experiences with researchers such as Terry Molnar, a specialist in native maize, as well as with the more than 130 colleagues who make up the Latin American Maize Network.
It has also provided opportunities to showcase Peruvian agricultural research. In 2022, Peru hosted the XXIV Latin American Maize Meeting, an event jointly organized by CIMMYT and INIA every two years. Medina explained, “The event is a great opportunity to show Cajamarca, producers, organizations, to highlight the best we have, and to promote purple maize.”
Award-winning research
On International Women’s Day in 2019, Medina received an award from the College of Engineers of Peru for the effort, dedicated work, and contribution of engineering to the service of society.
When asked what it meant to receive this award, Medina said, “Research in starchy maize and, in recent years, in purple maize, has taken me to Ecuador, Colombia, Bolivia and Japan, and has given me the satisfaction of receiving awards that motivate me to continue putting research at the service of producers.”
This is without losing sight of the other valuable awards that Medina has received: the Personage of the Bicentennial, awarded in 2021 by the Provincial Municipality of Contumazá, Peru; the compass that Chile gave her in 2021 as recipient of the Strait of Magellan Award for Innovation and Exploration with Global Impact; and the SUMMUM Research Award given by the Summum Awards Advisory Committee in 2019.
Purple maize holds many health benefits due to its high content of anthocyanins and antioxidants. (Photo: Alicia Medina Hoyos/INIA)
Why is purple maize so important?
Purple maize comes from a breed called kulli. The team of researchers led by Medina — who obtained the variety — brought a population of purple maize from Huaraz, Peru, and crossed it with another from Cajamarca. Ten years of breeding gave rise to the INIA 601 maize, characterized by its high yield and high content of anthocyanins and antioxidants that are beneficial to health, cancer prevention, and lowering high blood pressure and cholesterol.
“In 2011 I had the opportunity to go to Japan, followed by working with a team of Japanese experts in Cajamarca,” explained Medina. “There, we started a project that gave more importance to purple maize, not for its production but for its color and therefore anthocyanin content. We saw the characteristic of the color in the husk. In 2013, we determined the amount of anthocyanin in this variety and it turned out that it was higher in the husk than in the cob. That gave us the option to market both parts.”
Medina explains how teamwork with the Japan International Cooperation Agency (JICA) laid the foundations so that today, 500 Peruvian producers “who see that there are profits, are convinced, by listening to their testimonies, in dissemination and training events” grow the maize in 12 of the 13 provinces that make up Cajamarca and market a kilo of cob and purple maize bract at $5 USD each.
There is currently high demand for the product in grain, grain flour, whole, dried, chopped and chopped dried forms; transnational companies based in Lima acquire the purple maize to extract the pigment and anthocyanin, and export it to the United States, Japan and Spain. “In fact, there are companies that produce whiskey with purple maize flour from Cajamarca,” Medina added.
In October 2021, a new agricultural campaign began in the Peruvian fields and Medina continues to promote agriculture based on the dream of seeing purple maize become a flagship product of the country, while becoming the engine of agribusiness in the region of Cajamarca, so that producers benefit in a better way, have more income and see the real magnitude of the grain they grow every day.
Cover photo: Medina assesses purple maize in Peru, which she introduced to the country. (Photo: Alicia Medina Hoyos/INIA)
Women play an integral role in all stages of agrifood systems, yet their unpaid labor is often culturally and economically devalued and ignored. As agriculture becomes more female-oriented, women are left with a double workload of caring in the home and laboring in the fields, leaving no time for leisure. Training programs are often developed with only male farmers in mind, and women can be completely excluded when it comes to mechanization.
The Cereal Systems Initiative for South Asia (CSISA), established by the International Maize and Wheat Improvement Center (CIMMYT), and implemented jointly with the International Food Policy Research Institute (IFPRI), the International Water Management Institute (IWMI) and the International Rice Research Institute (IRRI), is empowering women to become active participants in farming, improving their abilities and confidence through training, expanded access to machinery and better crop management practices. To celebrate International Day of Rural Women, here are stories from three of the women CIMMYT has helped.
Equality in agricultural opportunities
Nisha Chaudhary and her husband Kamal were engaged in agriculture, poultry and pig farming in Nepal, but struggled to provide for their family of seven; their combined income was never sufficient for them to make ends meet.
Through the CSISA COVID-19 Response and Resilience Activity, CIMMYT introduced Chaudhary to mechanization’s advantages and supported her to connect with banks, cooperatives, and machinery dealers to access financial support to introduce agriculture machinery into the family business. She became the first farmer in her village to acquire a mini combine rice mill and offer milling services. The following month, Chaudhary received additional tutoring from the Activity, this time in business management and mill repair and maintenance.
Learning about mechanization was eye-opening for Chaudhary, particularly as the Bankatti community that she comes from uses traditional methods or travels great distances to process grains using machines hired out by other communities.
Chaudhary’s primary income is now from her milling services, offering post-harvest processing services to 100 households and earning more than $150 USD each month; after deducting expenses, she is still able to save around $50 USD every month. She has bought four more cows, increasing the number of cattle she owns from 12 to 16, and is able to make her own for her livestock, saving an additional $20 USD per month.
Giving rural women the credit they deserve
As part of its response to the pandemic, CSISA launched a COVID-19 Response Activity aimed at supporting farmers and service providers to access subsidies and collateral-free loans via the Government of Nepal Kisan Credit Card (KCC) scheme, designed to support agriculture-related businesses. Through this scheme, farmers received hands-on training in providing after-sales support to customers, as well as mentoring to learn how to operate machinery and use it to generate sales and income.
Smallholder female farmers have been subject to many hardships due to lack of access to finance. They are forced to sell produce at low prices and buy inputs at high prices, which makes them suffer financially and physically. Now, loans through appropriate intermediaries can foster rural entrepreneurship and the service delivery business model.
The KCC scheme gave Chaudhary financial security just when she needed it. Her next step, with her newfound confidence, respect of her community, and the support of a collateral-free loan from KCC, will be to launch her own poultry farm agri-business.
Eradicating discrimination in mechanization
The CSISA Mechanization and Extension Activity (CSISA-MEA) enables smallholder female farmers to discover the advantages of scale-appropriate mechanization and its benefits: increased productivity, reduced labor costs, improved financial stability and greater food security.
Rokeya Begum was a stay-at-home mother to three children in Bangladesh and aspired to give her daughter a good education. However, her husband found it difficult to sustain the family as a factory worker due to the high cost of their daughter’s education.
As a result, Begum opted to work in an agriculture machinery manufacturing workshop like her husband. She was initially hesitant to work in a male-dominated workplace but on the other hand realized that this job would mean she could pursue the dream she had for her daughter. She immediately began using her earnings to fund her daughter’s education, who is currently in high school.
Begum was part of the grinding and painting departments at M/S Uttara Metal Industries in Bogura, Bangladesh, for five years. Her weekly wage was equivalent to $12 USD – insufficient to support her family or sustain a decent quality of life.
CSISA-MEA included Begum in skills training, which proved to be a gamechanger. She participated in CIMMYT’s training on spray gun painting, as well as in fettling and grinding skills. As part of both training programs, she learnt how to handle an air compressor paint gun and painting materials, as well as different painting methods. She has also learnt more about keeping herself safe at work using personal protective equipment. “Before the training, I did not know about the health risks – now I don’t work without PPE,” she said.
Begum used to paint the traditional way with a brush, but now the owner permits her to paint with a spray gun with her increased expertise. As a result, she has been promoted from day laborer to contractual employee in painting and grinding, with a new weekly salary of $50 USD. Her confidence has grown to the extent that she is comfortable in an engineering workshop among male coworkers.
Farmer Malti Devi in her field, where she grew wheat through zero-till. (Photo: Nima Chodon/CIMMYT)
Harvesting the benefits of improved practices
Farmer and mother of six, Malti Devi has an infectious smile that hardly reveals the toil and labor of her everyday farm work in India.
She grows wheat on nearly 0.45 acres of leased land. Her husband, a barber, earns an ordinary income that is insufficient for a family of eight. Despite the challenges, Devi has managed to earn income through her efforts in the field and by working as a daily wager in nearby fields.
To support women farmers like Devi, CSISA made efforts to build relationships via on-the-ground partnerships with civil society, women’s cooperatives like JEEViKa in Bihar and Mission Shakti in Odisha, or self-help groups. The team provides in-field demonstrations, training, workshops on best practices and support with access to better seed varieties and extension services. CSISA’s integrated approaches reach these women with information and associated technology that best serves them, while being climate-smart and sustainable.
Devi expressed that due to zero-till practice encouraged by the CSISA team, she saved time in the planting season, which she devoted to working on other’s fields for extra income. “The traditional method would have left me struggling for time, on the field or at home. Practices like zero-till ensured our crop was harvested on time with reduced input costs and resources and enabled a good harvest for consumption, and we could also sell some produce.”
Devi has ensured self-sufficiency for her family through her efforts and hopes to make use of the support in better crop management on offer from CSISA for wheat and other crops.
Cover photo: Rokeya Begum has increased her workshop salary through support from CSISA. (Photo: Abdul Mumin)