Skip to main content

Tag: food security

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

In February 2025, leading voices in the global food and agricultural system came together on the occasion of the Munich Security Conference to discuss how to achieve food security in an increasingly insecure world.

Biological diversity is key to food and nutritional security, but all too often neglected. The loss of agricultural biodiversity (which includes crop diversity) threatens not just the resilience of global food systems but also their productivity. This in turn undermines rural livelihoods and economic activity, increasing the likelihood of migration. It also heightens the risk of price spikes and restricts the availability of staple food products, which may hamper trade in important commodities as governments seek to shore up sufficient stockpiles for domestic markets.

Compromised food systems and agricultural biodiversity loss destabilize and damage communities, potentially to an existential level, while preserving agricultural biodiversity and investing in resilient farms are the foundations for peace and prosperity.  Stakeholders across the international community, including the security community, civilian agencies, civil society and businesses, should act to preserve and use agricultural biodiversity and promote sustainable agriculture by putting farmers first.

As the ultimate providers of life-sustaining nutrition, farmers are indispensable global security partners. Farmers provide a steadying economic force, but only if they have adequate safety, and access to land, investment, innovation, and functioning markets. It is imperative to provide farmers with the support, investment, and opportunities for innovation to adapt to changing global environmental conditions and persevere through social unrest and conflict. Farmers must be able to employ agricultural practices that concurrently promote nutrition, water security, human health, and biodiversity preservation. Prioritizing the delivery of nutrient-rich foods and bio-based products in ways that respond to water and weather stress is essential.

Crucially, for farmers to be successful, they need continued access to agricultural biodiversity. To ensure that, genebanks must be seen as a shared strategic strength.

Reliable, sufficient, and nutritious food for the current and future population depends on the crop diversity that underpins critical research and breeding efforts. Despite its increasing importance in light of a changing climate, the conservation and availability of crop diversity is increasingly at risk: it is declining in farmers’ fields and in the wild, and genebanks are chronically underfunded. Growing food demands, land degradation, and geopolitical tensions threaten crop diversity, and more generally agricultural economies.

Given their essential role in food security, genebanks should be strategically protected and funded. Sufficient attention and resources should be available to ensure an effective and efficient global system of genebanks under the policy umbrella of the International Treaty on Plant Genetic Resources for Food and Agriculture. In addition, the security community should incorporate food security and agricultural biodiversity into national and international security risk assessments and strategies.


Call to Action

It is our duty to alert the world to the threats to security and state stability posed by compromised food production systems and the loss of agricultural biodiversity. We wish to highlight the need for greater attention and investment from all stakeholders across governance, including the security sector, as well as civil society and the private sector.

Leading international organizations in agricultural biodiversity conservation and agricultural research, philanthropies, multinational corporations, and representatives from governments share this concern and endorse this statement arising from discussions at the 2025 Munich Security Conference.

Munich Statement on Agriculture, Biodiversity and Security: there is no security without food security

Scaling conservation agriculture: Victor Munakabanze’s journey from trials to transformative adoption

Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)

Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.

This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.

In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.

The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legume intercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.

A Champion in the Making

Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.

Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.

From Experimentation to Expansion

Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.

However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 mÂČ. The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.

Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.

Inspiring Adoption, One Farmer at a Time

Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.

CIMMYT drives wheat production systems and enhances livelihoods in Ethiopia’s Lowlands through the ADAPT-Wheat Project

Away Hamza, a young and ambitious farmer in Arsi Zone, Oromia region, proudly tends to his wheat field (Photo: CIMMYT)

Wheat plays a pivotal role in Ethiopia’s agricultural landscape. As the country’s second most important staple crop, it is crucial to national food security. Traditionally, wheat cultivation has been concentrated in Ethiopia’s highlands, but this has changed with the introduction of the ADAPT-Wheat project—an initiative designed to address the production challenges faced by Ethiopia’s irrigated lowland areas. Led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR), the project aims to tackle key issues such as the lack of stress-tolerant wheat varieties and limited access to reliable seed sources.

Transforming wheat farming in Ethiopia’s lowlands

The Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project focuses on bridging critical wheat production gaps and introducing innovative solutions for smallholder farmers, particularly in the Afar and Oromia regions. By improving wheat production through new varieties and modern technologies, the project is not only increasing agricultural productivity but also transforming farmers’ livelihoods. The initiative aims to directly benefit 1,000 households, with a much wider impact expected across the two regions.

Financially supported by BMZ, the project aligns with Ethiopia’s broader goal of achieving food self-sufficiency. Researchers and national partners have witnessed a significant shift in wheat production practices, demonstrating the success of innovative agricultural technologies and improved collaboration among stakeholders.

Insights from researchers and partners

Bekele Abeyo, CIMMYT-Ethiopia Country Representative and project leader:

“The ADAPT-Wheat project marks a major milestone in Ethiopia’s wheat production journey. It introduces viable wheat technologies that are well-suited for the irrigated lowlands, enhancing both production and productivity in the pursuit of food and nutritional security.” 

Tolossa Debele, senior researcher and EIARDG representative:

“For years, CIMMYT has been instrumental in advancing Ethiopia’s wheat production system by introducing germplasm, improving varieties, and offering financial, equipment & technical support and training for both researchers and farmers. With the ADAPT-Wheat project, we’ve seen another tangible difference in the livelihoods of smallholder farmers, particularly in the Afar and Oromia regions. The project’s support, including the introduction of modern farm machinery, has not only enhanced mechanization at the farm level but has also contributed significantly to the broader objectives of national agricultural development.”  

Tolossa Debele, senior researcher and EIAR-DG representative (Photo: CIMMYT)

Major milestones and achievements

1. Building capacity for sustainable change

One of the project’s most significant accomplishments has been its strong emphasis on capacity building—both human and physical—to empower local communities in wheat farming. Key capacity-building initiatives include:

  • Training for researchers: Software and scientific writing training to enhance technical skills and scientific contributions.
  • Training of trainers (TOT) for agricultural experts: Development agents and district-level subject matter specialists were trained to share knowledge with farmers.

The project also included seed distribution, experience-sharing visits, and field days to disseminate knowledge and encourage peer learning. A notable outcome has been informal seed exchange among farmers, amplifying the project’s impact.

Through these efforts, the project successfully reached approximately 4,300 households and engaged a wide range of stakeholders, contributing to human capacity development, seed production and distribution, technology diffusion, and sustainable farming practices.

Additionally, infrastructure development—such as the construction of a quarantine facility and installation of air conditioning units at the Werer Research Center—has strengthened research capacity and maintained high standards for agricultural innovation. The procurement of essential farm machinery has also set the stage for more sustainable wheat farming in Ethiopia’s lowlands.

2. Introducing elite wheat lines

The project introduced 505 elite bread wheat lines and 235 durum wheat lines. From these, 111 bread wheat and 49 durum wheat genotypes were identified for their promising traits, including heat stress tolerance, early maturity, and superior yield components. These lines were rigorously tested across diverse agroecological zones to ensure adaptability.

3. Demonstrating modern irrigation technology and mechanization

The project didn’t stop at improving wheat varieties—it also introduced modern mechanization practices to enhance efficiency and yield. In the Afar and Oromia regions, pilot farms demonstrated advanced machinery such as:

  • Subsoilers
  • Bailers
  • Land levelers
  • Planters
  • Ridge makers
  • Multi-crop threshers

These technologies have been showcased at various farm sites to facilitate adaptation and scaling.

4. Releasing and adapting wheat varieties

The project identified eight wheat varieties (four bread wheat and four durum wheat) suited for Ethiopia’s lowland irrigated conditions.

Additionally, two new wheat varieties—one bread wheat and one durum wheat—were officially registered and released for large-scale production. These releases mark a significant milestone in Ethiopia’s efforts to strengthen wheat production systems.

5. Seed production and distribution

Ensuring the availability of high-quality seeds has been another key priority. Through partnerships with research centers, early-generation seeds were provided to private seed producers and farmers’ cooperative unions. Field monitoring ensured seed quality at harvest, resulting in the production of 430 quintals of certified seed.

Women and youth empowerment strategy

The ADAPT-Wheat project has made a deliberate effort to empower women and youth by ensuring they have access to high-quality seeds, training, and technical support. Notably, women comprised 32% of seed distribution beneficiaries, strengthening their role in improving food security and livelihoods.

Voices from the field: Farmers share their stories

Damma Yami from Jeju district, Alaga Dore village

Farmer Damma Yami, has carefully monitors her thriving wheat crop as it nears harvest (Photo: CIMMYT)

Damma Yami’s story is a powerful example of how innovative agricultural initiatives can transform communities, especially in regions facing harsh environmental conditions.

“For many years, we have lived in arid conditions where livestock farming was our primary livelihood. However, with the challenges posed by weather trends, our traditional systems were no longer sufficient to maintain our livelihoods. The introduction of the ADAPT-Wheat project in recent years has reversed this trend. The project brought us wheat cultivation, as a new and golden opportunity for the farming community. We received high-yielding seeds, training, and technical support on farming practices, and soon we began to see impressive results. The benefits of the project are clear: it provides food for our families, generates income to send children to school, and helps meet other basic needs. As a farmer who engaged in this project, I can confidently say that the project has reshaped our future livelihood.”

Yeshiwas Worku from Oromia region, Arsi Zone, Merti district, Woticha Dole village

Farmer Yeshiwas Worku actively monitoring the growth and performance of his wheat crop on his plot, ensuring optimal results through the support of the ADAPT project (Photo: CIMMYT)

Yeshiwas Worku, a 40-year-old farmer was among those who benefited from the project.

Yeshiwas explains that before the project, wheat cultivation was not traditionally practiced in his area, but it has now become a game-changer for the community. The introduction of modern farming tools, machinery, and access to improved crop varieties has been key to their success. With the help of the project, wheat production has not only become their main source of income but has also helped farmers gain confidence in their ability to sustain their livelihoods.

“We are now familiar with modern farming tools, machines, and practices thanks to the implementing partners of the ADAPT project. We also have access to improved crop varieties, which are crucial for better production and increased income. Now, wheat production has become the main source of our livelihood. This alternative farming opportunity has not only boosted our confidence but has also allowed us to secure a more sustainable livelihood for my family and me. I am deeply grateful to the project implementing partners for playing such a crucial role in transforming our lives. The impact has truly been transformative.”

A transformative impact on wheat production

The ADAPT-Wheat project, alongside CIMMYT’s ongoing work in Ethiopia, has significantly improved wheat production systems and enhanced the livelihoods of smallholder farmers in the lowland regions. More than just a This project is technological intervention, the project serves as a lifeline for smallholder farmers. By introducing innovative wheat technologies, improving seed availability, and empowering local communities, it directly contributes to Ethiopia’s food security goals while fostering economic growth and resilience in rural areas.

As Ethiopia continues its journey toward agricultural self-sufficiency, the success of the ADAPT-Wheat project serves as a model for sustainable agricultural development.

Bridging borders: A South-South exchange between Ethiopia and Nepal to tackle soil health challenges

CIMMYT and Nepalese delegation and Debre Zeit Agricultural Research Center research team in the field (Photo: CIMMYT)

Soil health is fundamental to agricultural productivity, food security, and climate resilience. In Ethiopia and Nepal, deteriorating soil conditions—driven by acidity, nutrient depletion, and land degradation—pose a significant challenge to farmers and policymakers alike. Addressing these issues is not just a technical necessity but a pathway to ensuring long-term agricultural sustainability and economic stability.

Recognizing these shared challenges, CIMMYT facilitated a South-South exchange between Ethiopia and Nepal to foster collaboration, exchange knowledge, and explore innovative solutions for improving soil health.

Shared challenges, shared solutions

Both Ethiopia and Nepal face persistent soil health challenges that hinder agricultural productivity. In Ethiopia, soil degradation—stemming from issues like soil acidity, salinity, and nutrient depletion—has become a barrier to achieving higher agricultural productivity. Similarly, Nepal is navigating soil health concerns amidst small landholdings, urban migration, and climate impacts.

For both nations, sustainable soil management is critical to strengthening their agricultural sectors. This exchange provided an opportunity for researchers, policymakers, and agricultural experts to learn from each other’s experiences, leveraging successful approaches to improve soil quality and boost productivity.

CIMMYT and Nepalese delegation listening to explanations by Experts and technicians about the various activities taking place at the soil and plan analysis laboratory
(Photo: CIMMYT)

A unique exchange of knowledge

From November 25–28, a Nepalese delegation—including CIMMYT scientists and representatives from Nepal’s Ministry of Agriculture and Livestock Development (MoALD) and the Nepal Agricultural Research Council (NARC)—visited Ethiopia to gain insights into its soil health initiatives.

Ethiopia has made significant progress in soil management through collaborations between government agencies, research institutions, and international partners. With CIMMYT’s support, the country has developed a National Soil Information System (NSIS), a comprehensive data-driven approach that guides interventions to improve soil health, increase productivity, and enhance food security.

During the visit, the Nepalese delegation met with leading Ethiopian institutions, including:

  • The Ministry of Agriculture (MoA)
  • The Ethiopian Institute of Agricultural Research (EIAR)
  • The Agricultural Transformation Institute (ATI)
  • The Holeta Agricultural Research Center
  • The National Agricultural Biotechnology Research Center

Through site visits and discussions, the delegation explored Ethiopia’s Vertisol management strategies, sub-soil acidity solutions, and data-driven soil health policies—areas that could be adapted to Nepal’s agricultural landscape.

A shared commitment to agricultural innovation

Beyond knowledge exchange, the visit served as a catalyst for long-term collaboration between the two countries. CIMMYT has been working in Ethiopia for over three decades, supporting research and technology development to enhance soil health and food security. In Nepal, CIMMYT scientists collaborate with national partners to strengthen agricultural commercialization and climate resilience.

During their visit, Nepalese delegates expressed particular interest in Ethiopia’s Geo-Nutrition approach, which connects soil quality to human health by analyzing how soil nutrients influence the nutritional value of crops. Nepal sees great potential in adopting this model to enhance both agricultural and public health outcomes.

Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development (Photo: CIMMYT)

Shanta Karki, Joint Secretary at Nepal’s Ministry of Agriculture and Livestock Development, reflected on the visit: “The insights we gained in Ethiopia will be instrumental in improving our soil health strategies.

We see great potential for collaboration between Ethiopia and Nepal in tackling common challenges like soil acidity and water management.” She added that another key area of learning was Geo-Nutrition, an innovative field that connects soil health to human health.

The concept, which Ethiopia has been actively exploring, looks at how soil quality influences the nutritional value of crops and ultimately the health of the populations that depend on them. The Nepalese delegation saw this as an opportunity to further develop their own approach to improving soil and human health simultaneously.

Looking Ahead: Building stronger partnerships

Shanta Karki, Joint Secretary at the Ministry of Agriculture and Livestock Development (MoA), presents a token of appreciation to Dr. Samuel Gameda, Senior Soil Scientist at CIMMYT-Ethiopia, in recognition of his efforts to strengthen partnerships between Nepal and Ethiopia in the framework of improving soil health (Photo: Desalegne Tadesse/CIMMYT)

As CIMMYT continues to facilitate South-South exchanges, the goal is to adapt successful models from Ethiopia to Nepal while drawing lessons from Nepal’s unique agricultural landscape. The delegation left Ethiopia with renewed motivation to enhance soil health, not just for the benefit of farmers but for broader food security and economic resilience.

Narayan Prasad Khanal, Business Development Manager at CIMMYT Nepal, emphasized the importance of such exchanges. “The lessons learned here, particularly on sub-soil acidity management and Geo-Nutrition, will be crucial for enhancing our regulatory systems and addressing challenges in Nepal’s agriculture. This experience has shown us how important it is to adapt successful models from other countries and incorporate them into our own agricultural practices.

Dr. Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), shares his reflections and lessons learned during the experience-sharing visit (Photo: Desalegne Tadesse/CIMMYT)

Shree Prasad Vista, Senior Scientist at the Nepal Agricultural Research Council (NARC), was particularly fascinated by Ethiopia’s innovative work on Vertisol management and soil acidity. He remarked, “The insights we gained from CIMMYT, particularly on Geo-Nutrition and soil acidity, will help enhance our agricultural practices and regulatory systems in Nepal.”

A Path toward collaborative solutions

As Ethiopia and Nepal continue to navigate similar agricultural challenges, the knowledge gained from this exchange will play a crucial role in shaping future soil health strategies. By learning from each other’s successes, both countries are positioning themselves to implement sustainable, climate-resilient soil management practices tailored to their unique context.

This exchange stands as a powerful example of how international collaboration fosters innovation, resilience, and food security. Through shared expertise and collective action, Ethiopia and Nepal are laying the foundation for stronger agricultural systems that will benefit future generations.

Seeds of change: How QDS is transforming smallholder farming in Tanzania

In Tanzania, access to high-quality seeds has significantly benefited smallholder farmers by improving their livelihoods. Despite impressive economic growth, poverty reduction has not kept pace, and malnutrition rates remain a challenge.

The Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, funded by the Bill & Melinda Gates Foundation (BMGF), led by CIMMYT, and implemented in Tanzania by the Syngenta Foundation for Sustainable Agriculture (SFSA), is an excellent example of the positive impact of supporting smallholder farmers by ensuring seed availability, access, and affordability.

Tanzanian smallholder farmers face challenges in increasing yields and incomes due to a lack of affordable, high-quality seeds, inadequate agronomic training, and limited access to reliable markets. Distance from seed suppliers and agro-dealers, along with impassable roads, exacerbate the situation. In addition, the distribution networks of private companies that produce certified seeds are very limited, especially for underutilized crops.

The Quality Declared Seeds (QDS) system is a seed production system that ensures seed meets a minimum quality standard through inspection by an official seed certification system or a designated inspector from the local government authority. SFSA, through the AVISA project, is focusing on supporting the production of QDS by community-based groups for common bean and groundnut varieties in several districts in Tanzania.

A Groundnut QDS field owned by Chamwiilee Agro-Live Group in Bahi District (Photo: SFSA)

Two QDS-producing farmer groups received free Early Generation Seed (EGS) capital, consisting of 200 kg of Selian 13 bean seed, 150 kg of Tanzanut seed, and 50 kg of Naliendele 2016 groundnut seed. As a result, the groups sold 1.35 MT of QDS for common beans and 2.00 MT of groundnuts to individual farmers in the Karatu and Bahi districts respectively.

“This initial investment by the AVISA project has, therefore, improved the incomes of these groups, and we are seeing an increased demand for larger volumes of improved seeds within seed value chain actors and off-takers,” states the Tanzanian Program Coordinator, Papias Binagwa.

Women farmers from Chamwiilee Agro-Live Group in Bahi District proudly showcase their groundnut QDS harvest (Photo: SFSA)

Both the Tanzania Official Seed Certification Institute (TOSCI) and the Tanzania Agricultural Research Institute (TARI) have been instrumental in supporting this initiative by providing training to farmers on current regulations and seed production practices. The QDS-producing farmer groups have been hosting local smallholder farmers for informational visits and field demonstrations to showcase the use of improved varieties and agronomic practices that enhance yields. As a result, QDS-producing farmers are full of praise.

“Thanks to this initiative, I have more sources of income as my yields have significantly increased from the seeds I sourced from TARI-Selian and ALSSEM seed company. The training has improved my seed handling and management. My extra agronomic knowledge will also benefit my fellow farmers,” says Baraka Hamis from Karatu district.

Joyce Yuda from the Chamwiilee Agro-Live QDS-producing group further stated, “Thanks to the seed sales, I have paid my children’s school fees and renovated my house. My food is assured, and I have economic freedom.”

Driving Varietal Turnover: Insights from Market Intelligence and Seed Systems in Tanzania

How can market intelligence and seed system insights drive varietal turnover for groundnut, sorghum, and bean stakeholders? This was the central question explored during a series of workshops convened by the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) and The Accelerated Varietal Adoption and Turnover for Open-Pollinated Varieties (ACCELERATE) projects.

Held from October 21-25, 2024, across three locations in Tanzania, these workshops were designed to identify practical solutions for improving varietal turnover.

Organized by CIMMYT in collaboration with the Tanzania Agricultural Research Institute (TARI), the Alliance of Bioversity & CIAT, the Pan-Africa Bean Research Alliance (PABRA), and the Tanzania Official Seed Certification Institute (TOSCI), the workshops brought together stakeholders across the agricultural value chain.

The AVISA Project focuses on modernizing crop breeding programs and strengthening seed systems to enhance the productivity, resilience, and marketability of key dryland cereals and legumes in sub-Saharan Africa. By ensuring that smallholder farmers have access to high-quality improved varieties, AVISA contributes to better food security, nutrition, and economic development.

ACCELERATE, complementing AVISA’s efforts, focuses on market-driven adoption strategies by analyzing the requirements and constraints of both large- and small-scale marketplace traders. It aims to catalyze the uptake of new varieties through market intelligence-driven interventions and foster partnerships across formal, semi-formal, and informal seed sectors to accelerate varietal adoption and turnover.

The workshops opened with expert presentations from breeders and seed system specialists from CIMMYT, CIAT, and TARI. Key topics included the adoption of improved seeds for groundnuts, sorghum, and beans; groundnut processing for peanut butter; the sustainability of digital inclusion initiatives; challenges and opportunities in seed systems; and the increasing demand for crops such as groundnuts, sorghum, and beans. The speakers provided valuable insights into crop production, seed availability, market demand, and the desired traits for improved crop varieties.

Dar es Salaam, Arusha, and Dodoma – Stakeholders across Tanzania gathered to explore how market intelligence and seed system insights drive varietal turnover for groundnut, sorghum, and bean value chain (Photo: Marion Aluoch/CIMMYT)

Three separate sessions were held in Arusha, Dodoma, and Dar es Salaam, bringing together farmers, processors, traders, and researchers to deliberate on systemic challenges affecting varietal turnover. Participants then identified practical solutions to enhance the adoption of improved varieties of sorghum, beans, and groundnuts.

Opening each workshop session, TARI representatives emphasized the critical role of high-quality seeds in realizing higher crop yields and achieving agricultural growth.

“We are here to ensure improved varieties leave shelves and reach farmers’ fields in efforts to support the envisaged 5% annual growth in agriculture,” remarked Fred Tairo, the TARI Manager in Dar es Salaam. In Arusha, Nicholaus Kuboja, TARI Center Director, Selian, highlighted the importance of market intelligence. “Market intelligence is crucial, as market access has been a persistent challenge across African countries, particularly for smallholder farmers, in securing profitable markets for their produce.”

The Director General of TARI, Thomas Bwana, speaking in Dodoma, focused on partnerships. “We are actively promoting the production and distribution of early generation seed, particularly breeder seed, for access by downstream seed producers. Through collaborations with other value chain actors, we strive to ensure that these seeds meet the quality standards needed by both seed and grain producers, as well as consumers who are keen on specific varietal traits,” he noted.

The subsequent discussions underscored the importance of collaboration and innovation to meet the rising demand for these vital crops.

Identifying Challenges

In experience sharing among participants across the three workshops, some key challenges were brought to light. For instance, farmers reported limited access to certified seeds as a major barrier to increasing productivity. A farmer from Dodoma expressed concern that current seed distribution networks often do not reach remote areas, leaving farmers with no option but to use inferior seeds from the sources available.

“We want to use quality seed, but the distribution networks don’t reach us,” he said. On the other hand, traders expressed frustration over inconsistent supplies of high-quality grain produce, which is also aggravated by poor grain handling due to inadequate storage conditions leading to contamination.

Stakeholders in Arusha in a group discussion, sharing insights, challenges and strategies to enhance market-driven adoption of improved crop varieties. (Photo: Marion Aluoch/CIMMYT)

One groundnut trader noted, “Poor pre- and post-harvest handling has led to smaller, shriveled nuts, making it difficult for traders to meet market expectations.” Processors echoed these concerns, highlighting aflatoxin contamination as a significant problem that undermines both product safety and marketability. They stressed the need for better practices. “We need better practices at every stage of the value chain to minimize aflatoxin contamination in the grains sourced for processing,” emphasized one processor.

Additional challenges emerged, with common bean farmers highlighting difficulties with post-harvest storage and pest damage, which reduced both quality and market value. Processors, meanwhile, pointed out consumer misconceptions that hinder the acceptance of improved varieties. For instance, white sorghum varieties that naturally turned brown during processing were sometimes perceived as inferior, underscoring the need for better consumer education.

Unveiling Solutions

Despite the challenges, the workshops were a source of optimism, as well as underscoring viable, innovative solutions and actionable strategies to drive progress. Participants explored newly released crop varieties, including TARI Sorg 1 and TARI Bean 6, which offer higher yields, disease resistance, and improved nutritional content. Stakeholders in Dodoma emphasized the use of digital tools such as WhatsApp channels and SMS for real-time updates on seed availability and agronomic practices. “Modernizing how we share knowledge can bridge gaps between farmers and researchers,” remarked one participant.

Capacity building emerged as a key strategy for tackling many of the systemic issues discussed. Farmers called for more training on seed handling and post-harvest practices to reduce losses and improve crop quality. Processors stressed the need for targeted interventions for aflatoxin management, a critical step in ensuring the safety and marketability of groundnuts. Researchers and agricultural organizations underscored the importance of aligning breeding programs with market needs.

In Arusha, discussions centered on developing groundnut varieties tailored to specific processing needs, such as improving peanut butter quality to meet consumer preferences and market standards.

Participants engage in a practical session during the Dar es Salaam workshop, exploring digital tools and market insights to enhance seed systems and varietal adoption. (Photo: Marion Aluoch/CIMMYT)

Expanding the seed distribution network also emerged as a key priority. TARI committed to scale up the production of Quality Declared Seed (QDS) and strengthen partnerships with private seed companies to ensure a consistent supply of high-quality seeds across the country. “Quality seeds must reach every corner of the country,” affirmed a TARI scientist. The stakeholders also called on breeding programs to align with market demands, emphasizing the need to tailor improved varieties to specific consumer and processor requirements.

Insights from Stakeholders and Actionable Strategies

Breakout sessions provided a platform for stakeholders to articulate their specific needs. Farmers from Dodoma and Dar es Salaam shared a common observation of increasing demand for groundnuts, sorghum, and beans, largely driven by population growth and international market expansion. In Dodoma, farmers emphasized that improved crop varieties had significantly boosted cultivation over the past decade.

Despite this progress, they highlighted the lack of drought-resistant varieties and limited access to affordable, high-quality seeds as persistent challenges. In Dar es Salaam, farmers noted that while demand for the crops had risen, their ability to meet this demand was hampered by limited seed availability and education on effective usage. Both groups agreed that weak seed distribution networks, high seed prices, and insufficient knowledge undermine productivity.

Stakeholders in Dodoma engage in discussions, sharing their insights on enhancing varietal adoption. (Photo: Marion Aluoch/CIMMYT)

Processors and traders from both Arusha and Dar es Salaam echoed these concerns but added insights into market dynamics. In Arusha, processors identified aflatoxin as a critical challenge, with inadequate farmer knowledge on grain handling practices exacerbating the issue. Processors also emphasized the need for nutrient-enhanced beans and groundnuts suited for specific products like peanut butter and flour. Traders in Arusha highlighted the need for pure white sorghum and beans free from pests to meet growing demand, particularly for export markets.

As the workshops concluded, participants identified key strategies to strengthen agricultural resilience. These included improving the seed supply chains, enhancing market linkages, and investing in continuous learning and education initiatives.

Echoing this vision, the TARI Director General emphasized in Dodoma, “This is just the beginning. By working together, we can ensure that every farmer, processor, and trader has the tools and knowledge needed to thrive in a rapidly evolving agricultural landscape.”

An entrepreneur’s journey in aquaculture: Fueled by partnership, innovation, and resilience

Cosmas Chachi’s demo fishpond – one of the nine ponds where he trains locals in fish farming (Photo: Cosmas Chachi)

Cosmas Chachi, a 46-year-old businessman, owns Triple Blessing Supermarket in Zambia’s Luwingu District. In 2000, Cosmas identified an opportunity to address the growing demand for fresh fish in his community and started selling the product in his local area. Like many rural entrepreneurs, Cosmas faced initial challenges such as unreliable supply chains, insufficient cold storage, and limited access to financing, all of which prevented him from meeting the rising demand from local customers. Undeterred, Cosmas embarked on a transformative journey into aquaculture.  

The turning point for Cosmas occurred in April 2023 when he participated in a training program on integrated aquaculture under the aegis of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, led by CIMMYT. The training implemented by the International Water Management Institute (IWMI), one of the key implementing partners of the project, emphasized sustainable intensification and equipped Cosmas with advanced skills in sustainable feed management, water quality control, efficient harvesting methods, and business management, among other areas.   

A view of Cosmas Chachi’s Triple Blessings Supermarket, a thriving hub where he sells fish from his fishponds and manages his off-taking business (Photo: Cosmas Chachi)

“The training equipped me with expert knowledge in aquaculture management and skills to design and operate efficient fishponds,” Cosmas said. 

With his new-found expertise, Cosmas upgraded three of his existing fishponds and built six more, each measuring 13×15 meters. To meet customer demand, he introduced a strategic stocking system, staggering the placement of 1,000 fingerlings across his nine ponds. This innovation ensured consistent fish supply even during Zambia’s annual fish ban. “By stocking and harvesting my ponds, I can maintain a steady supply even during the national fish ban when local supply decreases because some other farmers who supply my supermarket depend on fish from natural water bodies,” Cosmas shared.  

Creating livelihoods and building resilience

Cosmas’ aquaculture enterprise has become an economic engine in his community, employing 25 permanent workers, primarily local youth, and offering seasonal jobs to 12 more. For Emmanuel Makumba, a shop attendant at Triple Blessing supermarket for the last eight years, the opportunity has been life changing. “The job at the supermarket helped me relocate from my village, build my own house, and send my children to a private school,” said Emmanuel. 

In June 2024, his business received a significant boost with the installation of a 15-ton cold storage facility, funded by IWMI through the AID-I project. The upgrade significantly reduced post-harvest losses and enhanced Cosmas’ fish storage capacity. It ensures a steady supply for his business and the farmers he supports, strengthening the local aquaculture value chain.  

“In the past, we could only purchase 50 to 100 kilograms (kg) of fish at a time, selling it at US$ 2.50 per kg,” Cosmas shared. With the new cold storage facility, Cosmas can now buy and store up to 700 kg of fish per harvest without the risk of spoilage. The effort not only secures a reliable supply for his business but also creates a dependable market for local consumers, fostering growth and sustainability in the region’s aquaculture sector.  

A ripple effect of progress: Expanding aquaculture for community impact

Today, Cosmas’ success goes beyond his supermarket. He owns a thriving restaurant, offering customers a unique dining experience with fresh fish from his ponds. “The training I received during the AID-I workshops helped me transform my passion for aquaculture into a successful business. Now, in addition to the supermarket, I own a popular restaurant and outdoor fishponds, offering customers a unique dining experience,” he said.  

Fish from local fish farmers before being stocked at Triple Blessings Supermarket (Photo: Cosmas Chachi)

Building on his business success, Cosmas has further expanded his impact by transforming his fishponds into practical classrooms, offering free, hands-on training to aspiring fish farmers. Over the past year, he has trained 50 farmers in sustainable aquaculture best practices.  

As more farmers in Luwingu adopt these practices, local food security improves, and income streams diversify. Cosmas’ leadership is stabilizing the community’s food supply and improving diets with nutrient-rich fish. This aligns with AID-I’s broader goal to promote sustainable and scalable agricultural models.  

By September 2024, the AID-I project, through IWMI’s efforts, had supported 297 fish farmers with training, market linkages, and tools for success across Northern and Luapula Provinces: creating a ripple effect of progress and also addressing Zambia’s fish supply and demand gap. The project empowers communities to adopt innovative and sustainable aquaculture practices, driving growth in fish production and ensuring a more reliable supply to meet the needs of a growing population. As fish is a critical source of protein and essential nutrients, fostering a sustainable aquaculture sector is vital for supporting Zambia’s food security and nutritional goals.  

Cosmas’ journey exemplifies the power of partnerships, innovation, and resilience in driving community progress. It underscores the potential for a robust aquaculture sector in Zambia, where challenges spur solutions and success benefit entire communities. Through AID-I’s comprehensive interventions, Cosmas’ story of transformation offers a vision for sustainable development in rural Zambia, led by innovation and community empowerment.

The first harvest from the fish demonstration was attended by Mr. Sakala, District Livestock Coordinator, who was invited to observe the progress and assess the impact of the initiative (Photo : Cosmas Chachi)

 

Innovation and Partnerships for a Food, Nutrition, and Climate-Secure Future

Every two years, CIMMYT hosts its Science and Innovation Week (SIW), a moment not only for reflection but also for action. SIW2025 is more than a gathering; it is a call to action, challenging us to create lasting change and transformative impact. Each day, we wake up with a bold mission: to make our work meaningful to the ultimate beneficiaries – smallholder farmers.

To kick off this year’s Science Week, CIMMYT Director General Bram Govaerts reminded participants that at the heart of our work is real-world impact. More than an opportunity to evaluate strategies, Science Week is about envisioning and driving the future of food systems.

“CIMMYT’s work connects communities worldwide, from labs to corn harvests. Your tireless research deserves accolades as profound as a Nobel Prize” said Ted McKinney, CEO of the JS National Association of State Departments of agriculture, NASDA & Former USDA Undersecretary. Recognizing this urgency, CIMMYT convened leading scientists, researchers, and decision-makers at its headquarters in Texcoco, Mexico, for Science Week 2025.

This flagship event brought together experts at the intersection of agriculture, climate and food security to foster collaboration and inspire action for resilient food systems. With CIMMYT’s research agenda focused on addressing the world’s most pressing agricultural challenges, Science Week served as a key platform to shape the future of innovation, strengthen partnerships, and accelerate impact on global food security. Through knowledge sharing and strategic discussions, participants explored transformative solutions that will empower smallholder farmers, build crop resilience, and ensure a sustainable future for food systems worldwide.

A platform for collaboration and innovation

The first day set the stage for a dynamic exchange of ideas, bringing together global experts to address agriculture’s most pressing challenges. Discussions explored climate-smart agriculture, the role of digital transformation, and the resilience of seed systems, highlighting the need for innovation to ensure food security. Advances in crop breeding and cutting-edge research took center stage, reinforcing CIMMYT’s commitment to developing scalable, science-based solutions that empower farmers.

Sessions covered a wide range of topics, including climate-smart agriculture, digital transformation in agriculture, resilience of seed systems, and advances in crop breeding. High-level panels and thought leaders highlighted the importance of collaboration, from integrating AI and strategic partnerships to amplifying research impact, while deep diving into CIMMYT’s scientific breakthroughs. The challenge was clear: think beyond the event, push boundaries, and make a meaningful impact that extends far beyond this week.

From data-driven decision-making to sustainable food production, discussions reinforced the need for strategic collaboration, digital transformation, and responsible innovation. With a strong focus on open data and climate resilience, day two underscored CIMMYT’s commitment to translating science into real-world impact for farmers and food systems worldwide.

With CIMMYT generating around 122 datasets annually, experts stressed the importance of improving data quality, integrating new information, and standardizing workflows for greater transparency and efficiency. The discussions also tackled food security, conflict, and economic instability. With 8.4 million people affected by food insecurity in Latin America and the Caribbean, experts highlighted the urgent need for social protection systems, digital solutions, and adaptive policies.

Moving forward, CIMMYT must bridge science and action, ensuring that research translates into tangible solutions for farmers and food systems worldwide – because resilience is not just an option; it is the foundation of sustainable agriculture.

Scientific excellence in action

As Science Week 2025 drew to a close, discussions focused on two key themes: partnerships and communicating impact. To kick off the session, Aaron Maniam, Fellow of Practice and Director, Digital Transformation Education, Oxford University Blavatnik School, challenged participants to rethink collaboration – not just as coordination but as a balance between integration and fragmentation. Collaboration is non-negotiable, and positioning CIMMYT as the partner of choice will be critical to advancing its mission.

Today’s challenges are too complex to tackle alone, and strategic partnerships are essential to amplify impact, leverage resources, and scale innovation. But successful partnerships go beyond collaboration – they require trust and shared goals. Science must be accessible, compelling, and strategically packaged to engage diverse audiences and drive real-world change. As we move forward, the challenge is clear: Embrace, amplify, and boldly communicate our impact to shape the future of food and agriculture. The work does not stop here, this is just the beginning of the next chapter in transforming global food systems for a food and nutrition secure world.

Transforming Nigeria’s sorghum seed system with the FCMSS approach

In Nigeria’s drylands, a seed revolution is transforming the landscape, bringing hope and prosperity to farmers in even the most remote communities. Through the innovative Farm and Community-Managed Seed System (FCMSS) approach, farmers, women’s groups, and seed entrepreneurs are gaining access to high-quality sorghum seed, driving agricultural transformation in underserved regions.

Championed by the Institute for Agricultural Research (IAR) and the Dryland Crops Program through the AVISA project led by CIMMYT, this initiative bridges the gap between traditional and formal seed systems, delivering life-changing solutions to last-mile farmers and enhancing rural livelihoods across the country.

Empowering communities through innovation

The FCMSS approach combines community-driven strategies with institutional support to ensure improved seed availability, accessibility, and adoption. The impact has been profound, with three newly released sorghum varieties—SAMSORG 52, SAMSORG 52, and SAMSORG 53—transforming the agricultural landscape. These varieties are being produced locally, ensuring that farmers in nearby communities have access to seeds tailored to their needs.

Farmers achieve record yields

For farmers like Abdullahi Danliti Dawanau, the FCMSS approach has been life changing. Cultivating SAMSORG 52, Dawanau achieved an impressive 4 tons per hectare—the best yield of his farming career.

“This is the best yield I’ve achieved in all my years of farming,” he shared, highlighting the transformative potential of the new sorghum varieties.

His farm, located near the Dawanau International Grain Market in Kano State, has become a demonstration site, inspiring fellow farmers and drawing admiration for the high yield and quality of the variety. Many even mistake it for an imported hybrid, underscoring its quality and productivity.

Women are leading the production and distribution of new sorghum varieties across several states in Nigeria. (Photo: Muhammad Ahmad Yahaya/IAR )

Women farmers leading the way

Women are emerging as key drivers of this agricultural revolution. The Yakasai Women Farmers Group in Kano State, led by Rabi Yakasai, is spearheading efforts to produce and distribute the new sorghum varieties. Their success has led to an overwhelming demand for the seeds in states such as Kano, Jigawa, Gombe, Bauchi, and Yobe, as well as in neighboring Niger Republic.

“These varieties fit perfectly into our farming systems,” said Mrs. Yakasai, emphasizing how they cater to local agricultural needs. SAMSORG 52, for instance, is an early-maturing and short-statured variety that aligns well with relay cropping systems, particularly when intercropped with cowpea. Similarly, SAMSORG 52 and SAMSORG 53 are medium-maturing varieties suitable for intercropping with millet and maize. These varieties provide tailored solutions to enhance productivity and sustainability for farmers in the region.

Following their participation in TRICOT on-farm trials, the group is working to meet increasing demand across multiple states.

“We need support to scale up seed production and meet these orders,” added Mrs. Yakasai.

Government and industry support success

The success of the FCMSS approach has garnered support from state governments and private sector stakeholders. During the 2nd National Sorghum Conference, held in Gombe State on December 4-5, 2024, the Gombe State Commissioner for Agriculture reaffirmed the state’s commitment to adopting climate-smart, early maturing sorghum varieties.

Private companies are also getting involved. GreenPal Global Limited, a prominent seed company, is stepping up its efforts to meet growing demand. Following successful trials of the new varieties, the company plans to scale up the production of certified seed by 2025. Similarly, Northern Nigeria Flour Mill, the country’s largest sorghum processor, is working with farmer associations such as SOFAN and NASPPAM to source quality sorghum for its flagship product, Golden Penny Dawavita—a key ingredient in staple foods such as Tuwo (a dish made from sorghum or millet flour, cooked into a thick, smooth paste or dough-like consistency) and Dumame (a dish made from fermented sorghum or millet flour, often cooked into a thick porridge).

Locally produced grains of the new sorghum variety, ensuring farmers in nearby communities have access to seeds tailored to their needs. (Photo: Muhammad Ahmad Yahaya/IAR )

Ensuring quality and certification

The National Agricultural Seed Council (NASC) is actively supporting the initiative by training seed entrepreneurs and monitoring seed production to ensure quality standards. During a Brown Field Day in Bagadawa community, Kano State, NASC commended the progress made under the FCMSS and the active involvement of farmers and women’s groups.

“The progress of the FCMSS and the active participation of farmers and women’s groups are truly commendable,” said the North-West Regional Director of NASC.

A brighter future for the drylands of Nigeria

The FCMSS approach is more than a seed production system—it is a movement transforming the lives of farmers and communities. By building a resilient seed system, empowering local communities, and driving economic growth, the initiative is ensuring food security and prosperity in Nigeria’s drylands. With growing momentum, the future is bright for farmers, processors, and entrepreneurs, signaling a new era of agricultural success.

Time Running Out to Avert Food Catastrophe, but There Is Hope

Time is of the essence, but we are not making the most of it in the fight against hunger. In 2015, world leaders agreed to set ambitious targets for addressing humanity’s most pressing concerns, which shaped the 2030 Agenda and became widely known as the Sustainable Development Goals (SDGs). We are only five years from 2030, but SDG 2 Zero Hunger has completely slipped through our fingers. In 2023, there were between 713 million and 757 million undernourished people in the world. The latest estimates point to an uncomfortable truth: hunger is on the rise, and we will not meet SDG 2 by the end of this decade.

The outlook is so bleak that 153 Nobel and World Food Prize recipients signed an open letter published on Jan. 14 calling on political and business leaders worldwide to seriously fund “moonshot” efforts to change our current trajectory and meet the food requirements of a global population of 9.7 billion people by 2050. The renowned signatories are sounding the alarm at the dawn of 2025 because it takes decades to reap the rewards of agricultural research and development programs, but also because yields of staple crops are stagnating or even declining around the world at a time when food production should increase between 50% to 70% over the next two decades to meet expected demand.

Joint 2024 World Food Prize Laureate and former U.S. Envoy for Global Food Security Cary Fowler coordinated the global appeal, which was discussed during a hearing with the US Senate Committee on Agriculture in Washington, D.C. The open letter published afterward listed the most promising scientific breakthroughs that should be prioritized to sustainably increase food production, including “improving photosynthesis in staple crops such as wheat and rice to optimize growth; developing cereals that can source nitrogen biologically and grow without fertilizer; as well as boosting research into hardy, nutrition-rich indigenous crops that have been largely overlooked for improvements.”

The good news is that we already have the platform of cutting-edge science to develop and scale up these innovations where they are most needed in Mexico and in nearly 90 countries where CIMMYT works with the support of an unrivalled network of international donors and local partners.

Increasing Wheat’s Ability to Capture, Use Sunlight

Varieties of wheat plants differ in their capacity to use sunlight to produce grain. The main goal of breeders is to increase wheat’s yield potential to harvest more grain sustainably and from the same area of arable land. At present, current breeding can increase wheat’s average yield potential by 1% annually, but it would be necessary to achieve average yield increases of at least 1.7% year after year to meet the expected demand by 2050. Research is focusing on photosynthesis in wheat spikes to boost yield potential. Spike photosynthesis adds on average 30% to grain yield of elite wheat lines developed at CIMMYT, but these gains can go as high as 60% in wheat’s wild relatives and landraces. The strategy is to tap into this underutilized potential to boost yields of modern wheat varieties that are also better adapted to a warming and drier world, and resistant to known and new pests and diseases. We wish to accelerate this research and are seeking a US$100 million investment in the platform.

Boosting Nitrogen Use Efficiency in Wheat

Wheat is the world’s largest nitrogen fertilizer consumer, which contributes significantly to greenhouse gas emissions and soil degradation. Groundbreaking research led by CIMMYT is increasing wheat’s ability to use nitrogen more efficiently, thereby reducing its dependency on nitrogen fertilizer by between 15% to 20%, depending on regional farming systems. Increased nitrogen use efficiency has been achieved after successfully transferring a natural ability to inhibit biological nitrification from wheat’s wild relatives to modern wheat varieties. Biological nitrification inhibition (BNI) is a natural process that provides wheat plants with a more sustained source of nitrogen available in the soil, thereby increasing their nitrogen use efficiency. BNI wheat is a game-changing innovation that will contribute to significantly reducing agriculture’s nitrogen footprint sustainably without compromising yields or grain quality. While the BNI research platform has received its first investment for wheat, an additional investment of US$30 million per crop would expand the platform to maize, millet, and sorghum.

Improving and Scaling Up ‘Opportunity Crops’

CIMMYT recently partnered with the United Nations Food and Agriculture Organization (FAO) to advance the global Vision for Adapted Crops and Soils (VACS) endorsed by the G7, which aims to sustainably increase the production of diverse, nutritious, and climate-adapted indigenous and traditional food crops grown on healthy soils. We have identified seven “opportunity crops,” including pearl millet, finger millet, pigeon pea, cowpea, mung bean, and amaranth, that can be grown sustainably and significantly improve nutrition and food security in sub-Saharan Africa. At present, the VACS partner network is working hard to develop new varieties of these opportunity crops and to build pathways for African farmers to access improved seeds and markets for their produce. The soil component of the VACS movement is underfunded, so we are looking for a US$500 million investment to launch a strong VACS Soils initiative.

A Parting Shot

Improved photosynthesis and increased nitrogen use efficiency in wheat, and nutrient-dense indigenous crops are exciting “moonshot” efforts already building resilient food systems that may help humanity avert a global food catastrophe in two decades’ time. But political will and available funding for agricultural research and development will ultimately determine if these and many more urgently needed scientific breakthroughs will reach their full potential in the fight against hunger in a more food insecure and unstable world.

Bram Govaerts is CIMMYT’s director general. He is an international authority in maize, wheat and associated cropping systems who works for a successful transformation of small-scale farming in Africa, Asia and Latin America. Govaerts advises public, private and social organizations worldwide and is an active member of research groups and associations, including the American Society of Agronomy and Cornell University’s Andrew D. White Professors-at-Large Program.

Read the original article

Advisory services boost bean farming in Malawi

For Malawian farmers Monica Levison and Liden Mbengo, the 2023-24 cropping season posed distinct challenges compared to prior years. Like many of their fellow smallholders, they grappled with the El Niño-induced drought, which severely impacted agricultural production across Southern Africa.

Despite these challenges, smallholders demonstrated extraordinary resilience due to crucial advisory services provided by the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub Project. The initiative enabled farmers to adopt climate-smart practices such as using drought-tolerant seeds and improved soil management techniques.

A smallholder farmer in Malawi, proudly showcases the high-quality bean seeds he harvested after adopting AID-I’s climate-smart farming techniques.
(Photos: CIAT and CIMMYT)

Connecting Farmers to Innovative Tools and Information

At the core of AID-I’s approach lies the delivery of innovative advisory services and proven agricultural technologies—strategies that have transformed the lives of farmers like Monica and Liden.

The AID-I project is transforming agriculture in targeted regions of the Democratic Republic of Congo, Malawi, Tanzania, and Zambia.

By providing smallholder farmers with critical information and innovative solutions, AID-I empowers them to enhance food production. The project focuses on strengthening legume and maize seed systems to enhance the availability and access to multi-stress-tolerant and nutritious crops. It also emphasizes delivering agricultural advisories to the last mile and improving soil health and fertilizer efficiency. These efforts are compounded with extensive training conducted by the Alliance of Bioversity International and CIAT through the Pan-Africa Bean Research Alliance (PABRA).

Seed Multiplication: A Key Entry Point for AID-I in Malawi

In Malawi, seed multiplication is a critical entry point for AID-I interventions. This approach ensures that farmers have access to high-quality, locally adapted seeds, reinforcing seed systems while supporting food security and resilience among smallholders. Through a network of demonstration plots, the initiative introduced high-demand bean varieties while showcasing modern agronomic practices, including proper planting techniques, precise fertilizer application, and effective pest and disease control strategies. These hands-on demonstrations equipped Malawian farmers with practical and sustainable methods to optimize bean cultivation, even during challenging conditions.

Monica’s Journey: From Small Harvests to Realizing Her Dreams

In Thambolagwa village, Monica had spent more than two decades growing beans only for her family’s consumption. After attending AID-I’s bean production training and receiving 2 kilograms (kg) of NUA35 seed from the demonstrations, she harvested 25 kg, significantly increasing her yield.

Building on this success, Monica planted the harvested seeds on one acre of land during the 2023-24 growing season and harvested 15 bags, each weighing 50 kg. She then sold part of her produce to Milele Agro Processing, earning over US$577.

“The training was incredibly valuable,” she said. “I’m looking forward to the 2024-25 season, during which I plan to expand my business by cultivating two acres of land. With the profits, I aim to make future investments in farming and save money to build a modern house for my family.”

AID-I Demonstrates the Power of Knowledge Through Mbengo’s Transformation

Liden, from Kang’oma Village, spent years planting four bean seeds in a single hole, unaware that this practice limited his agricultural potential. AID-I’s training introduced him to effective agronomic practices such as planting techniques, crop rotation, soil fertility improvement, and pest management as guided by PABRA.

“Following these guidelines, I harvested 15 kg of VTTT 924/4-4 and 18 kg of NUA35 from just half a kilogram of seed. In the previous year, I harvested only 3 kg after planting the same number of seeds and then nearly gave up on bean farming. The knowledge I have gained is priceless. It has reinforced my interest in bean farming and will stay with me forever,” said Mbengo.

Liden Mbengo, a farmer from Kang’oma Village, displays his impressive bean harvest, demonstrating the impact of AID-I training on improving yields and resilience.

A New Era for Malawian Bean Farmers

For extension workers such as Chrissy Minjale in Ntcheu district, the AID-I program has been transformative.

“The trainings were eye-opening for both us and the farmers,” she said. “Smallholder bean farmers in Malawi are likely to experience a significant increase in bean seed and grain production in the long run.”

Farmers and extension workers, inspect newly planted bean crops during a field visit, highlighting the hands-on learning provided by AID-I advisory services.

Field Learning and Adoption of Climate-Smart Practices

The program’s emphasis on linking farmers to off-takers, understanding climatic conditions, and adopting modern agronomic practices has sparked interest in bean farming across Malawi. As Yohane Nkhoma, a field extension officer in Ntchisi, observed:

“We now understand the importance of timing the first rains for beans and other crops. I’m committed to sharing this knowledge with hundreds of farmers in my area and helping them pay closer attention to the climatic conditions crucial for bean production. The results we have witnessed will encourage more farmers to engage in bean cultivation as a serious business.”

Scaling Impact: Training Thousands of Farmers

With over 11,007 farmers trained, 6,786 of whom are women, AID-I is not only improving yields but also empowering communities, building resilience, and igniting a wave of agricultural innovation.

The ripple effect of these interventions is clear. Beyond feeding their families, smallholder farmers are also paving the way for a more secure and sustainable future.

These individuals are more than beneficiaries. They are change agents whose successes inspire their communities and beyond.

As AID-I continues to amplify its impact, it is reshaping the trajectory of smallholder farming in Malawi and setting a precedent for resilience and food security across the region.

The future of farming here is thriving, innovative, and full of promise—as illustrated by Monica, Mbengo, and many more.

Sowing a Seed of Hope: Transforming Lives through Mixed Farming in Nepal

Birma Sunar Tending (Photo: Lokendra Chalise/CIMMYT)

In Nepal, hope is slowly taking root in the mid-hills as communities and farmers transform traditional systems into productive, diversified, nutritious and market-oriented farming systems. Through the CGIAR Mixed Farming Systems (MFS) Initiative, farmers like Ms. Birma Sunar and communities like Gurbhakot in Surkhet are building a transformative pathway. Since 2022, CIMMYT and IWMI have been supporting communities in planning and engaging stakeholders in identifying organizational and technical solutions. The initiative aims to increase milk production through improved forages, improve nutrition and income diversification through high-value fruit trees, and improve water efficiency in vegetable production through micro-irrigation.   

Birma’s Journey: Overcoming Challenges, Cultivating Dreams

Birma Sunar, 49, a determined farmer from Surkhet, represents the aspirations of countless smallholder farmers struggling to survive on limited means. A Dalit woman and an amputee, her small plot of land was once dedicated to subsistence farming, leaving her family struggling to make ends meet. The maize and wheat she grew barely lasted a year, and her family of seven was struggling for food. With her husband earning meager wages as a day laborer, the family often faced food insecurity.  

Her perspective on farming began to change when she became involved with the Mixed Farming Initiative. Birma received training in the cultivation of high-value fruit trees and the planting of Napier grass to feed dairy cattle, as well as micro-irrigation techniques. With her new skills and the eight mango saplings and one lychee tree she received from the Initiative as part of  action research, she hopes to increase her family’s income..   

I was unaware of commercial farming,” says Birma. “I have a lime tree and a banana tree in my field however, it used to be for home consumption. But now, once my mango and lychee trees start giving fruits, I hope to sell the produce in local markets and earn enough to buy essential household items and feed my family.”  

Last year, she planted high-value fruit saplings that are now growing into healthy plants, giving her hope for stability and food security in the future.   

Birma Sunar intercultivating a mango plant (Photo: Lokendra Chalise/CIMMYT)
Youthful Aspirations: Santosh’s Agricultural Renaissance

After working abroad for a few years in the hope of a brighter future, Santosh KC, 25, returned home, disheartened yet determined. Equipped with the knowledge gained from his agricultural education and a passion for change, he started a nursery for high value fruit trees and improved forages and ventured into dairy farming with Napier grass.  

The journey was not easy. In the first year, Santosh faced losses, and his family doubted the viability of his efforts. But with unwavering dedication, he turned his fortunes around. Today, Santosh cultivates 45 ropanis (2.29 hectares) of land, raises 22 goats, and earns a steady income. He also participates in the Mixed Farming Initiative training organized jointly with the Gurbhakot municipality and mentors farmers on the benefits of mixed farming.   

“For many youths, farming doesn’t seem like a viable option. However, with support for modern agricultural techniques and market integration, we can build livelihoods that are not just sustainable but rewarding,” shares Santosh.  

A Municipal Vision: Building Resilient Communities

The Initiative has been jointly implemented by CIMMYT and IWMI in the local municipality of the working district. With the support of the initiative, the Gurbhakot municipality is playing a critical role in scaling up the benefits of mixed farming. Recognizing the value of the crops, the municipality has embraced Napier grass and high-value fruits as key components of its agricultural strategy. By prioritizing mangoes, lychees, oranges, and lemons, the municipality aims to improve household nutrition and create commercial opportunities for farmers.  

We distributed high-value fruit trees to farmers last year under the theme ‘One Home, Two Fruit Plants’. This year, we’re planning a study to identify the best topography for different fruits. This knowledge will allow us to scale our goal to integrate these practices into larger public programs, creating decent livelihoods for farmers,” said Mr. Hasta Pun, Mayor of Gurbhakot Municipality.   

Mayor Hasta Pun (Photo: Lokendra Chalise/CIMMYT)
A Vision for the Future  

The Mixed Farming Initiative has been critical in identifying solutions to bring tangible improvements to smallholder farmers like Birma and Santosh, but it has also strengthened local governance and resilience. In the three years of implementation, the pilot program in Gurbhakot in Surkhet and Halesi-Tuwachung in Khotang has set the stage for scaling up these efforts in more municipalities. By 2030, the initiative aims to impact 13 million people and ensure equitable opportunities for women, youth, and marginalized communities.  

By nurturing the saplings of high-value fruits and integrating forages, local leaders and farmers in the mid-hills of Nepal remain motivated and committed to rewriting their story —One of hope, resilience, and the promise of a food-secure future.   

Tecnologico De Monterrey Develops Nutraceutical Corn to Address the Global Food Crisis and Improve Health

CIMMYT collaborated with Tecnologico de Monterrey’s FEMSA Biotechnology Center in the development and validation of nutraceutical corn. By leveraging Mexico’s maize diversity through the world’s largest germplasm bank, CIMMYT contributed expertise in crossbreeding to help incorporate traits such as higher protein, fatty acids, and antioxidants, supporting advancements in food security and sustainable agriculture.

Read the full story.

Beyond Survival: Thriving through solar innovation and empowerment in Sudan 

Under the scorching Sudanese sun, Salwa Suliman has become a symbol of transformation in Kasala. Her hands which once used to knead dough and prepare meals as a cook, are now shaping a brighter future for her family and community. A cook and trainer by trade, Salwa’s family relied on agriculture to make ends meet. But when the conflict disrupted their farming activities, their livelihood and future seemed uncertain.  

Through CIMMYT’s Sustainable Agrifood Systems Approach for Sudan (SASAS), Salwa has embraced change, learning the secrets of organic fertilizer production, innovative food processing, and sustainable agriculture. With the support from the United States Agency for International Development (USAID), today Salwa now runs a vibrant business that produces food that nourishes the body as well as the soul. Her journey is proof that even in the harshest conditions, with the right support and determination, growth is always possible. Salwa’s success is more than a personal triumph—it’s a testament to the transformative power of hope and action rippling through Sudan. 

Building resilience in the midst of conflict

In Kassala and Gadaref states, solar-powered irrigation kits have replaced costly and unreliable diesel pumps, enabling more than 2,000 farmers to grow high-value crops such as vegetables year-round. These systems not only reduce operational costs, but farmers are trained to maintain and optimize them, ensuring long-term sustainability. 

Solar panels (Photo: Mercy crops)

Equally transformative are the eight solar-powered agro-processing hubs that provide essential machinery such as threshers, oil presses, and grinders. These hubs have become economic lifelines, especially for women, who use them to create micro-enterprises. From grinding and packaging dried vegetables to selling value-added products, women are driving economic growth while reducing post-harvest losses and strengthening food security. 

Commitment to gender equality and representation

Women’s empowerment is a cornerstone of the SASAS approach. Through gender awareness initiatives in 20 communities, more than 2,800 participants, including 2,485 women, have addressed negative social norms, women’s rights, and decision-making in economic activities. Activities such as theatrical performances and competitions have reinforced these messages and created gender-equitable environments. This groundwork has been further strengthened by the establishment of gender committees, each of which integrates men and women to advocate for equitable access to resources and leadership roles. 

The impact extends to grassroots leadership, where trained gender advocates facilitate sensitization sessions that benefit cooperative members and promote sustainable gender advocacy.  

Bridging partnerships for agricultural transformation

The World Vegetable Center (WorldVeg), in partnership with SASAS, has played a key role in integrating sustainable vegetable production into Sudan’s food systems. Their initiatives —from providing quality seeds to training farmers in integrated pest management and post-harvest practices — have reached thousands of beneficiaries, with women making up 50% of the participants. Through partnerships with local organizations and private sector actors, WorldVeg has expanded access to resources and knowledge, ensuring that even conflict-affected communities can thrive. 

ADRA and Mercy Corps have also been instrumental in the success of SASAS. Mercy Corps established solar-powered agro-processing centers and irrigation systems, providing critical infrastructure for sustainable agriculture. ADRA reinforced these efforts by implementing solar-powered cold storage facilities and establishing gender committees with equal representation of men and women to promote gender equity in decision-making and access to resources. 

(Photo: Mercy crops)
(Photo: Mercy crops)
A model for future growth

The success of SASAS demonstrates the power of combining innovative technologies, gender-focused initiatives, and strong partnerships to create lasting change. From the solar-powered cold storage facilities that preserve harvests to the empowered women who transform local economies, the program offers a blueprint for resilience and growth in fragile contexts. 

USAID support for recovery and resilience

None of these achievements would have been possible without the support of the United States Agency for International Development (USAID). By funding and guiding the SASAS program, USAID has enabled the integration of solar power, gender empowerment, and sustainable agriculture into Sudan’s recovery efforts. From solar-powered irrigation to the empowerment of women like Salwa, USAID’s commitment has been a beacon of hope for communities rebuilding in the midst of adversity.Â