Skip to main content

Tag: fertilizer recommendations

Enhancing partnerships for agricultural development

Annual AID-I meeting participants gather for a group photo. (Photo:Christabel Chabwela)

Implementing partners of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project, or MasAgro Africa, converged in Arusha, Tanzania, for the project’s first annual review and planning meeting. The event, which brought together 58 participants from 28 allied organizations coordinating and implementing activities as part of the flagship USAID-funded initiative, provided an opportunity to review progress towards targets set at the project launch in September 2022. During the event, partners also took time to collaboratively plan for stronger implementation in the project’s second year, while discussing challenges faced in the previous year and coming up with practical solutions for these. Similar planning meetings took place in Malawi and Zambia during the same month.

Speaking during the meeting’s opening session, USAID Tanzania Mission Feed the Future Coordinator Melanie Edwards expressed excitement about the achievements of in-country partners in the past year. “The Tanzania component of the project was performing very well,” she said, “and it was exciting to see the proposals coming, meaning that the number of partners was expanding.” Edwards noted that there is still a lot more to be done by the AID-I project and a call for new partner proposals was going to be issued soon to augment ongoing work. She also emphasized the importance of expanding the number of partners and was eager to see planned activities for the second year of the project.

Speaking on behalf of the Government of Tanzania—a key partner in the AID-I initiative—Abel Mtembenji outlined the government’s priorities: increasing productivity, creating decent jobs, enhancing extension services, improving resilience for food security, and expanding market and credit access. Mtembenji was pleased that AID-I interventions aligned with these and encouraged stakeholders to coordinate their efforts with the Tanzanian government to enhance the sustainability of project activities. He further encouraged stakeholders to notify the government of their initiatives to foster collaboration during implementation. Mtembenji recognized the support from USAID, through CIMMYT and thanked all partners for their participation and contribution to agricultural development in Tanzania.

Showcasing early successes

The AID-I initiative provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting to financial products and services; and delivering extension and advisory services. An update presentation made by SAS Program Manager Grace Mwai revealed that through its 42 partners across Malawi, Tanzania, and Zambia, AID-I had in the past 12 months set up 125 mega-demonstrations for the 2022-2023 season. Forty-two of these were managed by farmer groups themselves, with 60% managed by women.

Across all three project countries, AID-I also reached approximately 5.3 million farmers with various agronomic advisory messages through radio and television, 160,000 listeners through interactive voice response (IVR) messages. Over 9,000 farmers were linked to inputs and outputs markets, of which 40% were women. Mwai added that the project had also conducted 5,143 seed company demonstrations—of which 2,400 took place in Tanzania—and had harvested and processed 13,000 metric tons of certified maize and legume seed, which was expected to directly benefit around one million smallholder farmers across the hub.

Partners demonstrate seed packages to meeting participants. (Photo: Christabel Chabwela)

To highlight achievements from the first project year, partners showcased their products through posters and display items like seed packets during a structured session based on the World Café method. This activity allowed participants to interact and ask questions about various innovations being scaled under AID-I. More than ten partners displayed their products, and all participants at the meeting were given 15 minutes to visit other tables and share how many tons of seed they had produced and how many farmers they could reach during the season.

On the second day of the meeting, partners organized themselves into three small groups based on the three AID-I pillars—Seed Systems, Agriculture Advisories, and Market Linkages—to discuss forthcoming activities and what they hoped to do better in the coming season. The meeting concluded with discussions on issues including financial reporting, establishing and nurturing collaborations, and leveraging technology for improved project outcomes. During his closing remarks, Legume and Seed Systems Specialist under AID-I, Peter Setimela, emphasized the importance of timely proposal submission for the second year.

In sub-Saharan Africa, mineral fertilization and agroecology are not incompatible

Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?

The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.

These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.

“When we look at comparable climate conditions and physical soil constraints, yields of maize – the main source of calories for people – in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower there”, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. “On average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizers”, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.

Maize and cowpea intercropping in the Maravire field. (Photo: CIMMYT)

“Our objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situations”, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). “The work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputs”, says François Affholder.

The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:

  1. Farming systems are characterized by very low mineral fertilizer use, widespread mixed crop-livestock systems, and significant crop diversity, including legumes. Inputs of mineral elements to crops by farmers are insufficient, resulting in a widespread decline in soil fertility due to soil nutrient mining.
  2. The nitrogen requirements of crops cannot be met solely through biological nitrogen fixation by legumes and manure recycling. Legumes can only fix atmospheric nitrogen if symbiosis with soil bacteria functions correctly, which requires absorption of different mineral elements by the plant. Ken Giller of Wageningen University highlights that the ability of legumes to capture nitrogen from the air through their symbiosis with rhizobium bacteria is a fantastic opportunity for smallholder farmers, “but the amounts on nitrogen fixed are very small unless other nutrients such as phosphorus are supplied through fertilizers”.
  3. Phosphorus and potassium are often the main limiting factors of the functioning of plants and living organisms, including symbiotic bacteria: if there is not enough phosphorus and potassium in soils, then there is no nitrogen fixation. These nutrient elements, phosphorus, potassium and micro-elements, need to be provided by fertilizers, since they cannot be provided by legumes, which draw these elements directly from the soil. In the case of manure, this is simply a transfer from grazing areas to cultivated areas, which gradually reduces fertility in grazing areas.
  4. If used appropriately, mineral fertilizers have little impact on the environment. The greenhouse gas emissions linked to nitrogen fertilizer use can be controlled through a balanced and efficient application. In addition, mineral fertilizers can be produced more efficiently in order to reduce the impact of their production on greenhouse gas emissions, keeping in mind that this impact is low, at around 1% of total anthropogenic emissions.
  5. Further reducing mineral fertilizer use in SSA would hamper productivity gains and would contribute directly to increasing food insecurity and indirectly to agricultural expansion and deforestation. Producing for a population that will double by 2050 is likely to require the use of more agricultural land. An extensive strategy thus harms biodiversity and contributes to increasing greenhouse gas emissions, contrary to an agroecological intensification strategy combined with efficient and moderate mineral fertilizer use.

“If we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumes”, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.

However, “agroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivity”, says Gatien Falconnier.

The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.

Référence
Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).

The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795

*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)

Contact: presse@cirad.fr

Scientists: 

Gatien Falconnier
gatien.falconnier@cirad.fr

Pauline Chivenge
P.CHIVENGE@apni.net

Leonard Rusinamhodzi
L.Rusinamhodzi@cgiar.org

SPG Coalition: CIMMYT is a leading organization for climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management

The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.

In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.

CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.

Nutrient-use efficiency and fertilizer management

While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.

Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)

In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.

The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.

The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.

Climate-smart maize breeding 

Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.

Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)

CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.

The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.

“The SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. It’s also an important reminder to assess our strong points and where more investment and collaboration is needed,” said Bram Govaerts, CIMMYT director general.

Government of Nepal adopts new fertilizer recommendations

Balancing the application of fertilizers based on the characteristics of soil leads to increased crop productivity, income, and fertilizer use efficiency unlike former “one size fits all” recommendations, said Bedu Ram Bhushal, Nepal’s Minister of Agriculture and Livestock Development (MoALD) during a press briefing earlier this month in Nepal’s capital Kathmandu.

Participants from the press release (Photo: Deepa Woli/CIMMYT)

The site-specific recommendations applicable to maize, wheat, and rice were jointly launched with the Nepal Agricultural Research Council (NARC) and National Soil Science Research Center (NSSRC). They were implemented in collaboration with the Department of Agriculture (DoA) and led by the Nepal Seed and Fertilizer (NSAF) Project at the International Maize and Wheat Improvement Center (CIMMYT).

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years,” Bhushal said. “Now, we should support the large-scale adoption of these new recommendations by farmers for sustainable soil fertility management.”

Earlier recommendations developed by the Agricultural Chemistry and Soil Science Service Section under the Department of Agriculture (DoA) in 1976 did not take into account soil diversity, biophysical conditions, and agronomic management. Nutrients recommended for a particular crop were the same for terai lowlands, hills, and mountains.

In general, soil fertility changes over time due to deployment of continuous intensive cropping systems. The new recommendations consider the indigenous nutrient supply of soils, target yields, and the amount of nutrients removed by crops at harvest.

Senior officials and dignitaries endorsed new fertilizer recommendation (Photo: Deepa Woli/CIMMYT)

It took six years for NSSRC of NARC in partnership with NSAF, to update the recommendations through nutrient omission and optimum nutrient rate trials in various locations. By using advanced analytical methods and machine learning tools for extrapolating data across different agroecological zones and domains, they were able to make them site-specific.

Other factors considered, included attainable yield at a particular farm, soil fertility status, agro-climate, crop management practices, and the amount of nutrients to be supplied to fill the gap between crop nutrient removal and soil nutrient supply of nitrogen, phosphorus, and potassium. Micronutrients and organic inputs were also considered.

These recommendations were presented to leading soil scientists and agronomists from NARC and MoALD and were validated at national meetings in July and October 2022.

The Honorable Minister of MoALD, Bedu Ram Bhusal reviewed the press release (Photo: Deepa Woli/CIMMYT)

The new recommendations were included in the DoA’s agriculture extension guidelines in 2023, to achieve potential yield at the farm level and to link with the extension system through the three-tier of governments for its extensive use throughout the country. The new approach is part of CIMMYT’s efforts to support the NARC, MoALD, provincial agriculture ministries, and farmers to build indigenous soil fertility management resources and capabilities and promote locally adapted strategies for long-term resilience by using integrated soil fertility management approaches.

Nepal Government endorses new site-specific fertilizer recommendations for rice

Farmer applying urea with a spreader in a rice field. Photo Uttam Kunwar/ CIMMYT

After four decades, new site-specific fertilizer recommendations for rice have been introduced in Nepal that will help farmers increase the crop’s productivity by 10-30%, compared to their current practices.

The Ministry of Agriculture and Livestock Development (MoALD) endorsed the new fertilizer recommendations for rice crop at a consultative workshop in July 2022 held in Kathmandu. Developed by the International Maize and Wheat Improvement Center (CIMMYT), in close collaboration with the Nepal Agriculture Research Council’s (NARC) National Soil Science Research Center (NSSRC) and International Fertilizer Development Center (IFDC), the new regime replaces the existing blanket approach of recommendations to help increase crop yields and fertilizer use efficiency.

The blanket approach assumed the whole country as one domain despite the heterogeneity in soils, other biophysical conditions and agronomic management practices, including crop varieties. As a result, fertilizers were under-utilized in low fertile soils or overused in farms with high soil fertility status, thereby farmers were not able to obtain the achievable yield.

Unlike the generic recommendations, the site-specific fertilizer management will help farmers to determine the crop’s fertilizer requirements based on soil fertility status of a particular farm, attainable yield target of the selected crop variety, crop’s yield response to fertilizers and agronomic management practices, such as irrigation, cropping systems etc. In other words, this new regime allows farmers to produce more with less fertilizers through a balanced application of fertilizers based on available soil properties.

Old is not always gold

Generally, soil fertility status changes every 3-5 years when there is continuous nutrient removal from soils due to an intensive cropping system with the adoption of high nutrient demanding improved and hybrid varieties. Thus, soil fertility management recommendations should be updated periodically but the existing recommendations were not updated since 1976.

Realizing the limitations, CIMMYT through the Nepal Seed and Fertilizer (NSAF) project, supported by USAID, worked with NSSRC and IFDC to formulate fertilizer recommendations for major cereal crops and vegetables for specific domains of the country.

Under NSSRC’s leadership, a ‘Fertilizer Recommendation Committee’ comprising of a dedicated team of soil scientists within NSSRC and NSAF experts was formed to develop site-specific fertilizer recommendations using the Soil-SMART framework for delivering balanced fertilizers to farmers. Based on soil fertility status, agro-climate, irrigation regimes and geography, the country was divided into six soil fertility domains — four in the Terai region (Eastern, Central, Western and Far-western), one in inner Terai and one in the hills. Under each domain, recommendations were based on the attainable yield, crop variety, and irrigation regime.

This approach was first tested for rice crop.

Formulating new recommendations for rice

Three fundamental steps were used to develop site-specific fertilizer recommendations, which included: i) selection of yield goal, ii) estimation of crop nutrient requirement, and iii) estimation of indigenous nutrient supplies. To collect this information, NSAF and the committee designed field trials on nutrient omission and nutrient rates to determine the yield limiting nutrients and their optimum rate, respectively. Data from fertilizer trials conducted by different research institutes and universities, including trials from the project sites were collected and analyzed by the team to see the crop’s yield response to fertilizers. A modeling approach called Quantitative Evaluation of fertility of the tropical soils (QUEFTS) was also used to estimate the indigenous nutrient supply and attainable yield target of rice for different soil fertility domains. This model was applied as an alternate to extrapolate recommendations in areas where field data were not available, considering large financial and human resources required otherwise to conduct numerous field trials across different soil types and agro ecological zones. The model was validated with field trial data before making extrapolation of the recommendations. The QUEFTS model used soil properties from Nepal’s first digital soil map to identify nutrient status and deficiency.

In addition to agronomic optimum rate, an economic analysis was also conducted to see economic variability of the recommendations.

The newly developed recommendations provide guidance for balanced fertilization as it includes micronutrients zinc and boron, and organic inputs in addition to three major nutrients —Nitrogen, Potassium and Phosphorous (NPK). Results from field trials suggested that the new recommendation could increase rice productivity by 10-30% compared to existing farmers’ practice.

Infographic on developing domain specific fertilizer recommendations.

Advocating for endorsement

A three-day workshop was organized by CIMMYT and NSSRC to primarily share and approve the recommended fertilizer dose for rice crop as well as its relevance to achieve potential yield at farm level. Rajendra Mishra, joint secretary of MoALD inaugurated the event that was chaired by the Director of NARC’s Crop and Horticulture Research. Workshop attendees included MoALD, NARC, Department of Agriculture, USAID Nepal, secretaries from the Province Ministry of Land Management, soil scientists, university professors, agronomists and other high-level government officials.

During the workshop, NSAF explained the application of QUEFTS model with reference to the case of rice based on the field trial data for domain specific fertilizer recommendations. Shree Prasad Vista, soil scientist at NSSRC, summarized the results for rice as the approach and facilitated its approval from MoALD. The participants also discussed on strategies to link with the extension system to reach a large number of farmers through the three-tier governments. Fourteen research papers on nutrient management for major cereal crops were also reviewed at the event.

“I congratulate NARC for this historical work on updating the fertilizer recommendations after 46 years. Now, we are moving towards sustainable soil fertility management by adopting site-specific fertilizer recommendations,” said MoALD Secretary Govinda Prasad Sharma.

Although the recommendation for rice was a significant output of the workshop, fertilizer recommendations for other major crops will be carried out following a similar process.

NARC’s Executive Director Deepak Bhandari commented, “It is our pleasure to move from a blanket approach to site-specific approach. This is a milestone for agricultural research in the country and I would like to thank all the scientists, NSAF project and USAID’s support for this notable achievement.”

Similarly, speaking at the event, Jason Seuc, Director of Economic Growth Office at USAID Nepal, emphasized the importance of soil fertility management for achieving food security targets set by the Government of Nepal. Seuc remarked that a sustainable soil fertility management is critical not only for food security but also for reducing the environmental pollution.