Skip to main content

Tag: fertilizer

Sustaining Health and Soil: Sundhani Tharu’s 4Rs Approach to Farming

Sundhani Tharu, a 44-year-old farmer from Pattharbojhi, Madhuwan-1 in the Bardiya district, in the mid-west of Kathmandu, is a leading example of how sustainable agricultural practices not only enhance crop production but also contribute to human and environmental health. Her dedication to a balanced approach to farming, which includes crop-livestock integration and the principles of the 4Rs of nutrient stewardship, has had a significant impact on her farm and the wider community.

Sundhani lives in a joint family of 58 members, with farming as the primary source of income. On their 8.13 hectares of land, they grow staple crops like rice, maize, mustard, and lentils, while also raising 26 cows, 17 buffaloes, and 45 sheep. Through this integration of crop production and livestock, Sundhani has built a closed-loop farming system where farmyard manure (FYM) from the livestock nourishes the crops, and crop residues feed the animals, ensuring minimal waste and promoting a natural balance between animals, crops, and soil health.

Sundhani with her family (Photo: Sirish Shrestha)

Central to her success is her application of the 4Rs of nutrient stewardship, which involves applying the right source of nutrients at the right rate, at the right time, and in the right place. This approach ensures that her crops receive the essential nutrients they need while minimizing environmental impact. With support from the USAID-supported Nepal Seed and Fertilizer (NSAF) Project, implemented by CIMMYT, Sundhani has been trained in nutrient management techniques, including the 4R principles. These practices have helped her optimize fertilizer use and significantly improve her crop yields, doubling her maize production from 30 to 60 quintals per hectare.

Sundhani also prioritizes the use of farmyard manure, which plays a vital role in her farming system. The manure from her livestock is carefully composted and used as a natural fertilizer, enriching the soil with organic matter and nutrients. This reduces her reliance on synthetic fertilizers, which can harm the environment and deplete soil health over time. By using farmyard manure, Sundhani is not only improving soil fertility but also promoting a healthier ecosystem for future generations.

Similarly, the importance of a healthy diet is another key focus of Sundhani’s farming journey. Her farm provides her family with a diverse range of crops, including rice, maize, mustard, and vegetables like cauliflower, tomatoes, and potatoes. These crops contribute to a balanced, nutrient-rich diet for her large family, ensuring that they receive essential nutrients from fresh, organic produce. Sundhani’s vegetable farming is further enhanced through climate-smart practices like intercropping and mulching, which protect the soil, conserve water, and increase the variety of crops she can grow.

In addition to her focus on nutrient management and healthy diets, Sundhani has embraced Integrated Soil Fertility Management (ISFM), a holistic approach to soil health. ISFM combines organic and inorganic fertilizers, along with improved crop varieties and efficient nutrient management techniques, to enhance soil fertility and ensure long-term agricultural productivity. Through ISFM, Sundhani has achieved sustainable growth in her farming operations while safeguarding the environment for future generations.

Sundhani Tharu (Photo: Sirish Shrestha)

Though Sundhani can hardly read or write, she is contributing to the “One Health” movement—a global initiative that connects the health of people, animals, and the environment through best management practices in agriculture. By integrating crops and livestock, using farmyard manure, and applying the 4Rs of nutrient stewardship, she promotes a sustainable, eco-friendly system that enhances food security, improves soil health, and protects natural resources.

Looking ahead, Sundhani is determined to expand her farming ventures. She plans to venture into seed production for rice and mustard and hopes to increase her earnings from NPR 5 lakh (USD 3,740) to NPR 8 lakh (USD 5,987). By continuing to inspire her community and advocate for local vegetable markets, Sundhani envisions a future where farming is not only a source of livelihood but a cornerstone for a healthy, thriving ecosystem.

Sundhani Tharu’s story highlights the power of nutrient stewardship and sustainable farming to create healthier soils, crops, and communities. Through her dedication to the 4Rs, ISFM, and promoting farmyard manure use, she is paving the way for a future where agriculture is in harmony with nature—benefiting both people and the planet.

Sundhani’s father-in-law (Photo: Sirish Shrestha)

Positioning Nepal as a future seed production hub in South Asia

MoU signing event between Nepal and Bangladesh seed companies (Photo: Sirish Shrestha/CIMMYT)

In August 2024, four Nepalese seed companies and six international seed companies from India, Bangladesh, Japan and Thailand signed a memorandum of understanding (MoU) for custom seed production of cereals and vegetables in Nepal, opening up game-changing economic opportunities in South Asia. This agreement will allow international seed companies to produce seed in a suitable agroecology in Nepal and export to international markets. To support this, the Government of Nepal has agreed to exempt variety registration for export-oriented custom seed production and expedite the process with added incentives to attract more international seed companies. This move aims to position Nepal as a future regional seed production hub. 

The signing of the MoU was the pinnacle of an international seed conference organized by CIMMYT in collaboration with Seed Quality Control Center (SQCC), the Nepal Agricultural Research Council (NARC), and Seed Entrepreneurs Association of Nepal (SEAN) in Kathmandu from August 22-24, 2024, focusing on innovation, partnership, and policy.  

The conference attracted over 150 participants from 11 countries, including Bangladesh, Ethiopia, India, Japan, Kenya, Nepal, Pakistan, Singapore, Switzerland, Thailand, and the USA, representing research centers, civil society organizations, private seed companies, and national agricultural research systems (NARS). The event was organized under the USAID’s Nepal Seed and Fertilizer (NSAF) project which aims to foster Nepal’s seed market systems through the enhancement of stakeholders’ capacity in seed research, quality seed production, as well as the creation of an enabling environment that links seed companies with input and output markets. 

Enhancing seed market systems in South Asia  

The MoU is expected to enhance the seed market system in the region, create new economic opportunities for Nepal, boost agricultural exports, and generate income for farmers. It will also facilitate the transfer of advanced seed technology and foster stronger partnerships between seed companies in the region and beyond. Mr. M Anis Ud Dowla, Board Chairman of Advanced Chemical Industries (ACI) Limited, one of the largest business conglomerates in Bangladesh, expressed optimism about the partnership, citing Nepal’s favorable conditions for producing seeds of cool-season crops and the potential benefits for farmers in Nepal and Bangladesh.  

In addition, ACI signed MoUs with Gorkha Seed Company and SEAN Seed Service Center, for the production of cereals and vegetable seeds, demonstrating growing confidence in Nepal’s seed sector where CIMMYT and its partners played a key role to enhance the capacity of the seed stakeholders for the past several years. “About 10 or 12 years ago, I had the opportunity to interact with the seed stakeholders in Nepal and at that time the seed sector was not viable, and the role of the private sector was insignificant. Now, I am impressed to see such seed sector transformation initiatives in Nepal,” says Manesh Patel, President of Asia and Pacific Seed Association (APSA) while acknowledging the effort made by CIMMYT and other seed stakeholders. He added that “it is time for Nepalese private seed companies to become a member of APSA to leverage regional opportunities.” 

Untapped potential 

Nepal’s diverse agroecology, encompassing tropical, subtropical, and temperate environments, provides an ideal condition for seed production of cereals, fruits, and vegetables. However, this potential remains largely untapped due to limitations within the country’s formal seed sector. The informal system dominates, leaving farmers with insufficient access to quality seeds. In 2023, the formal sector only met 25% of the total 180,000 metric ton requirement for cereal seeds. Consequently, Nepal heavily relies on imported seeds, particularly hybrid varieties of rice and maize, costing nearly half a billion dollars annually when accounting for both cereal seeds and grain imports. 

Several factors hinder the development of Nepal’s seed sector: limited availability of high-yielding varieties that are tolerant to major biotic and abiotic stresses; a lack of farmer awareness regarding quality certified seeds and modern technologies; inadequate infrastructure for improved storage and road access; vulnerability to climate change impacts; insufficient incentives for private sector investment; and limited human and institutional capacity across the seed value chain. 

To tackle these challenges and seize opportunities, the Government of Nepal has outlined key interventions through the National Seed Policy, National Seed Vision, and Agricultural Development Strategy (ADS). These policies aim to create seed roadmaps and foster an enabling environment to attract private sector participation. Recently, the government of Nepal approved the issuance of research and development licenses to private seed companies, allowing them to develop and deploy new seed varieties. Collaborative efforts by the Nepal Agricultural Research Council (NARC), Seed Quality Control Center (SQCC), and CIMMYT under the USAID-supported Nepal Seed and Fertilizer (NSAF) project are also leading to local seed companies producing hybrid seeds for rice, maize, and vegetables across various districts. However, this is at budding stage, and it needs to be scaled up further. 

The nexus of seed security and resilient agrifood systems  

The interplay between seed security and resilient agrifood systems is crucial for enhancing food security, particularly amidst climate change and global challenges. This relationship underscores the importance of robust seed systems that can adapt to various stresses while ensuring sustainable food production. “Seed systems are complex networks involving farmers, seed companies, service providers, and authorities, all working together to ensure high-yielding and resilient seeds reach farmers’ fields as quickly as possible,” said Bram Govaerts, Director General of CIMMYT, while addressing conference participants. He further emphasized that demand-oriented and effective seed systems help to harness the benefits of crop improvement.  

The conference brought together prominent figures from South Asia and beyond, who shared their insights. “A well-functioning seed system guarantees seed security for all farmers,” noted BM Prasanna, Director of the Global Maize Program at CIMMYT, during his keynote address. He highlighted the critical nexus between seed security and resilient agrifood systems, emphasizing the need for technical, organizational, and institutional innovations. Prasanna also called for continuous public-private-producer collaboration to develop and strengthen seed systems in the global south.  

Linking global and regional seed industry practices to fit into local conditions  

The Hon. Minister of Agriculture and Livestock Development of Nepal, Ram Nath Adhikari, inaugurated the conference, welcoming delegates and emphasizing the event’s significance to Nepal’s agricultural sector. Benu Prasad Prasai, Chief of SQCC, shared emerging trends in Nepal’s seed industry, highlighting efforts to engage the private sector and reduce seed import dependency. “We need to harmonize and link seed policies across South Asia and beyond to fully capture the benefits of plant breeding gains,” said Prasai, while emphasizing Nepal’s potential for seed business and investment. Dyutiman Choudhary, NSAF project lead, echoed these sentiments, emphasizing the importance of international and regional partnerships in developing a vibrant seed market. He highlighted the need for enabling seed policies and regulations that facilitate market system development.  

The discussions resulted in high-level recommendations to further augment Nepal’s seed sector: strengthening public-private partnerships in research and development to transform Nepal’s seed industry into a viable, resilient, and sustainable seed system; collaboration with foreign counterparts for joint research and technology exchange is vital to strengthening Nepal’s seed R&D and promoting custom seed production; legal frameworks must be developed and executed to create an enabling environment that strengthens public and private sector seed R&D efforts. 

Panel discussion on creating an enabling environment for private sector engagement in seed and varietal R&D (Photo: Sirish Shrestha/CIMMYT)
Official opening session of the International Seed Conference in Nepal (Photo: Deepa Woli/CIMMYT).

Experts discuss strategies to address soil health challenges and the fertilizer crisis in Africa

Group photo of the panelists at the AFSH Summit in Nairobi (Photo: Marion Aluoch)

Improving soil health is critical to sustainable agriculture, and for addressing climate change, tackling environmental challenges, and enhancing food security. Through projects by CIMMYT and partners, potential scalable solutions are under development, but additional work is still required.

“To effectively scale up soil health initiatives, we need to prioritize investments and establish a framework that maximizes returns,” said Bram Govaerts, CIMMYT director general, during the 2024 Africa Fertilizer and Soil Health (AFSH) Summit in Nairobi, Kenya. “It is crucial to use simple, quantifiable indicators for systematic assessments and decision-making, and to broaden these indicators to foster investment from public, private, and civil actors.”

As a keynote speaker in the “Strategies to Foster Africa’s Resilience to the Global Fertilizer Crisis” parallel session, Govaerts highlighted the intertwined challenges of soil health and fertilizer accessibility. “95% of our food comes from the soil, yet in 14 countries the cost of fertilizer has more than doubled. Fertilizers contribute to 2% of global greenhouse gas emissions and are often mismanaged—overused in some regions and underutilized in others.”

The transition to a more sustainable and climate-resilient approach to soil health and fertilizer use requires a comprehensive structure that considers broader aspects of agricultural sustainability. “To enhance soil health effectively, a clear framework is necessary that includes investment prioritization, integrated soil management, extension and advisory services, and the utilization of data and technology,” Govaerts added.

This recommended framework included identifying and prioritizing investment opportunities, balancing organic and inorganic inputs, strengthening extension systems, and leveraging technology to provide farmers real-time advice.

One practical example of effective soil health management in practice is CIMMYT’s Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub. The project helps farmers cope with high fuel and fertilizer prices by providing them with innovative tools and information to manage cost and supply disruptions. This addresses systemic weaknesses in agriculture by accelerating market-based delivery of improved seed, fertilizer, and critical information to farmers.

“Under AID-I, rapid soil testing has been prioritized. Collaborating with the International Fertilizer Development Center (IFDC) and mobile soil labs like those in Zambia exemplify innovative data point collection strategies,” said Govaerts.

During the panel discussion, Anne Muriuki, principal research officer at the Kenya Agricultural and Livestock Research Organization (KALRO) highlighted the key challenges that African countries face in accessing fertilizers during global crises and the impact on agricultural productivity. “Farmers face scarcity and high costs, leading to reduced yields and increased reliance on unsustainable fertilizers. These issues not only reduce agricultural productivity, but they also aggravate food insecurity and economic instability.”

David Nielsen, a former World Bank official, stressed the importance of having site-specific soil information and investing in human capital and educational institutions to increase soil science expertise and improve the availability of site-specific information. “These two issues should be high priorities. They are crucial, especially when fertilizer access is limited, but they remain vital even with adequate fertilizer supply.”

Douglas Kerr, vice president of business development at the IFDC discussed how governments, international non-governmental organizations (NGOs), and the private sector can collaborate to ensure continuous access to fertilizer during a global crisis. The Sustain African Program was an example of IFDC’s role in gathering market information and developing a concept that has since been integrated into ongoing operations. “In a nutshell, multi-stakeholder collaboration needs to be open, transparent, supportive, and unified.”

Charlotte Hebebrand, director of communications and public affairs at the International Food Policy Research Institute (IFPRI), emphasized the need to increase fertilizer production within Africa, improve access to markets, and address response constraints to reduce shocks. “A major focus is on repurposing subsidies. It is sensitive but critical to determine the most efficient way to support farmers and promote soil health.”

Mehti Filali, senior vice president of OCP in West Africa, highlighted successful case studies from Ethiopia and Nigeria, where domestic initiatives and regional cooperation have resulted in significant agricultural growth. “Ethiopia has doubled crop production and created tailored fertilizer formulas, while Nigeria’s initiative has consolidated fertilizer procurement, created jobs, and saved US $250 million in foreign exchange. OCP’s contribution, though modest, has been critical, marked by significant milestones such as soil testing and the development of blending units.”

As Africa continues to face these challenges, the response must be dynamic, drawing on both local knowledge and scientific data. Robust data governance is essential for integrating soil health into market-driven decision-making, promoting crop diversification, and integrating organic and inorganic inputs for sustainable agriculture. “Let us remember the importance of integrating soil fertility management in a step-by-step manner, prioritizing action tailored to specific locations and conditions. Sophisticated extension systems, backed up by robust data, are crucial,” Govaerts concluded.

Promoting fertilizer awareness in Tanzania

Soil being tested as part of the preparations for planting on Mega and Mother Demo plots. October 2023. (Photo: Edward Mwakagile/ADP-MBOZI)

With the support of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, ADP Mbozi, and the Tanzania Agricultural Research Institute (TARI) at Uyole (key implementing partners in the Southern Highland Consortium), the Songwe region of Tanzania is setting for a pivotal initiative to enhance crop yields significantly.

In anticipation of the forthcoming Mega Demo and Mother Demo planting events, the AID-I partners orchestrated workshops and training sessions for local farmers.

This multifaceted endeavor involves both comprehensive soil testing and an educational campaign aimed at enlightening farmers on the proper use of fertilizers, aligning their application with the specific requirements of cultivated crops.

The Songwe region is in the Southern Agricultural Growth Corridor of Tanzania (SAGCOT) and is a breadbasket region of Tanzania.

Soil testing offers farmers invaluable insights for informed decision-making concerning fertilizer application. Armed with knowledge about their soil’s nutrient status, farmers can precisely tailor fertilizer usage, steering clear of both excessive and insufficient application. The adverse effects of over-application, such as environmental pollution and crop damage, and the consequences of under-application, leading to nutrient deficiencies and stunted crop growth, are mitigated.

These sessions fostered participation and equipped farmers with an enhanced understanding of the intricate relationship between soil nutrients, fertilizer application, crop nutrition, plant development, and management for improved crop productivity.

The Alliance for Green Revolution in Africa (AGRA), through its implementing partners, conducted soil tests at 235 sites in 2023 within the Southern Highland and Western Great Lakes consortia. The consolidated results of soil tests and recommendations were disseminated to government officials and agricultural extension agents in wards and villages for informed decisions to improve the status of soil health.  The resulting data is distributed to farmers to help inform their decision-making around the type and variety of fertilizer to use.

The active involvement of farmers in soil testing and awareness initiatives underscores their recognition of the potential benefits for their livelihoods. Armed with newfound knowledge, farmers are now empowered to make informed decisions regarding fertilizer use, ensuring an optimal nutrient balance for their crops and maximizing productivity. Young farmers from the area also participated in activities from mapping to collection of soil samples in different villages, with a clear vision of conducting soil testing with the goal of mitigating climate change.

“The proactive stance of the Songwe region towards soil testing and fertilizer awareness reflects a steadfast commitment to sustainable agriculture and farmer empowerment,” said Project Officer ADP MBOZI, Edward Mwakagile. “By providing farmers with the knowledge and tools to manage their soil and fertilizer use effectively, the region is laying a robust foundation for successful Mega Demo and Mother Demo planting events, promising enhanced agricultural productivity in the years ahead.”

Will plants ever fertilize themselves?

Researchers, including Sieg Snapp from CIMMYT, are pioneering crops that fertilize themselves by harnessing atmospheric nitrogen. This revolutionary breakthrough promises to slash synthetic fertilizer use, combat environmental damage, and usher in a new era of sustainable agriculture. A leap towards greener, self-sustaining food production is on the horizon.

Read the full story.

Farmers’ Hub launched in Nigeria to boost food security and agricultural development

In a strategic move to improve food security and promote agricultural development, Syngenta Foundation Nigeria, one of the key partners in the Dryland Crops Program (DCP), has introduced a new initiative known as the AVISA Farmers’ Hub. The initiative was launched at an event in the Murya Community of Obi Local Government Area in the Nasarawa State of North Central Nigeria. The Farmers’ Hub aims to support and empower farmers in the region, contributing to the overall objectives of the DCP.

The introduction of the Farmers’ Hub comes at a time when smallholder farmers in the region are grappling with limited access to essential resources such as knowledge, high-quality inputs, modern technology, and reliable markets, all of which are critical for achieving high-quality agricultural productivity.

A farmers’ hub (FH) is an all-inclusive commercial platform that provides diverse inputs such as seeds, seedlings, fertilizers, and crop protection products, as well as price and weather information. In addition, it provides farmers with value-added services such as aggregation, cleaning, sorting and grading of produce, bulk sales, training, equipment leasing and rental, financing, and trade credit. Smallholder farmers can now take advantage of the opportunities provided by the Farmers’ Hub by transitioning from subsistence agriculture to a commercially oriented system.

Inside the farmer’s hub. The hub is all-inclusive platform offering a wide range of inputs including seeds, seedlings, fertilizers and more (Syngenta Foundation Nigeria).

During the event, the Country Program Manager of Syngenta Foundation Nigeria, Isaiah Gabriel, emphasized the foundation’s dedication to commercializing AVISA crops: “The foundation is working to facilitate the commercialization of cowpea, sorghum, groundnuts, and pear millet.” Gabriel also emphasized the importance of raising awareness among farmers and establishing a platform that provides smallholder farmers with improved seeds, seedlings, fertilizers, mechanization, and other value-added services. He urged farmers in the state to maximize their utilization of the Farmers’ Hub and its services, which are intended to facilitate improved seed production and service delivery.

The Farmers’ Hub was established with the goal of resolving access issues, optimizing yields, aggregating grains, and overcoming market challenges. Finally, the hub hopes to improve food security and increase the income of smallholder farmers.

Prof. Mary Yeye, the National Coordinator of AVISA, commended the initiative and emphasized the importance to farmers of taking advantage of the project and making prudent use of its resources as she addressed the participants.

Experts in attendance, that included Prof. Lucky Omoigui, a seed system specialist from the International Institute of Tropical Agriculture (IITA), Prof. SG Gaya, a groundnut breeder from Bayero University Kano (BUK), and Prof, Alhassan Lalihu from the Federal University Lafia, discussed several of the obstacles to high agricultural productivity. These factors include restricted access to improved seeds, expensive fertilizers, and security concerns. The experts lauded the Farmers’ Hub as the final step in delivering resources to smallholder farmers. In addition, they urged all levels of government to intensify efforts to subsidize input costs and improve farmers’ security.

The program manager of the Nasarawa State Agricultural Development Program, Emmanuel Alanama, responded by thanking Syngenta Foundation for selecting Nasarawa State for this significant project. He acknowledged that 75 to 80 percent of the state’s population are farmers and expressed the willingness of the state government to collaborate and support any agricultural initiatives.

Farmers participating in a training session at the farmers hub. (Syngenta Foundation Nigeria)

Rowland Alaku, manager of the Farmers’ Hub, assured farmers that they would have guaranteed access to quality seeds. The farmers in attendance expressed their gratitude for the initiative and promised to utilize the hub fully in order to benefit their own farming endeavors.

Other dignitaries in attendance included Prof. Johnson Onyibe from Ahmadu Bello University (ABU), Zaria; Dr. Teryima Iorlamen from the University of Agriculture, Makurdi; and several village heads. More than 150 farmers, stakeholders, and government officials attended the event, highlighting its importance.

In sub-Saharan Africa, mineral fertilization and agroecology are not incompatible

Are agroecological approaches, based for example on the use of legumes and manure, enough by themselves to ensure a long-term increase in annual crop yields in sub-Saharan Africa (SSA), without using more mineral fertilizer?

The answer is no, according to a team of agronomists who have published an in-depth analysis of 150 scientific articles on annual crops (maize, sorghum, millet, rice, cassava, etc.) and tropical legumes, both annual grain legumes (cowpea, groundnut) and legume trees (acacia, sesbania) in tropical environments.

These publications collate 50 years of knowledge on nutrient balances in sub-Saharan Africa, biological nitrogen fixation by tropical legumes, manure use in smallholder farming systems and the environmental impact of mineral fertilizer.

“When we look at comparable climate conditions and physical soil constraints, yields of maize – the main source of calories for people – in sub-Saharan Africa are three to four times lower than elsewhere in the world. This is largely due to the fact that mineral fertilizer use (nitrogen, potassium) is on average four times lower there”, says Gatien Falconnier, a researcher at CIRAD based in Zimbabwe and lead author of the article. “On average, 13 kg of nitrogen are used per hectare and per year in sub-Saharan Africa, for all crops, bearing in mind that the poorest farmers have no access to nitrogen fertilizers and therefore do not use them. It is mainly agri-business and vegetable farmers that have access to fertilizers”, adds François Affholder, an agronomist at CIRAD based in Mozambique and co-author of the article.

Maize and cowpea intercropping in the Maravire field. (Photo: CIMMYT)

“Our objective is not to produce like Europe or North America, but to produce more and more regularly according to the seasons and the years, and thus to increase the economic sustainability of our farming systems. To do so, we must ensure a minimum level of nutrients for crops, which require essential mineral elements for efficient photosynthesis, and therefore growth. Soils are typically lacking in mineral elements in sub-Saharan Africa, and the largely insufficient organic inputs lead to nutrient deficiencies in crops. This is the main limiting factor for crop yields, excluding drought situations”, says Pauline Chivenge of the African Plant Nutrition Institute (APNI). “The work by Christian Pieri showed as early as 1989 that it is possible to restore high levels of fertility to African soils through a balanced approach to organic and mineral nutrient inputs”, says François Affholder.

The article highlights five reasons why more mineral fertilizer is needed in sub-Saharan Africa:

  1. Farming systems are characterized by very low mineral fertilizer use, widespread mixed crop-livestock systems, and significant crop diversity, including legumes. Inputs of mineral elements to crops by farmers are insufficient, resulting in a widespread decline in soil fertility due to soil nutrient mining.
  2. The nitrogen requirements of crops cannot be met solely through biological nitrogen fixation by legumes and manure recycling. Legumes can only fix atmospheric nitrogen if symbiosis with soil bacteria functions correctly, which requires absorption of different mineral elements by the plant. Ken Giller of Wageningen University highlights that the ability of legumes to capture nitrogen from the air through their symbiosis with rhizobium bacteria is a fantastic opportunity for smallholder farmers, “but the amounts on nitrogen fixed are very small unless other nutrients such as phosphorus are supplied through fertilizers”.
  3. Phosphorus and potassium are often the main limiting factors of the functioning of plants and living organisms, including symbiotic bacteria: if there is not enough phosphorus and potassium in soils, then there is no nitrogen fixation. These nutrient elements, phosphorus, potassium and micro-elements, need to be provided by fertilizers, since they cannot be provided by legumes, which draw these elements directly from the soil. In the case of manure, this is simply a transfer from grazing areas to cultivated areas, which gradually reduces fertility in grazing areas.
  4. If used appropriately, mineral fertilizers have little impact on the environment. The greenhouse gas emissions linked to nitrogen fertilizer use can be controlled through a balanced and efficient application. In addition, mineral fertilizers can be produced more efficiently in order to reduce the impact of their production on greenhouse gas emissions, keeping in mind that this impact is low, at around 1% of total anthropogenic emissions.
  5. Further reducing mineral fertilizer use in SSA would hamper productivity gains and would contribute directly to increasing food insecurity and indirectly to agricultural expansion and deforestation. Producing for a population that will double by 2050 is likely to require the use of more agricultural land. An extensive strategy thus harms biodiversity and contributes to increasing greenhouse gas emissions, contrary to an agroecological intensification strategy combined with efficient and moderate mineral fertilizer use.

“If we take account of biophysical production factors, such as climate and soil, and shortages of land and agricultural workers, it will be impossible to reach a satisfactory production level by fertilizing soils only with manure and using legumes”, says Leonard Rusinamhodzi, an agricultural researcher at the Ghana International Institute of Tropical Agriculture.

However, “agroecological principles linked directly to improving soil fertility, such as recycling of mineral and organic elements, crop efficiency and diversity, with for example agroforestry practices and cereal-legume intercropping, remain essential to improve soil health. Soil fertility is based on its organic matter content, provided by plant growth that determines the biomass that is returned to the soil in the form of roots and plant residues. Efficient mineral fertilizer use starts a virtuous circle. These nutrients are crucial for the sustainability of agricultural productivity”, says Gatien Falconnier.

The researchers therefore argue for a nuanced position that recognizes the need to increase mineral fertilizer use in sub-Saharan Africa, in a moderate manner based on efficient practices, in conjunction with the use of agroecological practices and appropriate policy support. This balanced approach is aimed at ensuring long-term food security while preserving ecosystems and preventing soil degradation.

Référence
Falconnier, G. N., Cardinael, R., Corbeels, M., Baudron, F., Chivenge, P., Couëdel, A., Ripoche, A., Affholder, F., Naudin, K., Benaillon, E., Rusinamhodzi, L., Leroux, L., Vanlauwe, B., & Giller, K. E. (2023).

The input reduction principle of agroecology is wrong when it comes to mineral fertilizer use in sub-Saharan Africa. Outlook on Agriculture, 0(0). https://doi.org/10.1177/00307270231199795

*CIRAD, CIMMYT, International Institute of Tropical Agriculture (IITA), Wageningen University and the African Plant Nutrition Institute (APNI)

Contact: presse@cirad.fr

Scientists: 

Gatien Falconnier
gatien.falconnier@cirad.fr

Pauline Chivenge
P.CHIVENGE@apni.net

Leonard Rusinamhodzi
L.Rusinamhodzi@cgiar.org

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

Improved nitrogen use can boost tomato yields

Nitrogen use efficiency (NUE) and tomato production in Nepal have both been negatively affected by universal fertilizer recommendations that do not consider the soil type, nutrient status, or climate and crop management practices. Improved use of appropriate levels of nitrogen (N) fertilizer, application time, and application methods could increase yields and reduce environmental impact.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Agricultural Research Council (NARC), the National Soil Science Research Center (NSSRC), and the International Fertilizer Development Center completed a study to identify the optimum N rate and application method to increase NUE and tomato crop yield as part of the Nepal Seed and Fertilizer (NSAF) project.

Randomized trials with nine treatments across five districts included the omission of N, phosphorus (P) and potassium (K) (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK).

Considering its anticipated higher NUE, N input in UB was reduced from the recommend N rate of 200 kg ha−1 by a quarter. N was revealed as the most limiting plant nutrient based on yield responses from an NPK omission plot.

Tomato yield was increased by 27 percent, 35 percent, 43 percent, and 27 percent over N0 with respective applications of fertilizer at N-100, N-150, N-200 and N-250. Yields responded quadratically to the added N fertilizers, with optimum rates ranging from 150 to 200 kg ha−1.

UBN-150 produced a similar yield to the recommended rate of N-200 and significantly increased tomato yield by 12% over N-150.

At N-100, scientists observed the highest partial factor productivity of N (PFPN), while at N-200, the highest agronomic efficiency of N (AEN) was recorded.

Results suggest that there is opportunity to develop more efficient N fertilization strategies for Nepal, leading to benefits of higher yields and less environmental damage.

Read the study: Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Cover photo: Generic, non-specific recommendations for fertilizer use in Nepal have affected the production of tomato crops. (Photo: Dilli Prasad Chalise/CIMMYT)

Public-private collaboration to improve fertilizer supply

Basanta Shrestha, Vice-Chair of FAN, shares the objectives of the public-private dialogue with Govinda Prasad Sharma, Secretary of MoALD (seated left) ,Mrigendra Kumar Singh Yadav, Honorable Minister of MoALD (seated center), Chandrakanta Dallakoti, Chairperson of FAN (seated right), and other participants. (Photo: Aayush Niroula/CIMMYT)

Fertilizer supply shortages are a chronic problem in Nepal, where thousands of farmers are often unable to access the required quantities on time. This is particularly common during the cultivation of rice — the major staple food crop for the country.

Some of the critical challenges to meeting fertilizer demand include limitations to import mechanisms and budget allocation for fertilizer subsidies by the Government of Nepal. Additionally, the successive COVID-19-induced lockdowns and Russia-Ukraine war have further deepened the crisis in the past two years by significantly delaying imports and increasing fertilizer prices. This continuous gap in supply has compelled farmers to buy fertilizers from the country’s unofficial or “gray” markets.

To address these shortcomings, researchers on the Nepal Seed and Fertilizer (NSAF) project, implemented by the International Maize and Wheat Improvement Center (CIMMYT), have been supporting the Fertilizer Association of Nepal (FAN) and the Ministry of Agriculture and Livestock Development (MOALD) to resolve policy issues that will enhance fertilizer distribution efficiency.

Fertilizer sector stakeholders participate in a panel discussion at the public-private dialogue. (Photo: Aayush Niroula/CIMMYT)

On 23 September 2022, the NSAF project team joined representatives from the International Fertilizer Development Center (IFDC) and FAN to organize a policy dialogue around improving the country’s fertilizer supply system. Held in Kathmandu, the event brought together concerned public and private sector stakeholders to discuss existing challenges and propose different policy alternatives that ensure the timely availability of fertilizers in the required quantities.

Representatives from FAN presented the key issues and challenges in the sector while NSAF project coordinator Dyutiman Choudhary presented the findings of different fertilizer policy studies conducted jointly with local partners. The results showed that involving the private sector in distribution improved farmers’ access to fertilizers compared to distribution carried out solely by cooperatives. The study also indicated a potential to reduce fertilizer subsidies and increase import volume to help meet demand.

Lynn Schneider, Deputy Director of USAID Economic Growth Office shares her remarks at the policy dialogue. (Photo: Dyutiman Choudhary/CIMMYT)

Improving national supply systems

The event featured a panel discussion, where participants shared their experiences and outlined the issues faced by private sector importers, logistic service providers and retailers, and policymakers from federal and provincial governments while engaging in their respective functions. The panel members also suggested a number of different ways to improve national fertilizer supply systems, such as:

  1. Restructuring fertilizer subsidy programs, i.e. reducing the current subsidy by 20-30% (a recommendation from the NSAF assessment) and using budget savings to increase imports and allocate subsidies based on fertilizer demand.
  2. Making a procurement process timeline to ensure timely fertilizer supply for three major crops — rice, wheat, and maize — and importing about 30% of the total fertilizer through Government-to-Government (G2G) agreement.
  3. Implementing a crisis management strategy by maintaining buffer stocks (20% of the demand).
  4. Ensuring a level playing field for the private sector in the import and distribution of the fertilizers.

The dialogue concluded with mutual agreement by stakeholders from the public and private sectors to improve local fertilizer distribution through private sector engagement. They agreed to revise some clauses specified in the Nepal Fertilizer Distribution Directive 2020 related to profit margins, volumes, classification of fertilizer distributors and selling fertilizers. Govinda Prasad Sharma, secretary of MOALD, informed attendees that the ministry has already started planning fertilizer procurement based on actual demand and gave assurances about G2G agreements with neighboring countries such as India to bring in fertilizers for distribution during times of peak demand. Sharma also agreed to continue supporting the private sector in capacity building to import fertilizers and to revise subsidies to make more fertilizers available.

“It is our great pleasure to see all fertilizer-related stakeholders in a common platform, which is critical to bring out key issues and cooperation between the public and private sector,” said Lynn Schneider, deputy director of the Economic Growth Office at USAID Nepal. Schneider also emphasized the importance of generating efficiency in estimating fertilizer demand and supply and fertilizer types by using Nepal’s digital soil map, working in close coordination with provincial and local governments, and increasing the role of the private sector to ensure fertilizer supply to meet crop requirements in the peak season.

Attendees at the Public Private Dialogue on Improving Fertilizer Supply System in Nepal (Photo: Aayush Niroula/CIMMYT)

The Nepal Seed and Fertilizer project is supported by the United States Agency for International Development (USAID) and is a flagship project in Nepal. It aims to build competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development and income generation in Nepal.

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

Study explores how to reduce GHG emissions while supporting food security through nitrogen management

Use of fertilizer nitrogen (N) in farming is essential for food production but also contributes to climate crisis through GHG emissions. Synthetic nitrogen fertilizer accounts for 2.4 percent of global emissions, while its supply chain accounts for 21.5% of the annual direct emissions from agriculture.

One potential solution for developing appropriate N management strategies is yield-scaled nitrous oxide (N₂O) emission (YSNE), which has been recognized for its potential to balance food security and mitigate emissions. Improving understanding and use of YSNE under various field conditions is an essential part of widespread adoption of this approach.

Scientist working in the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) together with Hawassa University, Ethiopia and Landcare Research, New Zealand  assessed the relationship between N inputs and YSNE with published results and identified response patterns of YSNE to N inputs based on 1,800 observations from maize, rice and wheat crops at global scale.

Type 1 measures: increasing yields without changing N₂O emissions. Type 2 measures: reducing N₂O emissions without changing yields. Type 3 measures: both increasing yields and reducing N₂O emissions. (Photo: CIMMYT)

A positive relationship between N inputs and YSNE was evidenced in more than 60% of the dataset across all three crops, while a small proportion had an optimum N rate that minimized YSNE. Type of crop, annual mean temperature and soil N content affected the background yield-scale N₂O emission with higher soil temperature and N content leading to higher BYSNE. The analyses suggest that YSNE can be reduced by increasing yields, by reducing N₂O emissions and both by increasing yields and reducing N₂O emissions. The results of this study suggest appropriate N management strategies, yields, and N2O emissions.

Read the full article: Understanding response of yield-scaled N₂O emissions to nitrogen input: Data synthesis and introducing new concepts of background yield-scaled N₂O emissions and N₂O emission-yield curve

Cover photo: Woman using spreader for fertilizer application in India. (Photo: Wasim Iftikar/CSISA)

Fertilizer scarcity may hamper crop cycle, cautions scientist

South Asian countries may see fertilizers scarcity in the next crop cycle as a result of the conflict situation in Ukraine and Russia, cautioned Bram Govaerts, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and the Borlaug Institute for South Asia (BISA).

The triple threat of climate change, COVID-19 and the conflict between Ukraine and Russia is exacerbating the challenge of how to feed the world, explained Govaerts.

Policy changes had the potential to address the crises, but investing in research and innovation is a fundamental part of solving the current challenges.

Read more: Fertilizer scarcity may hamper crop cycle, cautions scientist

Decomposing maize yield gaps to better inform policy and public investments

In sub-Saharan Africa, smallholder production is characterized by low agricultural productivity which is often cited as a major factor of  food insecurity in the region. Recent research from multiple countries in the region suggests that average maize yields of around 1.7 t/ha in 2010 must increase to 6.8 t/ha to meet estimated demand in 2050. To achieve this, per-hectare maize output must grow by about 3.5% per year. Although addressing this challenge seems daunting, estimates suggest that such high yields are technically feasible. However, a shared understanding of the investments and policies required remain elusive.

Under the Taking Maize Agronomy to Scale in Africa (TAMASA) project, scientists from Wageningen University and the International Maize and Wheat Improvement Center (CIMMYT) conducted research on this question, using uniquely detailed farm surveys which provide integrated information about smallholders’ agronomic practices and farm management, soil health and other biophysical characteristics, as well as socioeconomic and other characteristics of farm households.

Decomposing yield gaps

Yield gaps for rainfed crops are defined as the difference between the water-limited yield potential and the actual yield observed in farmers’ fields. One framework to explain yield gaps decomposes the yield gap into efficiency, resource and technology components (Figure 1).

The study disaggregated maize yield gaps in Ethiopia based on field level and farming systems information (Figure 2), which helps to consider the variation in biophysical and socio-economic conditions observed in the country.

Major drivers of yield (and yield gap) outcomes in Ethiopia

The study showed that income from non-farm sources, value of productive assets, education and shorter plot distance from home reduced the efficiency yield gap. The resource yield gap was attributed to sub-optimal input use, specifically of pesticide and nitrogen. The technology yield gap comprised the largest share of the total yield gap, mostly due to limited use of fertilizer and improved varieties and not using the right type and placement of fertilizers and of improved seeds

The investigation further showed that crop residue and weeding frequency affected maize yield only when nitrogen was applied. In a related study, the authors also showed that maize yield reponse to fertilizer application was dependent on other inputs, specifically type of maize variety, manure application and high rainfall implying the need to integrate agricultural technologies in order to improve and sustain the maize productivity. The authors conclude that targeted but integrated policy design and implementation is required to narrow the overall maize yield gap and improve food security.

“Disaggregating and explaining maize yield gaps is essential to identify potential pathways that can narrow the yield gaps,” said Banchayehu Assefa from CIMMYT.  “This can help guide policy and investments to be more effective at raising smallholder productivity.”

How to improve fertilizer profitability

Modern maize varieties and mineral fertilizers use have been increasing over time and are believed to be among the factors behind the maize yield improvements observed in Ethiopia. However, maize yield response to fertilizer depends on other inputs and management factors and higher fertilizer application rates may not always lead to higher profitability. Using the details of management decisions and biophysical and marketing context, the authors estimated a maize yield response function and evaluated fertilizer yield responses and economic profitability of fertilizer investments by smallholder maize producers. They found that maize yield response to fertilizer was variable with an average value of 7.3 kg maize/ kg N, and it varied from -9 to 18 kg maize /kg. The degree of response was positively affected by phosphorus input and type of maize variety, and negatively by manure input and high rainfall. The key pathways identified to increase the profitability of nitrogen fertilizer use by smallholder maize producers are: improving yield responses with better management (e.g. use of improved maize varieties, complementary use of phosphorus where appropriate); addressing risk aversion (e.g. via crop insurance) in order to strengthen economic incentives for fertilizer investments; enabling the delay of crop sales to take advantage of higher output prices (possibly through expanded access to storage facilities and/or post-harvest loans to alleviate liquidity needs); and improving farm gate price ratios through improved access to markets.

Implications and further research

Even though maize yields have improved recently, under existing management practices smallholders’ maize yield still falls far below the water-limited potential yield. This urges revising the maize sector in terms of input provision, extension services and output markets.  Fertilizer use was highly variable and maize response to fertilizer use depended on other management choices. The study suggests that integrated management practices that work for specific conditions need to be identified, instead of sticking to blanket policy and management recommendations.

This work further points at the importance of additional detailed empirical research on the role of agronomic management practices, to decrease yield gaps. Studying the constraining factors that hinder timely input provision to the farmers might also help to improve input use and hence productivity. In addition, maize prices are too low to advance maize commercialization. Investigating potentials and constraints along the maize value chain might help to improve market participation.

Cover photo: Harvesting maize in East Shoa, Oromia, Ethiopia. (Photo: Banchayehu Assefa/CIMMYT)