Skip to main content

Tag: durum

Country moving forward from wheat importer to self-sufficiency

Wheat is critical to millions of households in Pakistan as it serves a dual role as a foundational part of nutritional security and as an important part of the country’s economy. Pakistan’s goal to achieve self-sufficiency in wheat production is more attainable with the release of 31 wheat varieties since 2021.

These new seeds will help the country’s 9 million hectares of cultivated wheat fields become more productive, climate resilient, and disease resistant—a welcome development in a region where climate change scenarios threaten sustained wheat production.

The varieties, a selection of 30 bread wheat and 1 durum wheat, 26 of which developed from wheat germplasm provided by the International Maize and Wheat Improvement Center (CIMMYT) were selected after rigorous testing of international nurseries and field trials by partners across Pakistan. During this period, three bread wheat varieties were also developed from local breeding programs and two varieties (one each of durum and bread wheat) were also developed from the germplasm provided by the ICARDA. These efforts are moving Pakistan closer to its goal of improving food and nutrition security through wheat production, as outlined in the Pakistan Vision 2025 and Vision for Agriculture 2030.

Harvesting wheat in Tandojam, Pakistan (Photo: CIMMYT)

Over multiple years and locations, the new varieties have exhibited a yield potential of 5-20% higher than current popular varieties for their respective regions and also feature excellent grain quality and attainable yields of over seven tons per hectare.

The new crop of varieties exhibit impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stressors such as drought and heat.

Battling malnutrition

Malnutrition is rampant in Pakistan and the release of biofortified wheat varieties with higher zinc content will help mitigate its deleterious effects, especially among children and women. Akbar-2019, a biofortified variety released in 2019, is now cultivated on nearly 3.25 million hectares. Farmers like Akbar-2019 because of its 8-10% higher yields, rust resistance, and consumers report its good chapati (an unleavened flatbread) quality.

“It is gratifying seeing these new varieties resulting from collaborative projects between Pakistani wheat breeding programs and CIMMYT along with funding support from various donors (USAID, Bill & Melinda Gates Foundation, HarvestPlus, and FCDO) and the government of Pakistan,” said Ravi Singh, wheat expert and senior advisor.

Closing the yield gap between research fields and smallholder fields

Releasing a new variety is only the first step in changing the course of Pakistan’s wheat crop. The next step is delivering these new, quality seeds to markets quickly so farmers can realize the benefits as soon as possible.

Increasing evidence suggests the public sector cannot disseminate enough seeds alone; new policies must create an attractive environment for private sector partners and entrepreneurs.

Field monitoring wheat fields (Photo: CIMMYT)

“Pakistan has developed a fast-track seed multiplication program which engages both public and private sectors so the new varieties can be provided to seed companies for multiplication and provided to farmers in the shortest time,” said Javed Ahmad, Wheat Research Institute chief scientist.

Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Marketing and training efforts need to be improved for women, who are mostly responsible for household level seed production and seed care.

A concerted effort to disseminate the improved seed is required, along with implementing conservation agriculture based sustainable intensification, to help Pakistan’s journey to self-sufficiency in wheat production.

Climate change slows wheat breeding progress for yield and wide adaptation, new study finds

Nearly four decades of repeated crossing and selection for heat and drought tolerance have greatly improved the climate resilience of modern wheat varieties, according to new research emerging from a cross-continental science collaboration.

At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.

“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”

What do 10 million data points tell scientists?

Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.

Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.

“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.

Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.

In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.

“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”

Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.

Past research has shown that modern wheat varieties not only increase maximum yields but also guarantee more reliable yields, a benefit that adds millions of dollars each year to farm income in developing countries and greatly reduces farmers’ risk.

“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.

Read the full study:
Increased ranking change in wheat breeding under climate change

Cover photo: Wheat fields at CIMMYT’s experimental station in Ciudad Obregón, Sonora state, Mexico. Photo: M. Ellis/CIMMYT.

The science behind the perfect bread and pasta flour

Have you ever considered that bread and pasta are made from different types of wheat? How about the fact that there are thousands of different wheat products consumed around the world, and each one has unique characteristics and processing requirements?

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) understand that the quality of the final product, be it spaghetti, a loaf of sourdough bread or a tandoori naan, is highly dependent on the quality of the grain and the flour it becomes. Every year, CIMMYT analyzes thousands of wheat lines in detail at its Wheat Quality laboratory to determine the nutritional, processing and end-use quality of the grain. In this short video, CIMMYT’s Wheat Quality lab head Maria Itria Ibba explains exactly what they are looking for and how they find it.

First, CIMMYT scientists test the overall grain quality by analyzing grain weight, density, protein content, moisture content and hardness.

The grains are then milled into flour, which is again analyzed for moisture content, protein content, color and protein quality. Protein quality is especially important to determine the end-use for the type of flour, and CIMMYT conducts several tests to determine this characteristic. Bread and durum wheat flours specifically are analyzed for overall protein quality by checking SDS-sedimentation volume. Mixographs are used to assess the flour’s mixing and absorption characteristics, and alveographs are used to measure dough deformation properties.

At the end of the tests, bread wheat flours are transformed into leavened breads and scored based on the loaf’s volume and crumb quality. Durum wheat flour, used to make Italian-style pasta, is scored based on grain quality, flour yellowness, high protein content and protein quality.

CIMMYT’s work ensures that wheat-derived foods produced in developing countries are nutritious, affordable, and maximize profits for each actor in the value chain.

Cover photo: At CIMMYT’s Wheat Quality lab, researchers evaluate how different bread wheat varieties behave at the time of baking. (Photo: CIMMYT)

Back from the brink of extinction

In the early 20th century, Aaron Aaronsohn, a prominent agronomist best known for identifying the progenitor of wheat, began looking for durum wheat landraces in Israel. He traveled to villages across the country, carefully collecting and recording details of the local varieties used in each area.

This task was not without purpose. Aaronsohn recognized that as increasing numbers of settlers like himself came to the territory, the varietal change from the introduction of new and competitive wheat varieties and the rapid intensification of agriculture would soon cause all the traditional structures he had identified to disappear.

IPLR durum wheat landrace, Rishon LeZion, Israel. (Photo: Matan Franko/ARO-Volcani Center)

Aaronsohn was one of the first to begin collecting germplasm in the region, but others saw the importance of collecting before large-scale change occurred. For example, Russian botanist Nikolai Vavilov gathered samples from Israel on one of his expeditions through the Middle East. By the end of the century, a number of collections had been established, but overall efforts at conservation were fragmented.

“That’s why we say the collection was on the verge of extinction,” explains Roi Ben-David, a researcher at the Volcani Center, Israel’s Agricultural Research Institute (ARO). “There were single accessions in genebanks around the world but no one really gave them special treatment or saw their value. Many were in private collections; others were simply lost.”

When Ben-David and his colleagues began looking for landraces six years ago, even the collection housed at the Israeli Genebank (IGB) was disappointing, with many samples stored in unmarked boxes in sub-optimal conditions. “When we came in nobody was really trying to study what we had and put it together to represent the area’s wheat landscape as it was 100 years ago.”

Long-term efforts to restore and conserve a collection of Israeli and Palestinian wheat landraces (IPLR) have led to the restoration of 930 lines so far, but there are many varieties that cannot be recovered. Therefore, it came as a great surprise to Ben-David when he arrived at the International Maize and Wheat Improvement Center (CIMMYT) headquarters in Mexico and stumbled upon one of the collections presumed lost. “I think it was actually my first week at CIMMYT when I spotted a demonstration plot growing one of the lost varieties — a subset of the Ephrat-Blum collection — and I couldn’t believe it.”

He had heard about this collection from the late Abraham Blum, but had never been able to locate it. “Someone might have moved the seeds, or maybe the box was not well labelled and thrown out. We don’t know, but needless to say it was a very good surprise to rediscover 64 of our missing lines.”

What prompted you and your colleagues to start looking for landraces in Israel?

We began because we recognized local landraces are good genetic resources but unfortunately, we couldn’t find any. It wasn’t so much that they didn’t exist, but the accessions were scattered across the world, mostly in private collections in countries like the USA or Australia. The Israeli Genebank, which sits only two floors above my office, had a few buckets of germplasm but nobody really knew what was inside.

The Middle East and the Fertile Crescent are centers of diversity, not only for wheat but for all crops that were part of the Neolithic revolution 10,000 years ago. They started here – the exact point of origin was probably in what is now southeast Turkey – so we have had thousands of years of evolution in which those landraces dominated the agricultural landscape and adapted to different environments.

Why do you think so much of the collection was lost?

The lines from Israel were lost because their conservation simply wasn’t prioritized. Losses happen everywhere but what was missing in this case was the urgency and understanding of just how important these collections are. Luckily, the current manager of the IGB, who is a fundamental partner in building the IPLR, understood the need to prioritize this and allocated a budget to conserve it as one collection.

What is the value of conserving landraces and why should it be prioritized?

Landraces are an extremely important genetic resource. Wild relatives are the biggest treasure, but breeders are usually reluctant to use them because they are so very different from modern varieties. So landraces form the link between these two, having already been domesticated and developed within farming systems while remaining genetically distinct from the modern. In wheat, they’re quite easy to spot because of how tall they are compared to the semi-dwarf varieties that replaced them in the 20th century.

There are two main reasons why we need to prioritize conservation. First, we believe that the evolution under domestication in this region is important to the community as a whole. Second, it is now a critical time, as we’re getting further from the time in which those traditional lines were in use. The last collection was carried out in the 1980s, when people were still able to collect authentic landraces from farmers but this is just not possible any more. We travelled all over the country but the samples we collected were not authentic – most were modern varieties that farmers thought were traditional. Not everybody knows exactly what they’re growing.

The time factor is critical. If we were to wake up 50 years from now and decide that it’s important to start looking for landraces, I don’t know how much we could actually save.

Plant height variability among IPLR wheat landraces, Rishon LeZion, Israel. (Photo: Matan Franko/ARO-Volcani Center)

Are there any farmers still growing landraces in Israel?

When we started looking for farmers who are still growing landraces we only found one farm. It is quite small – only about ten acres shared between two brothers. They grow a variety which is typically used to make a traditional food called kube, a kind of meat ball covered in flour and then then either fried or boiled. If you boil it using regular flour it falls apart, so people prefer to use a landrace variety, which is what the brothers grow and are able to sell for up to six times as much as regular durum wheat in the market. However, they’re not really interested in getting rich; they’re just trying to keep their traditions alive.

How are you and your colleagues working to conserve the existing collection?

There are two approaches. We want to develop is ex-situ conservations to preserve the diversity. As landraces are not always easy to conserve in a genebank, we also want to support in-situ conservation in the field, like traditional farmers have done. Together with the IGB we’ve distributed seed to botanical gardens and other actors in the hope that at least some of them will propagate it in their fields.

Having established the collection, we’re also trying to utilize it for research and breeding as much as possible. So far we’ve characterized it genetically, tested for drought tolerance and other agronomic traits and we’re in talks to start testing the quality profile of the lines.

Did you continue working on this while you were based at CIMMYT?

Yes, this was an additional project I brought with me during my sabbatical. The main success was working with Carolina Sansaloni and the team at the Genetic Resources program to carry out the genotyping. If it were left to my own resources, I don’t think we could have done it as the collection contains 930 plant genotypes and we only had the budget to do 90.

Luckily, CIMMYT also has an interest in the material so we could collaborate. We brought the material, CIMMYT provided technical support and we were able to genotype it all, which is a huge boost for the project. We had already been measuring phenotypes in Israel, but now that we have all the genetic data as well we can study the collection more deeply and start looking for specific genes of interest.

What will happen to the lines you discovered at CIMMYT?

They’ve been sent back to Israel to be reintegrated into the collection. I want to continue collaborating with people in CIMMYT’s Genetic Resources program and genebank to do some comparative genomics and assess how much diversity we have in the IPLR collection compared with what CIMMYT has. Is there any additional genetic diversity? How does it compare to other landraces collections? That is what we want to find out next.

Roi Ben-David is based at Israel’s Agricultural Research Organization (ARO). He works in the Plant Institute, where his lab focuses on breeding winter cereals such as wheat. He has recently completed a one-year sabbatical placement at the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT’s germplasm banks contain the largest and most diverse collections of maize and wheat in the world. Improved and conserved seed is available to any research institution worldwide.