Skip to main content

Tag: drought-tolerant

CIMMYT releases its first ever maize genetic resource lines

Maize and wheat fields at CIMMYT's El Batán experimental station.
Maize and wheat fields at CIMMYT’s El Batán experimental station. (Photo: Alfonso Cortés/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the release of a new category of maize inbred lines called CIMMYT Maize Genetic Resource Lines (CMGRL). The CMGRLs are derived from crosses between elite CIMMYT lines and landrace accessions, populations or synthetics from the CIMMYT Germplasm Bank.

Although high standards of yield and agronomic performance are applied in their selection, CMGRLs are not intended to be used directly in commercial hybrids but rather by breeders as sources of novel alleles for traits of economic importance. These lines should also be of interest to maize researchers who are not breeders but are studying the underlying genetic mechanisms of abiotic and biotic traits.

A tar spot disease resistant line next to a non-resistant line.
A tar spot disease resistant line next to a non-resistant line. (Photo: Terry Molnar/CIMMYT)

Currently the maize genetic resources breeding team has projects in drought tolerance, heat tolerance, tar spot complex (TSC) disease resistance and in the development of lines and hybrids with blue kernel color. For all of these projects, the best lines identified for a given trait objective will be recombined to produce open-pollinated varieties that will be made available to the public.

The inaugural class of CMGRLs includes five subtropical adapted lines for tolerance to drought during flowering and grain-fill and four tropical adapted lines for TSC resistance. Both phenotypic and genotypic data will be published online for all CMGRL releases. CIMMYT will periodically release CMGRLs as superior lines are identified for economically important abiotic and biotic stresses as well as end-use traits.

Release Summary:

CMGRL Name Trait Target Type Level Landrace Donor Parent Landrace Country of Origin Recurrent Parent Heterotic Group Adaptation
CMGRLB001 TSC resistance BC1 S5 OAXA280 Mexico CML576 B Tropical
CMGRLB002 TSC resistance BC1 S5 OAXA280 Mexico  CML576 B Tropical
CMGRLB003 TSC resistance BC1 S5 GUAT153 Guatemala  CML576 B Tropical
CMGRLB004 TSC resistance BC1 S5 GUAT153 Guatemala  CML576 B Tropical
CMGRLB005 Drought tolerance BC1 S5 ARZM12193 Argentina  CML376 B Subtropical
CMGRLB006 Drought tolerance BC1 S5 ARZM12237 Argentina CML376 B Subtropical
CMGRLB007 Drought tolerance BC1 S5 SNLP169 Mexico CML376 B Subtropical
CMGRLB008 Drought tolerance BC1 S5 SNLP17 Mexico CML376 B Subtropical
CMGRLB009 Drought tolerance BC1 S5 SNLP17 Mexico CML376 B Subtropical

 

Full details including phenotypic and genotypic data on the nine lines are available here. To order a 50-kernel seed sample of the CMGRLs, please contact Terry Molnar.

Food production in Africa: Role of improved seeds in enhancing food security

This year’s Nobel Peace Prize award is likely to turn the eyes of the world to the millions of people who suffer from, or face the threat of hunger. CGTN Africa has been running a series on food production in the continent. The series is in line with this year’s Nobel Peace Prize theme — making food security an instrument of peace. This episode focuses on the impact of improved seeds.

Watch here: https://www.youtube.com/watch?v=F0saDuHlVZs&feature=youtu.be

3 climate-resilient food solutions for smallholder farmers

While COVID-19 is exacerbating an existing hunger crisis, authors highlight three of the most impactful research and development successes from the past few years that help smallholder farmers cope with climate change and bolster food security.

The first is CIMMYT’s program to develop drought-tolerant maize varieties with support from the Bill & Melinda Gates Foundation, successfully developing hundreds of new varieties that boost farmers’ yields and incomes, directly improving millions of lives.

Read more here: https://www.greenbiz.com/article/3-climate-resilient-food-solutions-smallholder-farmers

Heat and drought watch out. One-of-a-kind network launched in Berlin

Wheat crop losses due to heat and drought affect food availability and increase the costs for billions of consumers around the world. The Alliance for Wheat Adaptation to Heat and Drought (AHEAD) is an international network that hosts initiatives and projects dedicated to addressing scientific gaps and builds synergies to support the development of new wheat varieties that are resilient to heat and drought.

Read more here.

Interdrought 2020 congress proceedings now online

The critical global challenge of significantly increasing food production by 2050 is exacerbated by water limitations. Droughts and water scarcity affect crop production across the world and global climate warming is aggravating this effect. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production in drier environments.

The Interdrought 2020 congress presents the latest developments to address this global challenge.

Interdrought 2020 was scheduled to be held in Mexico City in March 2020. As it was not possible to proceed with the congress as a face-to-face meeting due to the travel restrictions associated with the COVID-19 pandemic, the organizing committee has delivered the scientific program of the congress online. Congress proceedings are available at interdrought2020.cimmyt.org.

Today the organizing committee extended the reach of the congress proceedings to the global community by providing free online access to 43 presentations, 75 abstracts and 35 posters. The complete book of abstracts can also be downloaded. To date over 10,000 members of the scientific community have been invited to watch presentations and read the proceedings online.

Internationally recognized keynote speakers participated in the seven main sessions, supported by nine symposia convened by global experts, on topics ranging from breeding and management approaches to the basic science of plant–water relations.

State-of-the-art research and technology

Interdrought 2020 is an opportunity for scientific leaders from across the world to share the latest research and technology developments to advance plant production in water-limited situations. Interdrought 2020 embraces the philosophy of presenting and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.

Interdrought 2020, also known as Interdrought VI (IDVI) is the sixth congress in the series. It builds on the success of previous congresses held in Montpellier in 1995, Rome in 2005, Shanghai in 2009, Perth in 2013, and Hyderabad in 2017.

The congress was organized by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Queensland. The organizers share a strong history of collaboration in crop research and agronomy that seeks to increase wheat’s tolerance to drought and its yield potential in hot conditions, such as those seen in Queensland, Australia, and Sonora, Mexico.

The organizers and the congress committee would like to thank major sponsors Corteva, the Grains Research and Development Corporation (GRDC), the University of Queensland, and supporting sponsors in silico Plants, the Journal of Experimental Botany, Illumina, Analitek, and LI-COR. Our sponsors’ belief in the value of the scientific content enabled us to deliver congress proceedings to not only delegates but the broader scientific community.


For more information, please contact

Professor Graeme Hammer
Chair of the Interdrought 2020 congress committee
g.hammer@uq.edu.au

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

QAAFI at the University of Queensland

The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of the University of Queensland supported by the Queensland Government via the Department of Agriculture and Fisheries. QAAFI is comprised of four inter-related research centres working across crops, horticulture, animals, and nutrition and food sciences, with a focus on addressing challenges in the tropical and subtropical systems. For more information visit www.qaafi.uq.edu.au/about.

New crop varieties set to address drought, malnutrition

Test plot in Malawi includes drought-tolerant maize varieties developed by the International Maize and Wheat Improvement Center (CIMMYT); other maize varieties that are both drought-tolerant and high in vitamin A, developed by the HarvestPlus program and CIMMYT; and a high-iron bean variety developed by HarvestPlus and the International Center for Tropical Agriculture (CIAT).

Through thirty of these test plots established in the current growing season, the Clinton Development Initative, HarvestPlus and CIMMYT partners are reaching 30 000 farmers in 10 districts of Malawi.

Read more here: https://www.mwnation.com/new-crop-varieties-set-to-address-drought-malnutrition/

In new hostile climate, drought-tolerant crops, systems needed on unprecedented scale

Last year, droughts devastated staple food crops across the developing world, cutting production by about half in some countries. A stream of reports from Central America, Eastern and Southern Africa as well as the Asia-Pacific region painted a grim picture of suffering and upheaval.

Extreme weather, with its appalling consequences, demands an extraordinary response. Redoubled efforts must focus on building resilience into the developing world´s major food systems.

Read more here: https://www.scidev.net/global/agriculture/opinion/in-new-hostile-climate-drought-tolerant-crops-systems-needed-on-unprecedented-scale.html