Skip to main content

Tag: drought

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

The increasing frequency of drought challenges agriculture sustainability and livelihood of smallholder farmers

Crops struggling to grow in drought conditions, Bihar (Photo: Moben Ignatius/CIMMYT)

Agriculture is one of the sectors most affected by droughts, which can last for months or even years. In Bihar, where rain-fed agriculture is the primary source of livelihood for many, droughts can be devastating for rural farmers. The growing threat of climate change to crop production and farming practices calls for adopting alternative farming methods. In 2022-23, many districts in Bihar experienced drought conditions.

To better understand the impact of drought on crop production practices and farmers’ livelihoods, researchers from CSISA, a CIMMYT-led project, conducted a survey in Bihar during both the Kharif and Rabi seasons of 2022-23, the year of the drought. In the Kharif season, 518 farmers from 11 districts, 39 blocks, and 79 villages were surveyed, while 339 farmers participated in the Rabi season survey. The primary goal of this data collection was to assess the impact of drought on agricultural practices and provide evidence to guide policy and decision-making processes.

The survey collected data on 123 variables related to rice production, including land preparation, cropping patterns for 2022 and 2021, crop establishment methods, irrigation management, fertilizer application, and weed management. Farmers also shared their perceptions of how the drought had altered their rice production practices and affected their livelihoods compared to the previous year.

For many farmers, the experience of the drought was harsh. Magni Singh from East Champaran reflected on the challenges: “This year (2022), the drought hit us hard. I could only plant paddy on a small piece of land, but with no rain, there was not much harvest. Our fragmented land makes efficient irrigation almost impossible, and relying on rain feels like gambling with each season. Farming in these conditions is becoming increasingly unsustainable.”

Similarly, Shanti Devi of Banka shared her struggles: “The season started with drought, and we struggled to get water to the crops. By the time the rain came, it was too late – it came during the harvest and damaged the crop. I couldn’t afford fertilizers in time, which made things worse. Every year, it feels like we’re battling both nature and rising costs.”

This drought impact assessment by CSISA is also valuable for further research, particularly for comparing rice production practices between drought and non-drought years. Such comparisons can help researchers and policymakers develop effective drought mitigation strategies tailored to farmers’ needs.

An electric pump used to irrigate a paddy field in Buxar, Bihar (Photo: Nima Chodon/CIMMYT)

Read more about these livelihoods framework at Drought Impact Assessment in Bihar – August 2024https://acrobat.adobe.com/id/urn:aaid:sc:AP:66f00f6f-df17-4b13-9fee-2e0050de12ea 

For further research and analysis, primary data from the survey can be accessed at CIMMYT data verse

Seeds to beat the heat in lowland tropics

South Asia, a region heavily impacted by climate change, faces rising temperatures, erratic monsoon rains causing intermittent drought and excessive moisture within the season, and frequent episodes of heat waves. These extreme weather events are challenging agrarian practices and affecting millions, especially smallholder farmers dependent upon rainfed cultivations. The halcyon days of consistent environmental conditions are gone, and adaptation and mitigation strategies have become essential in South Asia.

In May 2024, over 20 districts in the Terai region of Nepal and many parts of northern India recorded maximum temperatures between 40°C and 45°C, with several districts also experiencing heat waves during the same period. The temperature rise is not limited to the lowland plains; the effects are also being felt in the mountains, where rapid snowmelt is becoming increasingly common. In the Hindu Kush Himalayas region of Pakistan, farmers have had to shift their cropping cycles by a month to cope with drought stress caused by rising temperatures, which are leading to the early melting of snow in the region.

Partners in South Asia visiting heat stress tolerant hybrids demonstration in Nepal (Photo: CIMMYT-Nepal)

Collaborating to rise above the challenge

Amid the growing climate crisis, the Heat Stress Tolerant Maize for Asia (HTMA) project was launched by CIMMYT in 2012, with support from the United States Agency for International Development (USAID) under the Feed the Future initiative of the U.S. Government. The overarching goal of the HTMA project was to help farm families, particularly maize growers, to adapt to the impacts of soaring heat on maize productivity in South Asia. The project was implemented in partnership with 28 public and private sector stakeholders across the region and beyond to develop a multipronged approach to overcoming these challenges.

“Our aim is to develop and deploy maize hybrids with high yield potential and possess traits resilient to heat and drought stresses,” said P.H. Zaidi, Principal Scientist, and HTMA project lead at CIMMYT. Zaidi noted that during heat stress “high temperatures alone are not the only limiting factor- it is the combination of high temperature with low atmospheric humidity (high vapor pressure deficit), that creates a “killer combination” for maize production in the Asian tropics.”

This was also emphasized in a recently published article that he co-authored.

The development of heat stress-tolerant maize involves the use of cutting-edge breeding tools and methods, including genomics-assisted breeding, double haploidy, field-based precision phenotyping, and trait-based selection. Over 20 such hybrids have been officially released in India, Nepal, Bangladesh, Pakistan, and Bhutan. Between 2023 and 2024, over 2,500 metric tons of seed from these hybrids were distributed to farmers, helping them beat the heat.

Agile partnerships-from discovery to scaling

The first phase of the project (2012-2017) focused on discovering heat-tolerant maize varieties. During this time, pipeline products underwent field evaluations in stress-prone environments, leveraging the project’s product evaluation network of public and private partners, who contributed by managing trials and generating performance data. In the second phase (2018-2023), the focus shifted toward the deployment and scaling of heat-tolerant hybrids and strengthening seed systems in target countries to enable large-scale delivery, benefiting millions of farm families, particularly in South Asia’s rainfed ecologies. For example, the seed produced in 2023-2024 sufficed to cover over 125,000 hectares and benefited nearly 2.5 million people in the region.

HTMA project partners gathered in Nepal for the annual and project closure meeting (Photo-CIMMYT-Nepal)

Hailu Tefera, from USAID, praised the project’s success during the annual review and project closure meeting held in Nepal from August 21-22, 2024. We have seen great strides in scaling heat stress tolerant hybrids in the region. This initiative aligns with the US Government’s Global Food Security Strategy, where building farmers’ resilience to shocks and climate vulnerability is central,said Tefera, acknowledging the adaptive and agile partnership demonstrated by the project’s partners throughout HTMA’s discovery and scaling phases.

One of the project’s key achievements was creating a multi-stakeholder platform and leveraging resources across the region. Partners, including national agricultural research systems, seed companies, and higher learning institutes, expanded the project’s impact. The collaboration we fostered under the HTMA project is a working example of effective partnerships,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program. He highlighted how synergies with other developmental projects in the region, especially projects supported by the USAID country mission in Nepal helped launch local hybrid seed production, transforming the country from a net importer of hybrid maize seeds to producing locally in just a few years, and such seeds of resilience cover nearly 10,000 hectares in 2023/24 alone. Using heat tolerant (HT) maize seed allows smallholder farmers to harvest nearly one metric ton per hectare additional yield than normal maize under stress conditions.

The value of the seed these new hybrids was validated by adopter farmers who grow maize in stress-vulnerable ecologies by expressing their willingness to pay a premium price for HT hybrid seed as per the study conducted in Nepal and India. “The spillover effect of the project is helping countries like Bhutan to strengthen their seed systems and initiate hybrid seed production for the first time,” added Prasanna, expressing gratitude to USAID and all project partners.

The salient achievements of the project, including technical know-how, outputs, outcomes, and learnings were compiled as an infographic, titled “HTML Tool‘ and it was formally released by Narahari Prasad Ghimire, Director General of the Department of Agriculture, Government of Nepal, during the HTMA meeting in Nepal.

Rewarding achievement

Subash Raj Upadhyay, Managing Director of Lumbini Seed Company in Nepal, recalls the early days of producing heat stress-tolerant hybrid maize seed in Nepal, which began in 2018. “Our journey started with just one hectare of seed production in 2018 and 2019, and we expanded to 30 hectares by 2022. This was the first time that we started hybrid maize seed production in Nepal, specifically RH-10, a heat stress tolerant hybrid from CIMMYT, released by the National Maize Research Program of Nepal. The support of USAID’s projects like the Nepal seed and fertilizer project was crucial for our success,” said Upadhyay, who was among the award recipients for setting a potent example in scaling up heat stress-tolerant hybrids.

HTMA TOOL- an infographic launched during the meeting (Photo-CIMMYT Nepal)

In addition to Lumbini Seed Company, Jullundur Seed Private Limited Company in Pakistan was also recognized for its efforts in seed scaling. The National Maize Research Program of Nepal and the University of Agricultural Sciences, Raichur, India, were acknowledged for their rewarding achievement in research and development during the project period.

“The recognition exemplifies the public-private partnership that we demonstrated under the HTMA project, where the public sector mainly focused on strategic research and product development, and seed companies took charge of seed delivery and scaling,” said Zaidi during the project’s phaseout meeting in Nepal, attended by over 60 participants from the project’s target and spillover countries. “Such partnership models need to be strengthened and replicated in other projects. It is important to consolidate the gains and maintain the momentum of the HTMA project in the years to come to benefit millions of smallholder farmers, echoed Prasanna, who presented certificates of recognition to the partners in the presence of USAID representatives, senior government officials from Nepal and project partners from South Asia and beyond.

Helping herders access grazing lands and water sources amid prevailing food insecurity in Sudan

In parts of the conflict-ridden Sudan, including the eastern regions such as Kassala and Gadarif, rainfall is sparse and recurring droughts caused by climate change compound the issue. Consequently, perennial grasses that are supposed to grow back year after year are dramatically disappearing.

In addition, uncontrolled and heavy grazing in large areas in Sudan is also negatively affecting soil by increasing erosion, and cattle hooves can compact the soil, preventing plant roots from receiving enough oxygen, water, and nutrients.

Due to these factors, many pastoralist groups in east Sudan are seeking grazing resources outside their recognized tribal territory. A major problem for these groups has been the recurrent droughts and the deterioration of pasture areas, which has forced them to stay longer in areas with rich grazing, thus competing with other groups and leading to frictions and conflicts.

Livestock-Food Systems Development (LFSD) is a component of the Sustainable Agrifood Systems Approach for Sudan (SASAS), funded by USAID, focused on the dairy and meat subsector of the livestock sector. The LFSD aims to enhance the utilization of appropriate forage and feeding options through the demarcation of migratory routes to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

Along with partners, Practical Action and International Livestock Research Institute (ILRI), LFSD, is establishing a 50 km migratory route demarcation from Al Hindiiyya to Banqir in the Atbara River locality, Kassala State, East Sudan. These routes connect villages to public grazing land for livestock to pass through without impacting farmland.

The intervention also includes reseeding 1,000 feddans (around 420 hectares) of grazing lands and creating water ponds for animals during the rainy season. SASAS is also enhancing water harvesting by using a tractor to increase soil moisture. The two interventions were recommended by local communities and agriculture and animal resources authorities in Kassala state.

“As the rainy season is commencing, we started working with the local communities and reseeding the targeted areas in rural Kassala and River Atbara localities as recommended by the Ministry of Agriculture,” said Dr. Abdallah Osman, Project Manager, Practical Action.

Reseeding around 1,000 feddans of grazing lands in River Atbara Locality, Kassala (Photo:Suliman Fadlalla/CIMMYT )

“To ensure the best results, we used a mix of five high-quality seed types, all of which were recommended by the Kassala State Ministry of Agriculture,” Osman said.

The reseeding will serve 15 villages and enhance grazing lands for over 100,000 animals in the area. In addition, water storing capacity will be increased by constructing 15 large water ponds.

“For the past decades, our grazing lands had diminished gradually, and we face huge challenges in feeding our livestock, especially during dry seasons. In most cases, we had to buy costly fodder and water trucking,” said Ahmed Hassan, a community leader and a herder from River Atbara Locality, Kassala State. “We feel very proud to participate in reseeding the grazing lands in our areas, as this will increase grass yield and quality, enabling us to feed our animals better.”

The intervention also aims to rehabilitate animal migratory route demarcations to ease access to grazing, avoid conflicts, and reduce long-distance livestock travel impact on livestock health.

“As farmers, we suffer a lot from animals that cross into our agricultural fields and destroy our crops. We are relieved that reseeding will create more grazing lands for herders, and the demarcation of animal routes will help reduce the chronic seasonal conflicts between farmers and herders,” said Haw Osman, a farmer from Am Safri, Kassala Rural locality.

“At SASAS, we strive to ensure that herders have access to rich grazing lands. We work with our partners to address all problems linked to overgrazing, reseeding pasture lands, and treating the causes of conflict between herders and farmers. We involve local communities in creating clear animal migration routes away from farms and increasing water sources for animals through water harvesting projects,” said Abdelrahman Kheir, SASAS Chief of Party in Sudan.

Water harvesting to create water ponds for animals in River Atbara Locality, Kassala State (Photo: Suliman Fadlalla/CIMMYT )
SASAS partners work with local communities in rural Kassala and River Atbara to mark animal migration routes for animals (Photo: Suliman Fadlalla/CIMMYT)

Sustaining Conservation Agriculture initiatives: lessons from Malawi

Sub-Saharan Africa (SSA) has experienced the worst impacts of climate change on agriculture over the past decades and projections show such effects are going to intensify in the coming years. Diminished agricultural production has been the primary impact channel given the high reliance on rainfed agriculture in the region. Combined with a growing population, food security for millions of people is threatened.

Conservation Agriculture (CA) is a sustainable cropping system that can help reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping smallholder farmers adapt to climate change. It is built on three core principles of minimum soil disturbance, crop residue retention, and crop diversification.

CA was introduced in southern Africa in the 1990s, but its adoption has been patchy and often associated with commercial farming. A group of researchers, led by Christian Thierfelder, principal cropping systems agronomist at CIMMYT, set out to understand the reasons why smallholder farmers adopt CA, or why they might not or indeed dis-adopt. Their results were published in Renewable Agriculture and Food Systems on March 12, 2024.

Conservation Agriculture plot. (Photo: CIMMYT)

“Conservation Agriculture can cushion farmers from the effects of climate change through its capacity to retain more soil water in response to high water infiltration and increased soil organic carbon. It is therefore a viable option to deal with increased heat and drought stress,” said Thierfelder. However, even with these benefits, adoption of CA has not been as widespread in countries like Malawi.

“There are regions within Malawi where CA has been promoted for a long time, also known as sentinel sites,” said Thierfelder. “In such places, adoption is rising, indicating that farmers are realizing the benefits of CA over time. Examining adoption dynamics in sentinel sites can provide valuable lessons on scaling CA and why some regions experience large rates of non- or dis-adoption.”

Thierfelder and his co-authors, Innocent Pangapanga-Phiri of the Center for Agricultural Research and Development (CARD) of the Lilongwe University of Agriculture and Natural Resources (LUANAR), and Hambulo Ngoma, scientist and agricultural economist at CIMMYT, examined the Nkhotakota district in central Malawi, one of the most promising examples of widespread CA adoption.

Total LandCare (TLC), a regional NGO working in Malawi has been consistently promoting CA in tandem with CIMMYT in the Nkhotakota district since 2005.

Results from both individual farmer interviews and focused group discussions revealed that farmers that implement CA saw higher yields per hectare than those who practiced conventional tillage practices. In addition, farmers using CA indicated greater resilience in times of drought, improved soil fertility, and reduced pest infestation.

Why adopt CA?

The primary factors enhancing CA adoption in the Nkhotakota district were the availability of training, extension and advisory services, and demonstration plots by the host farmers. Host farmers are farmers that have been trained by a TLC extension officer and have their own plot of land to demonstrate CA methods. In addition, host farmers train other farmers and share knowledge and skills through farmer field days and other local agricultural exhibitions.

“Social networks among the farmers serve a vital role in CA adoption,” said Ngoma. “Seeing tangible success carries significant weight for non-adopter farmers or temporal dis-adopters which can persuade them to adopt.”

Maize demonstration plot. (Photo: CIMMYT)

During focus group discussions facilitated by the authors, farmers indicated that demonstration plots also removed fear for the unknown and debunked some myths regarding CA systems, for example, that practitioners show ‘laziness’ if they do not conventionally till their land.

“This suggests that CA uptake could be enhanced with increased, targeted, and long-term promotion efforts that include demonstration plots,” said Ngoma.

Similarly, the longer duration of CA exposure positively influenced farmers’ decisions to adopt CA methods as longer exposure might allow farmers to better understand the benefits of CA practices.

Why not adopt CA?

Farmers reported socioeconomic, financial, and technical constraints to adopt CA. An example is that farmers might not have the labor and time available for weed control, a necessary step in the first few years after the transition to CA.

“Weed control is an important challenge during the early years of CA adoption and can be seen as the ‘Achilles heel’ of CA adoption,” said Thierfelder. CIMMYT scientists therefore focused a lot of research in recent years to find alternative weed control strategies based on integrated weed management (IWM) using chemical, biological, and mechanical control options.

Examining the stover in a maize plot. (Photo: CIMMYT)

In most cases, the benefits of CA adoption are seen only after 2 to 5 years. Having such a long-term view is not always possible for smallholder farmers, who often must make decisions based on current conditions and have immediate family obligations to meet.

As a contrast to adopters of CA, non-adopters reported a lack of knowledge about CA as a whole and a lack of specific technical knowledge needed to transition from more traditional methods to CA.

This scarcity of technical support is often due to the lack of strong agriculture extension support systems. Since CA adoption can be complex, capacity building of both farmers and extension agents can therefore foster adoption and implementation of CA. This reinforces that farmer-to-farmer approaches through host farmers could complement other sources of extension to foster adoption.

Next steps

The authors identified three policy recommendations to accelerate CA adoption. First, there is a need to continue promoting CA using farmer-centric approaches more consistently, e.g., the host farmer approach. Using a farmer-centered approach facilitates experiential learning and can serve as a motivation for peer-to-peer exchange and learning and can reduce misinformation. The host farmer approach can be augmented by mega-demonstrations to showcase CA implementation at scale. In addition, rapid and mass extension delivery can be enhanced by using digital technologies.

Second, CA promotion should allow farmers the time to experiment with different CA options before adoption. What remains unclear at the policy level is the types of incentives and support that can be given to farmers to encourage experimentation without creating economic dependence. NGOs and extension workers could help farmers deal with the weed pressure soon after converting from full to minimum tillage by providing herbicides and training.

Third, there is a need to build and strengthen farmer groups to facilitate easier access to training, to serve as conduits for incentive schemes such as payments for environmental services, and conditional input subsidies for CA farmers. Such market-smart incentives are key to induce initial adoption in the short term and to facilitate sustained adoption.

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Cream of the crop: Developing the next generation of wheat scientists is key to sustaining wheat production in Pakistan

On July 17-18, 2023, 87 wheat scientists gathered to learn about new approaches and methods for wheat improvement in Faisalabad, Pakistan. CIMMYT and the Wheat Research Institute, Faisalabad (WRI-FSD) jointly organized a two-day training. The course covered two topics: high throughput genotyping technologies and high throughput phenotyping platforms. The trainees, who were able to attend in person or remotely and 27% of whom were women, hailed from 17 NARES partners across Pakistan.

Trainees at Faisalabad, Pakistan. (Photo: CIMMYT)

After being welcomed by the Director General of Ayub Agricultural Research Institute (AARI), Akhtar Ali, and CIMMYT’s Country Representative, TP Tiwari, participants received an update on the status of wheat in Pakistan from Muhammad Sohail, national wheat coordinator for the Pakistan Agricultural Research Council (PARC). Subsequently, WRI-FSD Director, Javed Ahmed, discussed wheat research in Punjab, where over 70% wheat is grown in Pakistan. Kevin Pixley, interim director of CIMMYT’s Global Wheat Program, joined the proceedings remotely for a conversation about CIMMYT’s and CGIAR’s collaboration with NARES. Participants discussed the model’s successes, bottlenecks, the role of NARES, and the potential for capacity development. The conversation generated broad interest and suggestions for enhancing the partnership’s effectiveness. Akhtar Ali, Muhammad Sohail, and Javed Ahmed all spoke very highly about CIMMYT’s support in Pakistan.

This event was organized as part of a collaborative project entitled “Rapid development of climate resilient wheat varieties for South Asia using genomic selection” that is jointly managed by Kansas State University and CIMMYT with funding from the USAID Feed the Future program.

“Training emphasized the need for an output-oriented researcher that covered the development of climate-resilient wheat varieties, given the environmental challenges we are experiencing like, drought and heat, and highlighted the importance of innovative methodologies and advanced tools for high throughput phenotyping and genotyping for sustainable and resilient wheat production in Pakistan” said Muhammad Ishaq, a senior research officer and one of the training participants from Kohat Research Station, Khyber Pakhtunkhwa.

At the conclusion of the training, Javed, direct of WRI Faisalabad, commended CIMMYT’s support and suggested continuing the pace of training. Dr. Tiwari stressed the importance of such efforts will help Pakistan’s scientists develop and deploy climate resilient, impactful wheat varieties to boost wheat production and reduce wheat imports in the country.

Climate change to reduce Africa, South Asia wheat output

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. DSSAT wheat models showcase the impact of temperature, heat stress, water balance and drought stress in large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

Read the full story here

 

 

 

Accelerating delivery of stress-tolerant, nutritious seed in Eastern and Southern Africa

AID-I staff inspect germination in Malawi (Photo: CIMMYT)

Accelerated delivery with a difference is underway in Malawi, Tanzania, and Zambia to ensure access to stress-tolerant seeds for underserved farmers in remote areas. Supported by USAID, the Accelerated Innovation Delivery Initiative (AID-I) project brings public-private and civil society together to address the impacts of climate change, pests and diseases, and food shocks on maize and legume systems.

One simple and cost-effective solution to tackle these threats is last mile delivery of stress-tolerant and nutritious seeds. Ensuring that farmers have access to a diverse range of seeds means they can choose the best varieties to suit their needs and their local environment.

Through AID-I, scientists at the International Maize and Wheat Improvement Center (CIMMYT) are working with over 20 global, regional, national, and local partners to strengthen maize and legume seed systems in Malawi, Tanzania, and Zambia.

So far, in 2023, the team has set up over a hundred mega-demonstrations across Malawi and Zambia, to raise awareness and increase seed production by exposing communities to improved, climate-adapted and nutritious crop varieties. As learning centers, the mega-demonstrations give farmers a chance to see for themselves the advantages of improved maize and legume varieties and better farming practices including conservation agriculture and doubled up legumes systems.

Farmers plant mega-demonstration plots in Malawi (Photo: CIMMYT)

Spotlighted were drought-tolerant and nutritious varieties, expected to play a crucial role in the recovery of regional maize production. The Zambian and Malawian governments have also just released maize hybrids tolerant to fall armyworms, which will be scaled through the AID-I. The fall armyworm is an invasive pest that attacks more than 80 different crops but has a particular preference for maize. Without proper control measures, the pest can decimate crops, threatening food security, incomes, and livelihoods.

Alongside maize, the AID-I team is making seed of improved legume varieties, including beans, soybean, pigeon peas, cowpea, and groundnuts available at the last mile. Legumes are nutritious and good for the soil, providing valuable nutrients like nitrogen (N) so farmers can use less fertilizer, save money, and protect soil health.

AID-I supports strengthening of strategically located seed stockists of improved legume varieties and linking seed growers and buyers. These stockists, called agricultural development agents will also receive training in community seed production. Through connection with hundreds of agricultural development agents in the first farming season with seed suppliers, hundreds of thousands of farmers will be able to access a wide variety of improved seed.

Members of the CIMMYT leadership team with representatives from the U.S. Department of State and the U.S. Agency of International Development (USAID) visit AfriSeed in Zambia (Photo: CIMMYT)

Building strong relationships between public and private sector organizations is an integral part of the project. On January 16, 2023, long-term CIMMYT collaborator and AID-I key partner, AfriSeed hosted senior government officials from the United States Department of State (DOS) and U.S. Agency for International Development (USAID). The visitors gained valuable insight into how private seed companies involved in the marketing and distribution of maize and legume seeds operate in Zambia and showed their crucial role in the country’s seed sector.

Combining improved seed varieties and index insurance to address drought losses

This VoxDevTalk features Paswel Marenya, Adoption and Impact Assessment Economist at the International Maize and Wheat Improvement Center (CIMMYT), being interviewed about a recent study, “Bundling Genetic and Financial Technologies for More Resilient and Productive Small-scale Agriculture”.

To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.

Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.

Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.

Listen to the podcast: Combining improved seed varieties and index insurance to address drought losses

The race against time to breed a wheat to survive the climate crisis

CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.

Reporter visited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.

Read more: https://www.theguardian.com/environment/2022/jun/12/wheat-breeding-climate-crisis-drought-resistant

International scientists awarded grants supporting the HeDWIC-FFAR project to boost climate resilience in wheat

A farmer harvests wheat in one of CIMMYT's research plots in Ethiopia. (Photo: P. Lowe/CIMMYT)
A farmer harvests wheat in one of CIMMYT’s research plots in Ethiopia. (Photo: P. Lowe/CIMMYT)

Five international wheat research teams have been awarded grants for their proposals to boost climate resilience in wheat through discovery and development of new breeding technologies, screening tools and novel traits.

Wheat is one of the world’s most important staple crops, accounting for about 20% of all human calories and protein and is increasingly threatened by the impacts of climate change. Experts around the world are working on ways to strengthen the crop in the face of increasing heat and drought conditions.

The proposals were submitted in response to a call by the Heat and Drought Wheat Improvement Consortium (HeDWIC), led by the International Maize and Wheat Improvement Center (CIMMYT) and global partners, made in 2021.

The grants were made possible by co-funding from the Foundation for Food & Agriculture Research (FFAR) and in-kind contributions from awardees as part of a project which brings together the latest research from scientists across the globe to deliver climate resilient wheat to farmers as quickly as possible.

Cutting-edge wheat research

Owen Atkin, from the Centre for Entrepreneurial Agri-Technology at the Australian National University, leads the awarded project “Discovering thermally stable wheat through exploration of leaf respiration in combination with photosystem II capacity and heat tolerance.”

“The ratio of dark respiration to light and CO2 saturated photosynthesis is a clear indicator of the respiratory efficiency of a plant,” Atkin said. “We will measure and couple this indicator of respiratory efficiency to the leaf hyperspectral signature of field grown wheat exposed to heat and drought. The outcome could be a powerful tool which is capable of screening for wheat lines that are more productive when challenged with drought and heatwave.”

Hannah M. Schneider, of Wageningen University & Research, leads the awarded project examining the use of a novel root trait called Multiseriate Cortical Sclerenchyma to increase drought-tolerance in wheat.

“Drought is a primary limitation to global crop production worldwide. The presence of small outer cortical cells with thick, lignified cell walls (MCS: Multiseriate Cortical Sclerenchyma) is a novel root trait that has utility in drought environments,” Schneider said. “The overall objective of this project is to evaluate and develop this trait as a tool to improve drought resistance in wheat and in other crops.”

An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)

John Foulkes, of the University of Nottingham, leads an awarded project titled “Identifying spike hormone traits and molecular markers for improved heat and drought tolerance in wheat.”

“The project aims to boost climate-resilience of grain set in wheat by identifying hormone signals to the spike that buffer grain set against extreme weather, with a focus on cytokinin, ABA and ethylene responses,” Foulkes said. “This will provide novel phenotyping screens and germplasm to breeders, and lay the ground-work for genetic analysis and marker development.”

Erik Murchie, from the University of Nottingham, leads an awarded project to explore new ways of determining genetic variation in heat-induced growth inhibition in wheat.

“High temperature events as part of climate change increasingly limit crop growth and yield by disrupting metabolic and developmental processes. This project will develop rapid methods for screening growth and physiological processes during heat waves, generating new genetic resources for wheat,” Murchie said.

Eric Ober of the National Institute of Agricultural Botany in the UK, leads the awarded project “Targeted selection for thermotolerant isoforms of starch synthase.”

“Wheat remains a predominant source of calories and is fundamental to regional food security around the world. It is urgent that breeders are equipped to produce new varieties with increased tolerance to heat and drought, two stresses that commonly occur together, limiting grain production. The formation and filling of grain depends on the synthesis of starch, but a key enzyme in the pathway, starch synthase, is particularly sensitive to temperatures over 25°C. However, there exist forms of this enzyme that exhibit greater thermotolerance than that found in most current wheat varieties,” Ober said. “This project aims to develop a simple assay to screen diverse germplasm for sources of more heat-resistant forms of starch synthase that could be bred into new wheat varieties in the future.”

Breakthroughs from these projects are expected to benefit other crops, not just wheat. Other benefits of the projects include closer interaction between scientists and breeders and capacity building of younger scientists.

How interactions among hidden enemies and drought effects grain yield and disease severity in bread wheat

In nature, plants are simultaneously exposed to a complex system of biotic and abiotic stresses that limit crop yield. The cereal cyst nematode Heterodera filipjevi and dryland crown rot, caused by Fusarium, are important diseases facing cereal production around the world that cause significant yield loss. Yield loss accelerates when those diseases coexist with other abiotic stresses, such as drought.

Hexaploid bread wheat (Triticum aestivum L.) is an essential staple food for a large part of the world’s population, covering around 20% of daily caloric intake in the human diet, with global production at about 670.8 million tons per year, produced over 215.4 million hectares of land worldwide. Therefore, the program studying soil-borne pathogens at the International Maize and Wheat Improvement Center (CIMMYT)’s Turkey office initiated a study to investigate the effect of soil borne diseases (H. filipjevi and Fusarium culmorum) individually and in combination with drought on some morphological and physiological traits in wheat germplasm with different genetic tolerances to the three studied factors.

In this study, yield components included thousand kernel weight, spike weight, seed per spike and total grain yield. Morphological parameters, including plant height, final plant number (seedling emergence), relative water content, leaf chlorophyll content, H. filipjevi cyst number and presence of crown rot, were studied under greenhouse conditions in Turkey.

The main findings of the study showed that the interaction among water stress, F. culmorum and H. filipjevi increased the damage on the wheat parameters studied when compared with each stress applied alone. One of the most significant damages was seen in high seedling mortality under the three combined stresses (56% seedling death rate), which indicates the damage on wheat yield might occur at the seedling stage rather than later stages. This reduces plant density per area, which was ultimately responsible for low grain yield produced. The known dryland disease, crown rot, caused by F. culmorum, was significantly pronounced under water-stressed conditions.

In all studied parameters, the lowest damage was found among the resistant cultivars to biotic or abiotic stresses. This underscores the importance of wheat breeding programs to develop resistant germplasm, and reminds farmers to replace their old, susceptible varieties with new, resistant ones.

Based on our intensive experience in the CWANA region, most wheat growers basically do not recognize soil borne pathogens as a problem. In fact, most of them do not know that what nematode or soil fungal species are in their fields affecting yield. The term “hidden enemy” perfectly applies to the problems in the region and beyond. Integrated pest management (IPM) is, however, not practiced in the entire region and soil borne pathogen-induced yield losses are simply accepted.

We can conclude from this study that yield reduction in wheat due to soil borne pathogens could be lessened by improving and understanding the concept of IPM in the region where the practice of winter mono-culturing of wheat is the norm. Management of cereal soil-borne pathogens, especially cereal cyst nematode and crown rot, could involve an integrated approach that includes crop rotation, genetic resistance, crop nutrition and appropriate water supply.

Cover photo: Four different test crops show different stresses: T1V8 = Drought, T2V8 = Drought and Nematodes, T3V8 = Drought and fungus, T4V8 = Drought and nematode and fungus together. (Credit: CIMMYT)

AAA drought-tolerant maize now available in Myanmar

This month smallholder farmers in Myanmar’s central dry zones will be able to access drought-tolerant hybrid maize for the first time. The variety, known as TA5085, was jointly developed by the International Maize and Wheat Improvement Center (CIMMYT) and Syngenta, and has been commercially registered as ASC 108 by Ayeryarwady Seed in Myanmar. An initial, two-acre seed production pilot by Ayeyarwady Seed resulted in a yield of 1.2 tons per acre.

TA5085 was developed as an International Public Good as part of the decade-long Affordable, Accessible, Asian (“AAA”) Drought-Tolerant Maize project, a public-private partnership between CIMMYT and Syngenta and funded by the Syngenta Foundation. The project aims to make tropical maize hybrids accessible to Asian smallholders, especially those producing under rain-fed conditions in drought-prone areas.

An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)
An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)

“AAA maize is not just a product,” said B.S. Vivek, regional maize breeding coordinator and principal scientist at CIMMYT. “The development of affordable and accessible drought-tolerant maize hybrids helps drive the maize seed market in underserved maize markets in Asia.”

TA5084, the previous iteration of this variety, was first commercialized in central India, where climate change is driving rising temperatures and increasingly erratic rainfall. From 2018 to 2020, TA5084 adoption in the region grew from 900 to 8,000 farmers. In 2020, 120 metric tons of AAA-maize were planted on 6,000 hectares in central India. Farmers who switched to TA5084 earned an average of $100/ha more than those using conventional maize.

“Despite the unprecedented challenges we all faced in 2020, AAA hybrid maize sales more than doubled from the previous year, to 120 tons,” said Herve Thieblemont, head of Seeds2B Asia and Mekong Director at the Syngenta Foundation. “I’m delighted to report that the second country to introduce AAA maize is Myanmar. Our local seed partner Ayeyarwady Seed recently completed the registration and will proceed with the first sales this coming season.”

The AAA initiative is one of the few examples of a public-private partnership delivering International Public Goods benefiting smallholders in central India and now Myanmar. The chosen regions are rainfed and drought-prone. Seed marketing in these regions is considered risky and unpredictable, disincentivizing multinationals and large seed companies from entering the market.

Buying into new seed

Mary Nzau enters a mock agrodealer shop set up on a field on the outskirts of Tala town in Machakos County, Kenya. On display are nine 2kg bags of hybrid maize seed. She picks one. By the look of it, her mind is made up. After a quick scan of the shelf, she has in her hand the variety that she has been purchasing for years.

Regina Mbaika Mutua is less lucky. The variety she always buys is not on display in the mock shop. As part of the experiment, the research team has removed from the shelf the variety she indicated she usually buys. The team’s goal is to observe what factors influence her seed purchase decision in the absence of the variety she was expecting to purchase.

“Although I did not find the variety I was looking for, I picked an alternative as I have seen it perform well on a neighboring farm,” Mutua says, adding that she will plant it this season alongside recycled (farm-saved) seed on her one-acre farm.

Michael Mutua passes up the popular variety he has been planting for the previous two years. He picks one that has been advertised extensively on local radio. “I have heard about it severally on radio. I would like to experiment with this new seed and see how it performs on my farm. Should I like the results, I will give it a chance in ensuing seasons,” he says.

Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Pieter Rutsaert explains the study setup at a mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The big adoption conundrum

The goal of the out-of-stock study is to improve an understanding of how farmers make their maize seed choices, says Pieter Rutsaert, Markets and Value Chain Specialist at the International Maize and Wheat Improvement Center (CIMMYT).

“We do this by inviting farmers to a mock agrodealer store that we set up in their villages and give them a small budget to purchase a bag of seed. However, not all farmers walk into the same store: some will find their preferred variety, others won’t. Some will have access to additional trait information or see some varieties with price promotions while others don’t.”

Rutsaert acknowledges that breeding programs and their partner seed companies have done a great job at giving farmers access to maize hybrids with priority traits such as drought tolerance and high yield. CIMMYT then works closely with local seed companies to get varieties into the hands of farmers. “We want to extend that support by providing insights to companies and public breeding programs on how to get new varieties more quickly into the hands of farmers,” he says.

Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)
Pauline Muindi (left), gender research associate with CIMMYT, acts as a mock agrodealer clerk and attends a farmer. (Photo: CIMMYT)

The hybrid maize seed sector in Kenya is highly competitive. Amid intensifying competition, new varieties face a daunting task breaking into the market, independent of their quality. While farmers now have more options to pick from, a major challenge has been how to get them to adopt new varieties.

“Moving farmers from something they know to something they don’t is not easy. They tend to stick with what they know and have been growing for years,” Rutsaert says.

Pauline Muindi, gender research associate with CIMMYT, acted as the stand-in clerk at the mock store. She noticed that farmers tend to spend very little time in the shop when their preferred variety is available. However, this all changes in the out-of-stock situation, pushing farmers to step out of their comfort zone and explore new options.

The first step to overcoming this challenge is to entice maize farmers to try a new seed variety, even just once, Rutsaert observes. If it is a good variety, farmers will see that and then the market will work in its favor: farmers will come back to that variety in subsequent years and tell others about it.

“The good news is that many of the varieties we are currently seeing on the market have performed well — that’s why they’re popular. But there are newer varieties that are even better, especially in terms of attributes like drought tolerance. We would like to understand how farmers can be convinced to try out these newer varieties. Is it about the need for more awareness on varietal traits? Can we use price promotions? Or are there other factors?” he says.

A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)
A researcher interviews Mary Nzau (right), a farmer from Tala town in Machakos County, after her mock purchase. (Photo: Joshua Masinde/CIMMYT)

Does seed price matter?

“With today’s climate uncertainty, it is better to stick to a variety that is adapted to such climate rather than banking on a variety one is oblivious of. The risk is not worth it,” Nzau says. She adds that she would rather buy a higher-priced seed packet she knows and trusts than a lower-priced one that she has not used in the past. Radio promotions of new or other varieties have limited sway over her decision to make the switch.

Faith Voni, another farmer, agrees. “It is better to purchase a higher-priced variety whose quality I can vouch for than risk purchasing a lower-priced one that I know little about. I do not wish to take such a risk.” Voni says she would also be more inclined to experiment with another variety that she had seen perform well on a neighbor’s farm.

Michael Mutua holds a different view. “If there is an option of an equally good but new variety that is lower-priced than the variety I prefer, my wallet decides,” he says.

Vivian Hoffmann, an economist at the International Food Policy Research Institute (IFPRI) and collaborator on the study, says price can be key for convincing consumers to try a new product. “Our previous research on maize flour choice found that a provisional 10 percent discount boosted sales tremendously,” Hoffmann says. “Of course, that only gets your foot in the door; after that, a new variety will need to win farmers over based on its merits.”

Hoffmann is interested in the extent to which drawing farmers’ attention to key varietal attributes influences their seed choice. “This information is generally already available on seed packets, but we live in a world of information overload. Promoting certain attributes through in-store signage is an approach that is widely used to help consumers make more healthier food choices. Doing the same for new seed varieties makes a lot of sense.”

Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)
Michael Mutua (left) responds to preliminary questions from one of the research team members before proceeding to make his seed selection at the mock agrodealer shop. (Photo: Joshua Masinde/CIMMYT)

The value of drought tolerance

Situated on Kenya’s eastern region, Machakos is characterized by persistent water stress. Climate change induced erratic rainfall has pushed traits that can tolerate the unfavorable weather conditions in the favorite’s corner. While other traits such as high yield and disease resistance are equally important, the seed, when planted, must first withstand the effects of droughts or water stress in some seasons and germinate. This is the most crucial step in the long journey to either a decent, bare minimum or no yield. A lot of farmers still plant recycled seed alongside hybrid varieties. But these are no match to water stress conditions, which decimate fields planted with farmer-saved seed.

“If a variety is not climate resilient, I will likely not harvest anything at all,” says Nzau. She has planted a drought-tolerant variety for ten years now. Prior to that, she had planted about three other varieties as well as recycled seed. “The only advantage with recycled seed is that given the right amount of rainfall, they mature fast — typically within two months. This provides my family with an opportunity to eat boiled or roast maize,” she notes.

However, varieties need to do more than just survive harsh weather conditions. Breeders face a daunting task of incorporating as many traits as possible to cater to the overarching and the specific interests of multiple farmers. As Murenga Mwimali, a maize breeder at the Kenya Agricultural and Livestock Research Organization (KALRO) and collaborator in this research says, innovations in breeding technologies are making breeding more efficient.

“It is better to have a diversity of product profiles as different market niches are captured within a particular agroecological zones. This is such that farmers may not just benefit from the minimum traits like drought tolerance, but also more specific traits they are looking for,” Mwimali says.

Smallholder farmers continue to play a central role in the seed development process. Capturing what happens at the point of purchase, for instance, at the agrodealer, and understanding how they purchase seed offers valuable insights on the traits that are deemed essential in the breeding process. This work contributes to CIMMYT’s focus on fast-tracking varietal turnover by turning the levers towards a demand-driven seed system.

Cover photo: Pauline Muindi, gender research associate with CIMMYT, at the mock agrodealer shop where she acted as a clerk. (Photo: CIMMYT)