A study by the Technical University of Munich (TUM) warns that the wheat blast fungus Magnaporthe oryzae threatens up to 75% of Africa’s wheat cultivation. The disease, spread by windborne spores and exacerbated by climate change, worsens food insecurity. While Zimbabwe remains unaffected, preventive measures are in place. The Zambia Agriculture Research Institute (ZARI), with CIMMYT’s collaboration, is building regional capacity to combat the disease. The study emphasizes the need for resistant wheat varieties and enhanced global and regional cooperation to protect wheat production and ensure food security.
Staff of the International Soil Borne Pathogens Research and Development Center along with the Minister, deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture Forestry. (Photo: TAGEM)
Soil-borne pathogens (SBP) are a serious threat to Turkey’s food security, especially as climate extremes (temperature, precipitations) become more commonplace. SBP are an array of specific adverse effects, such as root rot, wilt, yellowing, and dwarfing caused by fungi, bacteria, viruses, and nematodes. These pathogens can cause 50-75% yield loss in crops.
On May 2, 2023, the International Maize and Wheat Improvement Center (CIMMYT) Country Representative in Turkey, Abdelfattah Dababat, joined the inauguration ceremony of the International Soil-Borne Pathogens Research & Development Center (ISBPRDC).
Vahit Kirişci, Turkish Minister of Agriculture and Forestry, inaugurated the Center, which is the first of its kind in the Central West Asia and North Africa (CWANA) region dedicated to advancing research on SBPs and developing innovative solutions to control and prevent their spread.
The opening ceremony took place at the Directorate of Plant Protection Central Institute working under the General Directorate of Agricultural Research and Policies (TAGEM), and it was attended by deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture and Forestry.
Serving under the auspices of the General Directorate of Agricultural Research and Policies (TAGEM), part of the Turkish Minister of Agriculture and Forestry, the ISBPRDC will meet international standards for sanitary conditions.
CGIAR and TAGEM mutually supported the SBP CIMMYT Turkey program by establishing and funding the ISBPRDC.
Bringing partners together
CIMMYT is signing a collaboration agreement with the ISBPRDC to facilitate knowledge exchange and technology transfer between the two institutions, which will support joint research and development activities aimed at improving crop health and productivity.
“The most effective way forward to battle against threats to food security is through cooperation,” said Dababat. “This collaboration is a great opportunity for Turkey’s seed industry to maintain its competitive advantage in foreign markets.”
Professor Vahit Kirişci, Turkish Minister of Agriculture and Forestry, TAGEM’s DG, CIMMYT’s Representative, and high-level officials from the Ministry of Agriculture and Forestry. (Photo: TAGEM)
Thirty-five scientists and technicians will work at the ISBPRDC and the institute will act as an umbrella for all SBP research in Turkey. Bahri Dağdaş International Agricultural Research Institute (BDIARI), the Transitional Zone Agricultural Research Institute (TZARI), and the Plant Protection Central Research Institute (PPCRI) with offices in Konya, Eskisehir, and Ankara, respectively, will support the ISBPRDC center and collaborate with the SBP program at CIMMYT to deliver high-yielding wheat germplasm that is resistant to SBP.
Among new programs at the center are the development of a robust surveillance system to track pathogens, a genebank for germplasm, and screening facilities for resistance against SBP.
On March 2, the China-Pakistan Joint Wheat Molecular Breeding International Lab (“Joint Lab”) was launched, funded by the Science and Technology Partnership Program, Ministry of Science and Technology of China, with the joint support from China‘s Ministry of Agriculture and Rural Affairs, National Agriculture Research Center of Pakistan and the International Maize and Wheat Improvement Center (CIMMYT).
The joint lab aims to develop new varieties with high yield and resistance to disease, enhancing breeding capacity and wheat production in Pakistan, where wheat is the largest food crop.
Smallholder farmers and agricultural extension officers assessing Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo: Peter Kinyumu/CIMMYT)
CGIAR’s Plant Health Initiative (PHI) is testing integrated pest management (IPM) packages against fall armyworm (FAW) in partnership with smallholder farmers and agricultural extension officers at the Plant Health Innovation Platform at the Kenya Agricultural and Livestock Research Organization (KALRO) Kiboko Research Station in Kenya.
The IPM packages comprise 18 combinations of treatments, including maize varieties with native genetic resistance to FAW, biopesticides, biological control agents, push-pull system, and bean varieties.
“This is a unique opportunity to identify eco-friendly and cost-effective IPM packages against a major pest like FAW through participatory engagement of smallholder farmers and extension personnel,” said BM Prasanna, Global Maize Program Director at the International Maize and Wheat Improvement Center (CIMMYT) and CGIAR Plant Health Initiative Lead. “Also In our efforts against FAW, three FAW-tolerant maize hybrids have been recommended for release after national performance trials in Kenya.”
CIMMYT Global Maize Program Director and CGIAR Plant Health Initiative Lead, BM Prasanna explaining to smallholder farmers and agricultural extension officers; CGIAR’s Plant Health Initiative (PHI) testing of integrated pest management (IPM) packages against fall armyworm (FAW) at KALRO Kiboko, Kenya. (Photo: Susan Otieno/CIMMYT)
Participatory assessment
Participating farmers and extension personnel made their first assessment of the IPM combinations at the vegetative stage on November 8, 2022.
“With this second assessment on February 7, 2023, farmers and extension personnel are evaluating the same IPM combinations for their yield potential, which means the plants need to be not only healthy but also productive. The farmers are also looking at the quality of the maize ears, and the level of ear and kernel damage by the pest, if any. These assessments both at the vegetative and reproductive stages are critical for us to conclude this experiment and draw appropriate inferences,” Prasanna said.
Researchers will analyze the efficacy of the scoring of different IPM treatments by the farmers and from the vegetative/foliar and reproductive/harvest stages. In addition, scientists will conduct a cost-benefit analysis for each IPM treatment to identify relevant IPM packages that can be potentially scaled. Prasanna noted the initial scoring by the scientists and farmers were highly comparable.
The trials engaged farmers and extension workers from five different counties in Kenya. “The Plant Health Initiative is keen on co-creation and co-validation and taking an inclusive, participatory approach to innovations,” said Prasanna. He added that such an approach is vital for buy-in by the farmers, who need to be active partners in effectively scaling the selected IPM packages.
Farmers participating in the Field Day at the Innovation Platform applauded the initiative to involve them in validating solutions to manage FAW and expressed their eagerness to have the innovations in their hands. The farmers also had opportunities to ask questions, provide preliminary verbal feedback, and receive immediate clarification from the scientists to their queries.
”I know a farmer who has trained his two sons to go to every plant and kill the armyworm physically. You can imagine the time and energy that takes,” said Justice Kimeu, a farmer from Makueni County, Kenya. “Let the innovative methods we have seen here reach every farmer across the country.”
A participant giving his preliminary observations on the Integrated Pest Management Packages (IPMs) treatments against fall armyworm at the Plant Health Innovation Platform at the KALRO Kiboko Research Station in Kenya. (Photo by Peter Kinyumu/CIMMYT)
Plant Health Innovation Platform catalyzes collaboration
The Plant Health Innovation Platform at Kiboko brings together different innovations developed by the collaborating institutions: CIMMYT, KALRO, International Center for Insect Physiology and Ecology (icipe), AgBiTECH, Center for Agriculture and Bioscience International (CABI), and Farmfix Africa.
“Robust data is being generated on the efficacy and cost-benefit of various IPM combinations. After data analysis, 2-3 few specific IPM packages will be identified based on efficacy against FAW, cost effectiveness, affordability to smallholder farmers, and potential for rapid scale up,” Prasanna said.
Besides the FAW Innovation Platform at Kiboko, Kenya, the CGIAR Plant Health Initiative is operating eight other Innovation Platforms in Benin, Cameroon, Nigeria, Uganda, Lebanon, Philippines, Ecuador, and Colombia. Each of these platforms bring together diverse institutions engaged in developing game-changing solutions in managing key pests and diseases in the Initiative’s primary crops that include maize, banana, cassava, potato, sweet potato, rice, yam, sorghum, wheat, millets, legumes, and vegetables.
In this article, Temina Lalani-Shariff, Regional Director of South Asia at CGIAR, explores the evolution of CGIAR to meet changing global needs, such as the critical challenge of ending hunger, poverty and inequality across South Asia by 2030 while reaching the climate goals of each country. “A reinvented CGIAR can offer greater flexibility and leadership in three key areas to accelerate the region’s agricultural development and its multiplier benefits for livelihoods, health and climate action,” said Lalani-Shariff.
Highlighting work by the International Maize and Wheat Improvement Center (CIMMYT) to target the spread of crop pests and diseases in Kenya, Lalani-Shariff explains how this success can transfer to fighting fall armyworm (FAW) in South Asia. She cites CGIAR’s experience in scaling innovations and solutions in a variety of agroecologies and environments in partnership with national research institutes, as well as examples from the Seeds Without Borders Initiative and climate-smart villages.
Lalani-Shariff explains the purpose of CGIAR’s Regional Integrated Initiative Transforming Agrifood Systems in South Asia (TAFSSA), which is combining efforts in South Asia to achieve agrifood systems that are more productive and environmentally sound, and support equitable access to sustainable, nutritious diets. Collaboration between CGIAR research centers on Initiatives like this offers opportunities to build effective networks and partnerships for addressing future challenges.
Wheat pathologist and geneticist Zhognhu He explained the spread of plant diseases such as wheat scab, which is spreading due to factors such as climate change and could threaten grain security and food safety. His work in wheat disease resistance using the vast germplasm resources in China is helping farmers worldwide.
China has also provided thousands of wheat germplasm resources to CIMMYT’s genebank in Mexico, contributing towards the development of new varieties.
Kazakhstan is the ninth largest country in the world and the fourteenth largest producer of wheat; in 2021 alone, the country produced 14.3 million tons (t) of wheat on 12.1 million hectares (ha). Despite this impressive figure, wheat yield in the country falls below average at 1172.5 t/ha compared to 3474.4 t/ha globally.
Research into wheat diseases in Kazakhstan has primarily revolved around airborne fungal foliar diseases, such as stem rust, leaf rust and stripe rust, which can be devastating for farmers and their crops. However, the effects of fungi relating to wheat root and crown root were yet to be examined – these diseases affect yields, stands and grain quality due to infections that cause damping-off, blight, necrosis, and dry rotting.
Using plant samples taken during the 2019 growing season, scientists from the International Maize and Wheat Improvement Center (CIMMYT) conducted a quantitative survey to determine the distribution of this fungi. Using morphological and molecular tools on 1,221 samples from 65 sites across the central, eastern, and southeastern region, scientists found that Bipolarissorokiniana and Fusariumacuminatum were the most predominant fungal species isolated.
In total, 74 isolates from 16 species were tested, revealing that F. culmorum and F. pseudograminearum, B. sorokinaiana, Fusarium sp., R. solani, F. redolens, C. spicifera, C. inaequalis, and N. orvzae were virulent fungi.
Results show the diverse spectrum of pathogenic fungal species linked to wheat crown and root rot in Kazakhstan and is highly likely to be the first report from the country on the presence of F. seudograminearum, Fusarium sp., C. spicifera, and C. inaequalis.
With this new data, scientists can develop mitigations to prevent crop loss and improve wheat yield across Kazakhstan.
Cover photo: The scientists from Turkey researching root and crown rot in Kazakhstani wheat: Abdelfattah A. Dababat (CIMMYT), Mustafa Imren (Bolu Abant Izzet Baysal University), Göksel Özer (Bolu Abant Izzet Baysal University) and Rauan Zhapayev. (Photo: Abdelfattah A. Dababat/CIMMYT)
Learning to evaluate wheat stem rust, a significant cause of crop loss, in the field in Kenya. (Photo: Petr Kosina/CIMMYT)
With rising demand for food, it is more critical than ever to address the challenge of crop losses due to pests and diseases. Current limited understanding of the extent of the problem prevents the advancement and implementation of plant health solutions. Global scientific collaboration is integral to ensure policy recommendations are well-informed by robust evidence and therefore more likely to succeed in the long-term.
The issue of global burden of crop loss closely correlates with the objectives of the One CGIAR Plant Health Initiative, which aims to prevent and manage major pest and disease outbreaks through the development and deployment of inclusive innovations and by building effective national, regional, and global networks. The Initiative, which is being led by the International Maize and Wheat Improvement Center (CIMMYT), will support low- and middle-income countries in Africa, Asia, and Latin America to reduce crop losses due to pests and diseases, and improve food security and livelihoods for smallholder farmers.
Data-driven approaches
The Global Burden of Crop Loss project, which is run by the Centre for Agriculture and Bioscience International (CABI), is working to ensure that there is accurate data on the challenges posed by plant pests and diseases. Questions to understand include where crop losses are the highest, the causes behind these losses, and how best these they can be addressed.
Cambria Finegold, Global Director, Digital Development, CABI said, “If you are not measuring crop loss well, then you don’t know if the extraordinary $25.8 billion spent annually on agricultural research and development is working, or if we are spending it in the right ways.”
Research by the Plant Health Initiative will play a significant role in collecting and disseminating data on some major pests and diseases, which can guide scientists on which areas to prioritize, thereby contributing to an impactful research agenda.
Once data is gathered, CABI aims to inform decision-making for actors at the top levels of the plant health system and ensure that appropriate action is taken to safeguard global food security with the limited resources available.
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Establishing global networks
The value of a data-driven approach was emphasized at a session organized by the Global Burden of Crop Loss on October 14 exploring evidence-based systems to tackle food security. This session was a side event of the UN Food and Agriculture Organization (FAO) Science and Innovation Forum, which this year focused on highlighting the centrality of science, technology and innovations for agrifood systems transformation.
Prasanna Boddupalli, One CGIAR Plant Health Initiative Lead and Director of CIMMYT’s Global Maize Program, explained how the Initiative will bridge knowledge gaps, build risk assessment and rapid response capability, improve integrated pest and disease management, design and deploy tools to prevent contamination of food chains, and promote gender-equitable and socially inclusive innovations for plant health.
With six devastating plant epidemics in Africa alone during the last decade and an increased number of climate change-induced droughts and floods, Boddupalli proposed a revitalized strategy using the objectives of the Plant Health Initiative.
Built on a foundation of partnerships, there are more than 80 national, regional, and international organizations involved in the Initiative across 40 countries in the Global South, in addition to the CGIAR research centers. Through this rapidly expanding collaboration, the focus will be on establishing regional diagnostic and surveillance networks and implementing Integrated Pest Management (IPM) and integrated mycotoxin management.
To address the need for evidence-based policy recommendations, Boddupalli explained the purpose of the Plant Health Innovation Platforms in Africa, Asia and Latin America, leveraging the partners’ research sites. Combining innovations from the CGIAR system, national partners and the private sector, these platforms will enable the co-creation and validation of pest and disease management packages, with the aim of significantly improving adoption of effective and affordable plant health innovations by smallholder farmers.
Removing the barriers for data sharing
The Plant Health Initiative team has recently collected and collated information from national partners and the private sector on actions needed to remove constraints on sharing pest and disease surveillance data. Potential solutions include improved training of national partners, joint research projects, pre-defined processes for data sharing, and focusing on work that meets national and regional priorities.
These approaches will inform the sharing of data collected through the Initiative. For example, researchers are gathering surveillance data on 15 crop pests affecting seven different plants in 25 countries, with the expectation of collecting more than 44,000 samples from 2,100 sites in 2022 alone, with plans for sharing the results with partner institutions.
Boddupalli also emphasized the importance of ramping up remote sensing and drone usage, wherever feasible, for diagnostics and surveillance. However, the current gaps in accessing data and computing facilities in the Global South need to be addressed to make this a reality.
“The OneCGIAR Plant Health Initiative and the Global Burden of Crop Loss project have excellent complementarity,” said Boddupalli. Both have an opportunity to generate and share robust data on crop loss due to existing and emerging crop pests and diseases and use this data to drive effective policy change on plant health management.”
About the Global Burden of Crop Loss:
The Global Burden of Crop Loss initiative is modelled after the Global Burden of Disease initiative in human health, which has transformed health policy and research, over the last 25 years through better use of data.
The initiative aims to have a similar impact in agriculture, providing evidence to enable the global plant health community to generate actionable information and lead to a dramatic reduction in crop loss, resulting in increased food security and trade.
About the Centre for Agriculture and Bioscience International (CABI):
CABI is an international, inter-governmental, not-for-profit organization that improves people’s lives worldwide by providing information and applying scientific expertise to solve problems in agriculture and the environment.
Their approach involves putting information, skills and tools into people’s hands. CABI’s 49 Member Countries guide and influence their work which is delivered by scientific staff based in their global network of centers.
Mustafa Alisarli, Bolu Abant Izzet Baysal University rector, is awarded for hosting this symposium by the representative of the Turkish Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies (GDAR), Dr Suat Kaymak.
The International Maize and Wheat Improvement Center (CIMMYT) coordinated the VIII International Cereal Nematode Symposium between September 26-29, in collaboration with the Turkish Ministry of Agriculture and Forestry, the General Directorate of Agricultural Research and Policies and Bolu Abant Izzet Baysal University.
As many as 828 million people struggle with hunger due to food shortages worldwide, while 345 million are facing acute food insecurity – a crisis underpinning discussions at this symposium in Turkey focused on controlling nematodes and soil-borne pathogens causing reduced wheat yields in semi-arid regions.
A major staple, healthy wheat crops are vital for food security because the grain provides about a fifth of calories and proteins in the human diet worldwide.
Seeking resources to feed a rapidly increasing world population is a key part of tackling global hunger, said Mustafa Alisarli, the rector of Turkey’s Bolu Abant Izzet Baysal University in his address to the 150 delegates attending the VIII International Cereal Nematode Symposium in the country’s province of Bolu.
Suat Kaymak, Head of the Plant Protection Department, on behalf of the director general of the General Directorate of Agricultural Research and Policies (GDAR), delivered an opening speech, emphasizing the urgent need to support the CIMMYT Soil-borne Pathogens (SBP) research. He stated that the SBP plays a crucial role in reducing the negative impact of nematodes and pathogens on wheat yield and ultimately improves food security. Therefore, the GDAR is supporting the SBP program by building a central soil-borne pathogens headquarters and a genebank in Ankara.
Discussions during the five-day conference were focused on strategies to improve resilience to the Cereal Cyst Nematodes (Heterodera spp.) and Root Lesion Nematodes (Pratylenchus spp.), which cause root-health degradation, and reduce moisture uptake needed for proper development of wheat.
Richard Smiley, a professor emeritus at Oregon State University, summarized his research on nematode diseases. He has studied nematodes and pathogenic fungi that invade wheat and barley roots in the Pacific Northwest of the United States for 40 years. “The grain yield gap – actual versus potential yield – in semiarid rainfed agriculture cannot be significantly reduced until water and nutrient uptake constraints caused by nematodes and Fusarium crown rot are overcome,” he said.
Experts also assessed patterns of global distribution, exchanging ideas on ways to boost international collaboration on research to curtail economic losses related to nematode and pathogen infestations.
A special session on soil-borne plant pathogenic fungi drew attention to the broad spectrum of diseases causing root rot, stem rot, crown rot and vascular wilts of wheat.
Soil-borne fungal and nematode parasites co-exist in the same ecological niche in cereal-crop field ecosystems, simultaneously attacking root systems and plant crowns thereby reducing the uptake of nutrients, especially under conditions of soil moisture stress.
Limited genetic and chemical control options exist to curtail the damage and spread of these soil-borne problems which is a challenge exacerbated by both synergistic and antagonistic interactions between nematodes and fungi.
Nematodes, by direct alteration of plant cells and consequent biochemical changes, can predispose wheat to invasion by soil borne pathogens. Some root rotting fungi can increase damage due to nematode parasites.
Integrated managementFor a holistic approach to addressing the challenge, the entire biotic community in the soil must be considered, said Hans Braun, former director of the Global Wheat Program at CIMMYT.
Braun presented efficient cereal breeding as a method for better soil-borne pathogen management. His insights highlighted the complexity of root-health problems across the region, throughout Central Asia, West Asia and North Africa (CWANA).
Richard A. Sikora, Professor emeritus and former Chairman of the Institute of Plant Protection at the University of Bonn, stated that the broad spectrum of nematode and pathogen species causing root-health problems in CWANA requires site-specific approaches for effective crop health management. Sikora added that no single technology will solve the complex root-health problems affecting wheat in the semi-arid regions. To solve all nematode and pathogen problems, all components of integrated management will be needed to improve wheat yields in the climate stressed semi-arid regions of CWANA.
Building on this theme, Timothy Paulitz, research plant pathologist at the United States Department of Agriculture Agricultural Research Service (USDA-ARS), presented on the relationship between soil biodiversity and wheat health and attempts to identify the bacterial and fungal drivers of wheat yield loss. Paulitz, who has researched soil-borne pathogens of wheat for more than 20 years stated that, “We need to understand how the complex soil biotic ecosystem impacts pathogens, nutrient uptake and efficiency and tolerance to abiotic stresses.”
Julie Nicol, former soil-borne pathologist at CIMMYT, who now coordinates the Germplasm Exchange (CAIGE) project between CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) at the University of Sydney’s Plant Breeding Institute, pointed out the power of collaboration and interdisciplinary expertise in both breeding and plant pathology. The CAIGE project clearly demonstrates how valuable sources of multiple soil-borne pathogen resistance in high-yielding adapted wheat backgrounds have been identified by the CIMMYT Turkey program, she said. Validated by Australian pathologists, related information is stored in a database and is available for use by Australian and international breeding communities.
Economic losses
Root-rotting fungi and cereal nematodes are particularly problematic in rainfed systems where post-anthesis drought stress is common. Other disruptive diseases in the same family include dryland crown and the foot rot complex, which are caused mainly by the pathogens Fusarium culmorum and F. pseudograminearum.
The root lesion nematode Pratylenchus thornei can cause yield losses in wheat from 38 to 85 percent in Australia and from 12 to 37 percent in Mexico. In southern Australia, grain losses caused by Pratylenchus neglectus ranged from 16 to 23 percent and from 56 to 74 percent in some areas.
The cereal cyst nematodes (Heterodera spp.) with serious economic consequences for wheat include Heterodera avenae, H. filipjevi and H. latipons. Yield losses due to H. avenae range from 15 to 20 percent in Pakistan, 40 to 92 percent in Saudi Arabia, and 23 to 50 percent in Australia.
In Turkey, Heterodera filipjevi has caused up to 50 percent crop losses in the Central Anatolia Plateau and Heterodera avenae has caused up to 24 percent crop losses in the Eastern Mediterranean.
The genus Fusarium which includes more than a hundred species, is a globally recognized plant pathogenic fungal complex that causes significant damage to wheat on a global scale.
In wheat, Fusarium spp. cause crown-, foot-, and root- rot as well as head blight. Yield losses from Fusarium crown-rot have been as high as 35 percent in the Pacific Northwest of America and 25 to 58 percent in Australia, adding up losses annually of $13 million and $400 million respectively, due to reduced grain yield and quality. The true extent of damage in CWANA needs to be determined.
Abdelfattah Dababat, CIMMYT’s Turkey representative and leader of the soil-borne pathogens research team said, “There are examples internationally, where plant pathologists, plant breeders and agronomists have worked collaboratively and successfully developed control strategies to limit the impact of soil borne pathogens on wheat.” He mentioned the example of the development and widespread deployment of cereal cyst nematode resistant cereals in Australia that has led to innovative approaches and long-term control of this devastating pathogen.
Dababat, who coordinated the symposium for CIMMYT, explained that, “Through this symposium, scientists had the opportunity to present their research results and to develop collaborations to facilitate the development of on-farm strategies for control of these intractable soil borne pathogens in their countries.”
Paulitz stated further that soil-borne diseases have world-wide impacts even in higher input wheat systems of the United States. “The germplasm provided by CIMMYT and other international collaborators is critical for breeding programs in the Pacific Northwest, as these diseases cannot be managed by chemical or cultural techniques,” he added.
Closing ceremony of the International Cereal Nematode Symposium. From left to right; Hans Braun, Brigitte Slaats, Richard Sikora, Grant Hollaway, Mesut Keser, Zahra Maafi, Richard Smiley, Mustafa Imren, Fatih Ozdemir, Amer Dababat. (Photo: CIMMYT)
Road ahead
Delegates gained a greater understanding of the scale of distribution of cereal cyst nematodes and soil borne pathogens in wheat production systems throughout West Asia, North Africa, parts of Central Asia, Northern India, and China.
After more than 20 years of study, researchers have recognized the benefits of planting wheat varieties that are more resistant. This means placing major emphasis on host resistance through validation and integration of resistant sources using traditional and molecular methods by incorporating them into wheat germplasm for global wheat production systems, particularly those dependent on rainfed or supplementary irrigation systems.
Sikora stated that more has to be done to improve Integrated Pest Management (IPM), taking into consideration all tools wherever resistant is not available. Crop rotations for example have shown some promise in helping to mitigate the spread and impact of these diseases.
“In order to develop new disease-resistant products featuring resilience to changing environmental stress factors and higher nutritional values, modern biotechnology interventions have also been explored,” Alisarli said.
Brigitte Slaats and Matthias Gaberthueel, who represent Swiss agrichemicals and seeds group Syngenta, introduced TYMIRIUM® technology, a new solution for nematode and crown rot management in cereals. “Syngenta is committed to developing novel seed-applied solutions to effectively control early soil borne diseases and pests,” Slaats said.
It was widely recognized at the event that providing training for scientists from the Global North and South is critical. Turkey, Austria, China, Morocco, and India have all hosted workshops, which were effective in identifying the global status of the problem of cereal nematodes and forming networks and partnerships to continue working on these challenges.
Prasanna Boddupalli presents at the International Plant Health Conference, September 2022. (Photo: International Plant Health Conference)
CGIAR research centers involved in the One CGIAR Plant Health Initiative joined forces at the International Plant Health Conference in London on September 21-23, 2022 to highlight the importance of global partnerships in effectively preventing and managing devastating pest and disease outbreaks in the Global South.
In an interactive side event on Plant Health Management in the Global South through Partnerships on September 21, the Plant Health Initiative team presented on and discussed: global diagnostic and surveillance systems against plant pests and diseases; risk assessment and preparedness for proactive response; integrated pest and disease management; mycotoxin mitigation strategy; and gender and social inclusion.
The CGIAR Plant Health Initiative, launched in January 2022, aims to protect agriculture-based economies of low and middle-income countries in Africa, Asia and Latin America from pest and disease outbreaks in major crops by leveraging and building viable networks across an array of national, regional, and international institutions.
Building on a track record of more than 50 years of impactful research, the Plant Health Initiative aims to develop and deploy solutions through partnerships, and to achieve impacts that contribute towards several Sustainable Development Goals (SDGs).
Healthy crops for a healthy planet
Showing the strength of partnerships in action, researchers from the International Maize and Wheat Improvement Center (CIMMYT), Alliance Bioversity-CIAT (ABC), the International Institute of Tropical Agriculture (IITA), the International Potato Center (CIP), and the International Food Policy Research Institute (IFPRI) highlighted the Initiative’s activities and sought feedback from the plant health experts participating in the session.
Martin Kropff, CGIAR Science Director of Resilient Agrifood Systems, welcomed the participants to the session. Prasanna Boddupalli, CGIAR Plant Health Initiative Lead & Director of CIMMYT’s Global Maize Program, introduced the Initiative and its scope, emphasizing the inclusive partnerships. This was followed by presentations from Monica Carvajal (ABC), Lava Kumar (IITA), Alejandro Ortega-Beltran (IITA), Nozomi Kawarazuka (CIP), and Yanyan Liu (IFPRI).
Time was dedicated to engaging participants through Mentimeter polling on specific questions related to plant health management. Participants also shared their views on plant health research coordination, capacity strengthening, and knowledge exchange between the Global North and Global South, with a focus on improving food security and livelihoods of smallholders.
The event was successful not only in generating greater understanding of the Initiative amongst the participants, but also in developing significant interest from the participants to contribute to the Initiative’s goals with collective actions, all for the benefit of smallholders in the low- and middle-income countries of Africa, Asia, and Latin America.
Establishing wider networks for plant health
The Plant Health Initiative team, together with Kropff, also had a productive discussion on September 22 with Osama El-Lissy, International Plant Protection Convention (IPPC) Secretary, on opportunities for joint actions on plant health management in the Global South by IPPC and the CGIAR Plant Health Initiative, together with national partners.
Boddupalli also participated in a workshop on September 20 organized by Euphresco, a network of organizations that fund research projects and coordinate national research in the phytosanitary area, at the Department of Environment, Food & Rural Affairs (DEFRA) in the United Kingdom, on shaping global plant health research coordination. The workshop participants discussed and endorsed several actions for advancing global plant health research coordination.
Participants of a workshop by Euphresco endorsed actions to advance research coordination for global plant health. (Photo: Euphresco)