Skip to main content

Tag: digital agriculture

Digital solutions advance soil health for sustainable food systems and climate resilience

Panelists at the “Digging Deeper: Advancements in Soil Health Monitoring for Sustainable Food Systems and Climate Resilience” side event, hosted by IFDC at the Africa Fertilizer and Soil Health (AFSH) Summit held in Nairobi. (Photo: Marion Aluoch/CIMMYT)

Farmers interact with soils daily, supporting the entire food system. Empowering them with tools for research and scalable learning initiatives is crucial.

Speaking as a panelist at the 2024 Africa Fertilizer and Soil Health (AFSH) summit, Paswel Marenya, CIMMYT senior scientist, emphasized the need to enhance farmers’ capacities to effectively utilize digital tools.

“Digital tools do not inherently lead to impactful changes unless they enhance farmers’ capabilities in managing soil health,” said Marenya. “The potential of a digital tool should enable farmers to shorten the cycle from receiving information to applying new techniques.”

Paswel Marenya, senior scientist at CIMMYT. (Photo: Marion Aluoch/CIMMYT)

Simple, easy to use tools

One promising solution is the development of user-friendly platforms that synthesize essential information from cutting-edge research into practical tools.

“In partnership with IFDC, CIMMYT is currently collaborating to develop an interface that synthesizes essential information into a user-friendly digital platform. This interface would be complemented by tools that allow for on-site testing,” said Marenya.

“CIMMYT aims to design digital tools that not only improve access to information but enhance the farmers’ ability to learn, innovate, and adapt. This approach promises real progress beyond more recommendations,” said Marenya.

This sentiment was echoed by Leigh Winowiecki, soil and land health global research lead at CIFOR-ICRAF, who discussed advancements in soil health monitoring and highlighted the Land Degradation Surveillance Framework (LDSF) which collects data on various indicators of soil health.

Leigh Ann Winowiecki, global research lead for soil and land health at CIFOR-ICRAF. (Photo: Marion Aluoch/CIMMYT)

Addressing the forum as the keynote speaker for the side event titled, “Digging deeper: Advancement in soil health monitoring for sustainable food systems and climate resilience,” Winowiecki showcased the global implementation and impact of the framework, noting its implementation in 40 countries.

“This framework is a field-based method that collects data on various indicators of soil health, land degradation, and vegetation diversity across landscapes,” Winowiecki said.

The findings from the framework guide practical interventions to mitigate soil erosion and influence policy.

Annie Wakanyi, director of partnerships & business development at One Acre Fund, highlighted how they prioritize farmers by providing high-quality inputs on credit, ensuring they are distributed near their farm fields, and offering training on usage, as well as assisting farmers in accessing markets for the surplus they produce.

Annie Wakanyi, director of global government partnerships, One Acre Fund. (Photo: Marion Aluoch/CIMMYT)

The private sector’s role was addressed by Jonathan Atkinson, Farm Service Unit Africa, who introduced the “cost to serve model” to understand the dynamics between costs and return on investments for farmers. He emphasized the need for practical, scalable approaches for soil health interventions that cater for commercial activities.

Jonathan Atkinson, farm service unit Africa. (Photo: Marion Aluoch/CIMMYT)

Professor Nalivata of Lilongwe University of Agriculture and Natural Resources emphasized the importance of addressing soil erosion to achieve soil health in Africa using Malawi as a case study. He discussed policy implementation on fertilizer, promoting climate-smart agricultural practices and research as strategies implemented to address soil degradation in Malawi, calling for more initiatives like incentives for farmers and building human capacity.

“This can be achieved if we maintain a collaborative approach involving government, academia, the private sector, and donor communities to transform soil health and improve livelihoods,” said Nalivata.

Latha Nagarajan, SOILS consortium director IFDC’s USAID-funded soils initiative. (Photo: Marion Aluoch/CIMMYT)

Latha Nagarajan, in her presentation on the IFDC’s USAID-funded soils initiative, highlighted how the initiative improves livelihoods through innovative soil management. She explained the ‘space to place’ approach, which integrates spatial remote sensing data with place-specific soil health data to enhance soil management decisions, increasing efficiency, resilience, and sustainability.

Reaching farmers in Zambia

Farmers are guided on how to use Atubandike and VIAMO. (Photo: CIMMYT)

It is challenging to disseminate information across far-flung areas of rural Zambia as extension officers must travel vast distances to reach farmers. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, managed by CIMMYT and funded by the United States Agency for International Development (USAID) helps alleviate these issues by engaging with existing mobile phone networks to reach farmers with agronomic information, weather data, and soil information.

To introduce farmers to these specific tools: Atubandike and VIAMO, AID-I conducted a community sensitization and engagement exercise in Zambia. Atubandike emphasizes farmer learning and feedback using mobile phones for disseminating knowledge about the new generation of drought-tolerant varieties, sustainable intensification practices, and collecting farmer feedback to enable demand-driven delivery under AID-I. VIAMO, accessible via a basic mobile phone, provides agronomic information for every farmer in a specific area. The platform comes in different languages and farmers access information on various crops such as maize, beans, and groundnuts in their native language, provide feedback on information content, and connect with other farmers.

An AID-staff facilitates a training session. (Photo: Nancy Malama/CIMMYT)

In Choma District, Morgan Katema, who provides extension services to farmers, explained that going digital is one way of reaching farmers through technology to ensure that all farmers have access to extension services. “In this case, lessons will be available through mobile phones and farmers will ask agriculture-related questions and get a response. This is a good initiative because farmers can access information on the spot instead of waiting for an extension officer to reach them, and information can be accessed after working hours, and the VIAMO initiative will help us overcome the challenge of long distances between farmers as we will no longer need to travel long distances,” Katema said.

Judith Simuliye, a farmer who grows maize and groundnuts, said, “I was told about this meeting by the camp officer, and I am happy to learn about this project. I have learned how to manage my crop by using the right seed varieties and how to space the crops.”

During the meeting, two community facilitators were selected through a voting process, after farmers nominated community members who are literate, trustworthy, energetic, and able to use a smart phone. Facilitators register farmers on the VIAMO platform, assist them in accessing the information they require, and support them in their learning journey.

Namasumo Rithay, a farmer in the village of Kalalasa, said, “Mobile phone access to extension services has come at the right time. We have faced a lot of challenges with the poor rain patterns and pests. Through this meeting organized by AID-I, we have learned how we can obtain information to mitigate these challenges through our mobile phones.”

A participant casts her vote. (Photo: Nancy Malama/CIMMYT)

An additional community meeting was held in the village of Namuswa and was attended by 150 farmers. AID-I and Atubandike Research Associate, Brian Mpande, informed farmers that AID-I, with the assistance from VIAMO, will help them overcome the challenges of climate change by delivering timely and useful information via their phones. 

Farmers’ views on app usage for information sharing

Mobile phones are increasingly shaping the ways information is shared across industries, including in agriculture. The digitization of agricultural systems expedited by substantial efforts to narrow the digital divide and include smallholders means that data ownership and privacy issues are more relevant than ever.

The use of smartphone-based apps to improve accessibility to information for smallholder farmers has previously been under researched. In this publication, scientists from Ghent University and the International Maize and Wheat Improvement Center (CIMMYT) investigate incentives for smallholder farmers to use an agricultural advisory app in which data is shared using a designed discrete choice experiment.

Leveraging survey data from 392 farmers in Mexico, a conditional logit (CL) model was used to gain deeper insights into the preferences for attributes related to its usage. Groups and profiles were explored through a latent class (LC) model to investigate heterogeneity.

Farmers across ages were found to support the use of technology-based, site-specific extension services. The CL model results revealed farmers’ positive preference to receive support at first use and access to training, while they felt negatively towards sharing data with private actors. Meanwhile, the LC model demonstrates differences in preferences when farmers’ connectedness to the CIMMYT innovation hub and mastery approach goals variables are considered as a grouping variable. These variables also affect farmer preferences towards data sharing.

This study’s main contribution is in demonstrating the importance of nonfinancial incentives and influence of data sharing on farmer preferences. Through this improved understanding, the potential of technology in improving farmers’ welfare can be further realized.

Read the study here: How to Make a Smartphone-Based App for Agricultural Advice Attractive: Insights from a Choice Experiment in Mexico

Cover photo: María del Refugio Galván, a producer of barley from Irapuato, Guanajuato, Mexico, has been involved in the smartphone-app project. (Credit: Francisco Alarcón/CIMMYT)

Can digital agricultural services boost Ethiopia’s durum wheat production?

Participants gather to discuss solutions to low levels of durum wheat cultivation in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)

Despite an increase in the total area used for growing wheat in Ethiopia, the share of durum wheat, the wheat used for pasta, has decreased substantially across the country. Smallholder farmers grow durum wheat on marginal lands for their own use but are not benefitting financially from cultivating the crop.

To understand factors contributing to low area coverage of durum wheat and identify opportunities for reinvigoration and improved marketing, the International Maize and Wheat Improvement Center (CIMMYT) hosted a workshop for stakeholders from the entire durum wheat value chain.

“New breeding technologies have great promise for expanding the area of durum wheat production,” said Moti Jaleta, agricultural economist at CIMMYT, “but this achievement remains primarily dependent on the market’s ability to purchase grains at a higher price to stimulate farmer adoption. The market in Ethiopia is not favoring durum wheat, so suppliers and extension workers must promote it very well.”

Rising consumption of durum wheat products such as pasta and macaroni is causing higher dependency on wheat imports. Reducing this reliance requires addressing the challenges facing Ethiopia’s durum wheat farmers in variety development and release, seed supply, crop management, level of productivity, market opportunities, and extension systems.

Kindie Tesfaye, scientist and crop modeler at CIMMYT, explained, “There is a need to improve the durum wheat seed system and extension service, enhance the development of new varieties with desired grain quality and create market linkages to meet the increasing durum wheat demand from the rapidly growing urban population and expanding agro-industrial parks.”

The potential of digital

As Ethiopia’s agricultural systems are highly dependent on rainfall, digital interventions can serve as key decision support tools to manage climate risk and bolster the adaptive capacity and productivity of smallholder farmers. CIMMYT collaborates with value chain-based digital agro-advisory services through the Digital Agricultural Advisory Services (DAAS) project, which runs multiple projects in Ethiopia to advance the use of digital tools in farming.

Taye Tadesse, director of crop research at the Ethiopian Institute of Agricultural Research, emphasized that the introduction of production technology should be participatory and customer-oriented to achieve the intended outcomes. Ensuring that technology is accessible is vital for strengthening the value chain system, he said.

Agreed actions from the workshop included focusing attention on the bodies responsible for the expansion of infrastructure and raising wheat farmers’ awareness of the value-adding tools available to them through training.

“We must ensure that farmers are the biggest decision-makers,” Tasfaye said.

Power of data: To enhance food security

Data has become a key driver of growth and change in today’s world.

There is growing recognition that data is indispensable for effective planning and decision-making in every sector. But the state of digital data in developing countries is far from satisfactory. In Asia, monitoring the Sustainable Development Goals (SDGs) remains a challenge due to a lack of accurate data.

Read more: https://thehimalayantimes.com/opinion/power-of-data-to-enhance-food-security/

Digital revolution can transform agri-food systems

A digital transformation is changing the face of international research for development and agri-food systems worldwide. This was the key takeaway from the 4th annual CGIAR Big Data in Agriculture Convention held virtually last month.

“In many countries, farmers are using data to learn about market trends and weather predictions,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT), in a video address to convention participants. “But many still do not have access to everything that big data offers, and that is where CIMMYT and partners come in.”

As a member of CGIAR, CIMMYT is committed to ensuring that farmers around the world get access to data-driven solutions and information, while at the same time ensuring that the data generated by farmers, researchers and others is used ethically.

According to CGIAR experts and partner organizations, there are four key areas with the potential to transform agriculture in the next 10 years: data, artificial intelligence (AI), digital services and sector intelligence.

Key interventions will involve enabling open data and responsible data use, developing responsible AI, enabling and validating bundled digital services for food systems, and building trust in technology and big data — many of which CIMMYT has been working on already.

Harnessing data and data analytics

Led by CIMMYT, the CGIAR Excellence in Breeding (EiB) team have been developing the Enterprise Breeding System (EBS) — a single data management software solution for global breeding programs. The software aims to provide a solution to manage data across the entire breeding data workflow — from experiment creation to analytics — all in a single user-friendly dashboard.

CIMMYT and partners have also made significant breakthroughs in crop modelling to better understand crop performance and yield gaps, optimize planting dates and irrigation systems, and improve predictions of pest outbreaks. The Community of Practice (CoP) on Crop Modeling, a CGIAR initiative led by CIMMYT Crop Physiologist Matthew Reynolds, aims to foster collaboration and improve the collection of open access, easy-to-use data available for crop modelling.

The CIMMYT-led Community of Practice (CoP) on Socio-Economic Data continues to work at the forefront of making messy socio-economic data interoperable to address urgent and pressing global development issues in agri-food systems. Data interoperability, one of the foundational components of the FAIR data standards supported by CGIAR, addresses the ability of systems and services that create, exchange and consume data to have clear, shared expectations for its content, context and meaning. In the wake of COVID-19, the world witnessed the need for better data interoperability to understand what is happening in global food systems, and the CoP actively supports that process.

The MARPLE team carries out rapid analysis using the diagnostic kit in Ethiopia. (Photo: JIC)
The MARPLE team carries out rapid analysis using the diagnostic kit in Ethiopia. (Photo: JIC)

Improving data use and supporting digital transformation

In Ethiopia, the MARPLE (Mobile And Real-time PLant disEase) diagnostic kit — developed by CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and the John Innes Centre (JIC) — has helped researchers, local governments and farmers to rapidly detect diseases like wheat rust in the field. The suitcase-sized kit cuts down the time it takes to detect this disease from months to just 48 hours.

In collaboration with research and meteorological organizations including Wageningen University and the European Space Agency (ESA), CIMMYT researchers have also been developing practical applications for satellite-sourced weather data. Crop scientists have been using this data to analyze maize and wheat cropping systems on a larger scale and create more precise crop models to predict the tolerance of crop varieties to stresses like drought and heatwaves. The aim is to share the climate and weather data available on an open access, user-friendly database.

Through the AgriFoodTrust platform — a new testing and learning platform for digital trust and transparency technologies – CIMMYT researchers have been experimenting with technologies like blockchain to tackle issues such as food safety, traceability, sustainability, and adulterated and counterfeit fertilizers and seeds. Findings will be used to build capacity on all aspects of the technologies and their application to ensure this they are inclusive and usable.

In Mexico, CIMMYT and partners have developed an application which offers tailored recommendations to help individual farmers deal with crop production challenges sustainably. The AgroTutor app offers farmers free information on historic yield potential, local benchmarks,  recommended agricultural practices,  commodity price forecasting and more.

Stepping up to the challenge

As the world becomes increasingly digital, harnessing the full potential of digital technologies is a huge area of opportunity for the agricultural research for development community, but one that is currently lacking clear leadership. As a global organization already working on global problems, it’s time for the CGIAR network to step up to the challenge. Carrying a legacy of agronomic research, agricultural extension, and research into adoption of technologies and innovations, CGIAR has an opportunity to become a leader in the digital transformation of agriculture.

Currently, the CGIAR System is coming together as One CGIAR. This transformation process is a dynamic reformulation of CGIAR’s partnerships, knowledge, assets, and global presence, aiming for greater integration and impact in the face of the interdependent challenges facing today’s world.

“One CGIAR’s role in supporting digitalization is both to improve research driven by data and data analytics, but also to foster the digitalization of agriculture in low and lower-middle income countries,” said CIMMYT Economist Gideon Kruseman at a session on Exploring CGIAR Digital Strategy at last month’s Big Data convention.

“One CGIAR — with its neutral stance and its focus on global public goods — can act as an honest broker between different stakeholders in the digital ecosystem.”

Cover photo: A researcher demonstrates the use of the AgroTutor app on a mobile phone in Mexico. (Photo: Francisco Alarcón/CIMMYT)

AgriFoodTrust platform gains momentum in quest for more inclusive, transparent agriculture

The AgriFoodTrust platform is gaining traction in its quest to bring inclusive and usable trust and transparency technologies to the agri-food sector according to platform co-founder and International Maize and Wheat Improvement Center (CIMMYT) Economist Gideon Kruseman.

Since its launch in late February, researchers from the platform have been experimenting with technologies like blockchain to tackle issues such as food safety, traceability, sustainability, and adulterated and counterfeit fertilizers and seeds.

Experts from one of the platform’s leading partners, The New Fork, recently teamed up with HarvestPlus and El-Kanis and Partners to investigate solutions to the problem of counterfeit biofortified seeds in Nigeria. They will work together on a public open blockchain to verify biofortified seeds, so that farmers know that the seeds they are buying are authentic. Building on the concept published in one of the Community of Practice on Socio-economic Data reports, the team formulated a project to pilot the idea.

The project is a finalist in the INSPIRE challenge, a CGIAR initiative to leverage the global food security expertise of CGIAR with expert industry partners to link digital technologies to impact in developing economies.

Finalists in the challenge will come together to pitch their projects during a session at the CGIAR Big Data in Agriculture Convention, a free virtual event taking place Oct 21 – 23. Registration for the convention is still open.

The convention will also bring together experts from the AgriFoodTrust platform to discuss transparency, accountability and sustainability in food systems using digital technologies like blockchain in a pre-recorded session on October 21 at 12:15 UTC. The session will provide an introduction to the platform and its philosophy, as well as contributions from platform stakeholders and partners such as The New Fork, GIZ, the organizing committee of Strike Two, AgUnity, the Carbon Drawn Initiative, Bluenumber, Scantrust and blockchain-for-good enthusiasts like Chris Addison and Eloise Stancioff.

Key stakeholders, interested researchers and organizations will meet virtually in a pre-convention event to discuss how to accelerate the use of digital trust and transparency technologies through the sharing of knowledge and capacity development. Participation in this event requires registration.

Biofortified orange maize.
Experimental harvest of orange maize biofortified with provitamin A in Zambia. (Photo: CIMMYT)

Building a more transparent food sector though blockchain

Blockchain is a decentralized, digital ledger for keeping records. Digital information, or blocks, is stored in a public database, or chain, and shared with users. These blocks can be accessed by users in real time, and any alterations made to this information can be seen by users. The aim is to reduce risk, eliminate fraud and bring transparency to digital assets.

The AgriFoodTrust platform teams up researchers from CGIAR centers with academia, private sector agri-food companies, tech start-ups and development practitioners to experiment with blockchain and related trust technologies in the agri-food sector. The group is also testing different business models and partnerships with a mission to create a reliable knowledge base and share their findings.

Findings on the new platform will be used to build capacity on all aspects of the technologies and their application to ensure they are inclusive and usable.

Researchers hope that solutions like QR codes — a type of matrix barcode that can be scanned by smartphones — can be used to tackle challenges like preventing the sale of counterfeit seeds and adulterated fertilizer to farmers. Other uses include ensuring food traceability and sustainability, and monitoring and improving the implementation of performance of international agreements related to agriculture.

The technology could even be applied to prevent farmers from burning crop residues — a major cause of air pollution and greenhouse gas emissions in India — by offering credits or tokens to farmers who do not engage in such practices, said Kruseman.

Much like in high-end coffee products, where customers willingly pay more for a guarantee of high quality, tokenization and digital trust technologies could allow customers of wheat flour products in India to donate extra for a certification that no crop residues were burned by the farmer.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas of India. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

By 2050, farmers will need to grow enough food to feed 10 billion people, using less land and fewer resources. Their job will be made even more difficult thanks to the challenges of climate change. Achieving a more inclusive, resilient and sustainable food system is needed now more than ever. It is hoped that digital trust technologies can help us respond, manage or avert crises in the future.

For more information on the INSPIRE challenge and the CGIAR Big Data in Agriculture Convention and how to attend this free virtual event, visit the event website.

Q&A: How blockchain can create social and environmental impacts

Blockchain promises to revolutionize the economic system by changing the way we communicate over the internet. Though it is best known for tracking bitcoin, many researchers believe the digital trust technology can have positive social and environmental benefits through supply chains. This is one of the foundational principles of AgriFoodTrust, a testing and learning platform and knowledge base for digital trust and transparency technologies.

However, at the moment there is little research into the mechanisms by which blockchain implementations in the supply chain create these positive impacts, said Susanne Köhler, a doctoral student at Aalborg University, who is working to examine exactly how blockchain-based technologies can change supply chains for good.

Blockchain is a distributed ledger technology that allows the storing and exchange of assets and information between two entities globally in a secure, transparent and immutable way, without the need for a trusted centralized authority to authenticate parties and validate transactions. It offers the opportunity to revolutionize how we trust individuals and institutions and how we view contracts, certifications, land titles, medical records and personal data.

In the food system for example, blockchain is being used to improve trust by tracking information along the supply chain to curb the spread of counterfeit maize seeds in Africa.

As part of her research, Köhler is interviewing actors working with blockchain from a range of industries to further explore how this disruptive technology can be used to increase the resilience of individuals, communities and ecosystems. Her research is carried out at Aalborg University within the Sustainable Blockchain Technologies project financed by the Independent Research Fund Denmark – Social Sciences.

Köhler answered a few questions about her research.

Could you please explain the aim of your research? Who are you interviewing?

The purpose of this study is to discover the mechanisms by which blockchain-based technologies in the supply chain create positive social and environmental impacts. It has been claimed that blockchain will bring a variety of positive impacts, but it is unclear how and if the impacts are due to blockchain or another component in a system of technologies. We want to find out what the status-quo of blockchain-based technologies in the supply chain is, what impacts these implementations currently have and might have in the future, and how these impacts are generated. To do so, I am interviewing different actors involved in implementing blockchain-based technologies in supply chains such as technology developers, brands and NGOs. At this point, I do not focus on a specific industry.

What can we learn by comparing approaches to blockchain in different supply chains to improve social and environmental impact?

All blockchain-based implementations are different. They can differ in terms of system architecture, governance structures, implementation stage and environmental factors. Blockchain is a component in a system of technologies. One implementation may work with facial recognition to identify trusted producers and verify asset registration. Others may use registered mobile phones to enter assets to the blockchain. As the technology is still in its infancy and many implementations are in early stages, looking at different implementations can help us gain an understanding of blockchain’s overall potential. Each case can provide a different perspective that highlights how blockchain brings impacts. This helps to shape the larger picture. In turn, individuals can learn from this larger picture.

Person holding maize seed.
Maize seed ready for planting in Nicaragua. (Photo: Neil Palmer / CIAT)

What barriers do projects face implementing blockchain in projects? How will your research help overcome these challenges?

Impact is defined as changes to specific targets such as human wellbeing or ecosystem wellbeing. It is important to measure these impacts in order to understand the gains of having a blockchain-based implementation and to help anticipate drawbacks before the technology scales up. Currently, few projects are measuring impact, because they are still in early stages. This means that we are working with few data, novel implementations, uncertain conditions and small-scale implementations. Therefore, we interview different projects and different kinds of actors – such as technology providers or brands. We want to understand blockchain-based technologies in the supply chain, gain an understanding of their benefits, and provide a scientific basis to explain how blockchain currently impacts supply chains and how it may do so in the future. This will help anticipate drawbacks, focus on developing the potentials for blockchain to be used to create impact, and communicate benefits more clearly. This knowledge may be important for overcoming regulatory and other barriers.

What do you aim to do with your results? Who will benefit?

The results will be published in a peer-reviewed journal ensuring scientific rigor. We want to contribute to the discussion of how blockchain creates positive social and environmental impacts. The results may support decision-making of various stakeholders including brands, technology providers and policy makers.

Can you tell us about the Sustainable Blockchain Technologies project?

Experts have claimed that blockchain will be a game changer in many different industries. It may even change the world we live in for the better. The Sustainable Blockchain Technologies project develops from this premise to investigate and anticipate the environmental and social effects of blockchain beyond the hype and with solid scientific basis. The main hypothesis is that while blockchain allows for secure, robust, and trustworthy solutions, and can bring clear improvements compared to current technologies in terms of traceability and transparency, this comes at a cost. Thus, the main objective of the project is investigating what environmental and social impacts blockchain will have as an alternative or substitute of currently available technologies. We look at this broad objective from two different perspectives. First, we conduct environmental assessments of blockchain technology itself. Second, we analyze blockchain potentials of applications in the supply chain.

This story was originally posted on the website of the CGIAR Platform for Big Data in Agriculture (https://bigdata.cgiar.org/).

Cover photo: Sita Kumari, farmer, uses mobile phone apps to enhance her yields and get access to market and labor. (Photo: C. De Bode/CGIAR)

Unmanned aerial vehicles help wheat breeders

Authors of a recent Crop Science article leveraged unmanned aerial vehicles (UAVs) to record the normalized difference vegetation index (NDVI), a measure of plant health, at the seed increase stage of the International Maize and Wheat Improvement Center’s (CIMMYT) wheat breeding program.

Read more here: https://www.sciencecodex.com/unmanned-aerial-vehicles-help-wheat-breeders-655650

Launching the AgriFoodTrust platform

A new testing and learning platform for digital trust and transparency technologies — such as blockchain — in agri-food systems was launched at the Strike Two Summit in late February. 

AgriFoodTrust debuted at the summit which brought together key agri-food system players to discuss how blockchain and related technologies can contribute to food safety, quality and sustainability, said Gideon Kruseman, an economist with the International Maize and Wheat Improvement Center (CIMMYT), who co-founded the platform. 

“Blockchain is often associated with the digital security that led to cryptocurrencies. However, growing research is providing evidence on its unique potential to bring greater efficiency, transparency and traceability to the exchange of value and information in the agriculture sector,” said Kruseman. 

“Many of the wicked problems and seemingly insuperable challenges facing dynamic, complex agri-food system value chains, especially in low and middle-income countries, boil down to a lack of trust, transparency and reliable governance structures,” said the researcher who also leads the Socio-Economic Data Community of Practice of the CGIAR Platform for Big Data in Agriculture 

Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)
Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)

A blockchain is a ledger that is almost impossible to forge. It can be described as a data structure that holds transactional records and ensures security, transparency and decentralization. Technology may be at the foundation of the solutions, but technology is the easy part; solving the softer side has proven to be a seemingly insuperable challenge over the past decades, Kruseman explained. 

Digital trust and transparency technologies can be used to improve governance structures and limit corruption in agri-food systems in low and middle income countries, said Marieke de Ruyter de Wildt, co-founder of AgriFoodTrust. 

“This new generation of decentralized technologies is, in essence, improving governance structures. People often think it is about technology, but it’s not. It is about people and how we organize things.”  

“These technologies are neutral, immutable and censorship resistant. You can mimic this if you think about rules without a ruler. Just imagine what opportunities arise when a system is incorruptible,” said de Ruyter de Wildt.  

It is hoped, accessible via QR codes, for example, that the technology can be used to tackle challenges, such as preventing the sale of counterfeit seeds to smallholder farmers, ensuring the nutritional value of biofortified crop varieties and promoting the uptake of sustainable agricultural principles whilst improving the implementation and monitoring of international agreements related to agriculture. 

“This is where the platform comes in as a knowledge base. The AgriFoodTrust platform sees researchers from CGIAR Centers and academia, such as Wageningen University, experiment with these technologies on top of other solutions, business models and partnerships to determine what works, how, when and for whom, in order to share that information,” Kruseman added. 

Findings on the new platform will be used to build capacity on all aspects of the technologies and their application to ensure this technology is inclusive and usable. 

Along with KrusemanAgriFoodTrust co-founders include digital agriculture experts de Ruyter de Wildt, the Founder and CEO of The New Fork, and Chris Addison, Senior Coordinator of Data for Agriculture at CTA. Seed funding for the platform has been raised through CTA, the CGIAR Platform for Big Data in Agriculture and the CGIAR Programs on MAIZE and WHEAT. 

“AgriFoodTrust sets out to accelerate understanding about these technologies and fundamentally make food systems more integer and resilient,” explained de Ruyter de Wildt. 

By 2050, farmers will need to grow enough diverse and nutritious food to feed 10 billion people on less land using less resources while faced with the challenges of a changing climate. This has led researchers to push for agricultural technologies that engender more inclusive, sustainable food systems. It is hoped that increased trust and transparency technologies can help overcome counterproductive incentives, poor governance structures, prevailing institutional arrangements and market failures. 

For more information, subscribe to the Socio-Economic Data Community of Practice newsletter.

Launching digital agro-climate advisory platform in Ethiopia

In this era of climate emergency, what is left when traditional knowledge is no longer enough?

In the midst of Ethiopia’s exponential population climb and the strikes of the climate emergency with erratic rains, dry spells, sharp floods and failed crops, the country launched a digital agro-climate advisory platform, called EDACaP, to put resilience at the center of agricultural livelihoods.

A team effort led by the Ethiopian Institute of Agricultural Research (EIAR) in partnership with the Ministry of Agriculture (MoA) and the National Meteorological Agency (NMA), alongside numerous research centers and programs: the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the International Research Institute for Climate and Society (IRI), with support from the Agricultural Growth Program (AGP), the EDACaP has come to life.

Read more here: https://www.thereporterethiopia.com/article/launching-digital-agro-climate-advisory-platform-ethiopia

Digitalizing African agriculture: paving the way to Africa’s progress through transforming the agriculture sector

This year’s African Green Revolution Forum (AGRF), which took place from September 3-6, 2019 in Accra, Ghana, focused on the potential of digital agriculture to transform African agriculture through innovations such as precision agriculture solutions for smallholder farmers, access to mobile financial services, data-driven agriculture, and ICT-enabled extension.

Committed to a digital transformation of African agricultural that benefits many, not a few.

The CGIAR has become a new partner of the AGRF and was presenting during the forum its five global challenges: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth.

Despite its importance of the continental economy and untapped resources, African farming sector is still dominated by ageing smallholders cultivating few acres of cropland, using not much inputs and lagging far behind productivity world standards.

Many experts believe digital agriculture could help African agriculture leapfrog to overcome its geographical, social and economic bottlenecks, bringing successful technologies to scale faster, and market opportunities even for remote smallholders. Some countries like Ghana or Kenya are becoming digital hubs for agritech-savvy young entrepreneurs along the food value chains, from drone for Ag, linking farmers to the marketplace, or offering mobile mechanization or financial services.

Large initiatives were announced to foster this growth potential, in particular towards the youth in agriculture, like the Mastercard Foundation’s commitment to invest $500 million to support for young agripreneurs within its Young Africa Works initiative, and the World Bank’s One Million Farmer platform in Kenya.

In force at the AGRF 2019, agricultural research organizations such as the International Maize and Wheat Improvement Center (CIMMYT) have a strong role to play in this digital transformation, both as innovator creating for instance new digital maize phenotyping tool for faster yield assessment, and user of tech innovations to improve research targeting and impact.

Improving smallholders’ resilience through digital innovations

The millions of African rainfed farmers are in a risky business, from rising climate shocks to emerging pests and diseases like the invasive fall armyworm or the maize lethal necrosis. CIMMYT Director General Martin Kropff highlighted the importance of digital tools to predict these risks through smart, scalable early warning systems like the award-winning diagnostic tool Marple that helps map wheat rust outbreaks. Researchers can also better predict the farms’ responses to these risks through accurate modelling. They can for instance better assess the potential yield benefits of drought and heat tolerance under different climate change scenarios.

CIMMYT crop breeders use tablet-based disease scoring applications and test new imagery and high-tech sensors for more accurate and cost-effective data collection. Kropff underlined the key role digital tools play to speed up science breakthroughs and impact delivery at the farm level.

Tailored advice for farmers and policy-makers to enable sustainable intensification

“The future is no longer where it used to be. Farmers’ reality has become even more unpredictable,” said Enock Chikava, deputy director, agricultural development at the Bill & Melinda Gates foundation during a vivid debate on how to reshape the future agronomic research so it delivers more site-specific and responsive advice.

Much of the agronomy work within the region remains fragmented across research institutes, commodities and projects, and struggles to go beyond blanket recommendations that are most of the time not adapted to local farming conditions.

However, there is a fast-growing wealth of georeferenced data that can describe the diverse farming landscapes and socio-economic context of each African smallholder farmer. The starting point to exploit these data and get the right solutions for each farmer is to ask the right questions.

Moderated by Samuel Gameda, CIMMYT soil scientist, who shared the lessons from the Taking Maize Agronomy to Scale (TAMASA) project, this session on Agronomy at Scale discussed what public information goods like crop yield prediction maps or extension apps, such as the maize variety selector, would be the most useful for farmers and large-scale agronomic initiatives to trigger this much needed sustainable intensification of millions of African smallholdings. What investments would make a difference to scale the use of these new decision-support tools?

“Agronomic research must be carried out from a broader perspective of large-scale relevance and application. It is also more and more a joint effort and responsibility between smallholder farmers, the research community and public and private sectors, with each component playing specific and interacting roles. The current era of powerful and accessible ICT tools and big data analytics make this much more feasible and should be incorporated to enable precision agronomy for all, this is my take home message,” said Gameda.

“This data revolution will only work if we invest in research data quality and data management,” stressed Bram Govaerts, CIMMYT’s Integrated Development Program director. “That will generate better evidence for decision-makers to guide impact investment plans, deciding on which technology e.g. a new drought-tolerant crop variety and put the money in the right leveraging point,” Govaerts concluded.

The largest forum on African agriculture, AGRF 2019 gathered more than 2,200 delegates and high-level dignitaries, from heads of State and government officials to leaders of global and regional development institutions; top agri-food businesses and local entrepreneurs; financial institutions; mobile network operators and tech leaders, as well as lead representatives of farmer organizations.

Cover photo: Delegation from the International Maize and Wheat Improvement Center (CIMMYT) at the African Green Revolution Forum (AGRF) 2019.