Skip to main content

Tag: digital

Driving innovation through digital agriculture: Digital Ag Nepal, 2024

Stakeholder collaboration to create a coherent digital agriculture framework, an ecosystem to promote digital agriculture, and local government participation emerged as top recommendations to bridge the gap between technology and agriculture during the International Digital Agriculture Forum, Nepal 2024, held in Kathmandu, Nepal.  

The event themed “Innovate, Cultivate, Thrive: Advancing Agriculture with Digital Solutions” brought together global and local stakeholders to explore the transformative potential of digital solutions in Nepal’s agricultural sector.  

The focus on addressing the digital divide in Nepal’s agricultural sector by sharing emerging technologies and innovations, generating research ideas to provide inputs to the upcoming digital agriculture strategy of Nepal National Digital Agriculture Strategy and Action Plan for Nepal, and promoting an inclusive and sustainable transformation in the agriculture and food systems of Nepal. 

Over the course of two days, the event attracted 135 participants, including 11 international experts and 29 national experts and representatives. It was organized by the Nepal Seed and Fertilizer Project (NSAF) and implemented by CIMMYT, with support from the United States Agency for Agriculture Development (USAID) in partnership with Pathway Technologies & Services Pvt Ltd, Seed Innovation Pvt Ltd, and Kathmandu Living Labs Pvt Ltd.

Key highlights from the event  

The forum included keynote presentations, success stories of ICT business practices, and panel discussions with global subject experts, industry leaders, government agencies and local agritech companies. The event also comprised breakout groups for in-depth discussions, and formal and informal networking opportunities. 

In his welcome address, Country Representative for Nepal and Coordinator of NSAF Dyutiman Choudhary highlighted the impact of digital agriculture on Nepalese farmers through the NSAF project. He shared how, in partnership with GeoKrishi and PlantSat, farmers now stay more informed on various issues through mobile app, SMS, IVR, farmer advisory services, and crop insurance.  

The opening session was chaired by Dr. Deepak Kumar Kharal, secretary, agriculture  development, Ministry of Agriculture and Livestock Development (MoALD). Keynote speeches included a global perspective on digital agriculture by Prof. Athula Ginige from Western Sydney University, and national perspective by Ms. Shabnam Shivakoti, joint secretary MoALD.  

Prof. Ginige presented on “Cultivating Innovation: Transforming Challenges into a Sustainable Digital Agrifood Future.” He highlighted the plight of 719 million smallholder farmers living below the poverty line and stressed the need to use digital opportunities such as IoT, AI, and big data to address challenges of food waste and climate change. He shared his experience in developing mobile platforms to improve the lives of smallholder farmers.  

In her keynote address Shivakoti set the context of Nepal’s digital agriculture and the initiatives undertaken by the government. She highlighted how digital innovations such as virtual agriculture commodity market E-hatbazar, programs such as digital land record maintenance, remote sensing data, and digital apps like GeoKrishi are driving growth in Nepal’s agricultural sector. She also shared details about the draft National Digital Agriculture Strategy.  

Judith Almodovar, acting director of the Economic Growth Office at USAID-Nepal, emphasized the importance of digital tools in enhancing productivity, efficiency and sustainability. She highlighted USAID’s investment through NSAF in digital innovations, such as seed and soil fertility management using digital tools.  

“By leveraging advanced technologies such as the Internet of Things (IoT), big data analytics, and remote sensing, we can provide real-time insights, improve supply chain management, and increase farmers’ resilience to climate shocks,” she said.  

The forum featured three technical sessions: innovations in digital agriculture; digital agriculture in action—policies and practices and; rapid fire presentations by seven Nepalese digital ag companies. Additionally, six local digital start-up companies displayed their products.  

The closing session was chaired by Dr. Narahari Prasad Ghimire, director general of the Department of Agriculture, while Dr. Rajendra Prasad Mishra, secretary of Livestock Development, was invited as chief guest. 

Recommendations from the forum  

The discussions and deliberations led to a series of recommendations primary among which were the importance of stakeholder collaboration to create a cohesive digital agriculture framework and developing partnerships and ecosystems to support digital agriculture, including data governance and personalized advisory services for farmers. Participants also emphasized that local governments must be encouraged to lead agricultural digitization initiatives, including staff training and adopting IoT-based intelligent irrigation systems, sensor-based drip irrigation, and drone technology for monitoring crops and livestock. Digital input certification and QR-based agri-input verification (seed, breed, saplings, and fertilizer) tracking systems to enhance trust and transparency emerged as a critical factor. Participants agreed that it was necessary to design technical information, including emergency agricultural alerts, in various formats (text, video, audio) to accommodate farmers with lower levels of literacy.  

Watch event video here. 

CIMMYT joins global efforts to curb greenhouse emissions and strengthen food systems

The 2023 UN Climate Change Conference (COP 28) took place from November 30 to December 12, 2023, in Dubai, UAE. The conference arrived at a critical moment when over 600 million people face chronic hunger, and global temperatures continue to rise at alarming rates. CIMMYT researchers advocated for action into agriculture’s mitigating role in climate change, increasing crop diversity, and bringing the tenets of sustainability and regenerative agroecological production systems to a greater number of farmers.

Directly addressing the needs of farmers, CIMMYT proposed the creation of an advanced data management system, training, and protocols for spreading extension innovations such as digital approaches and agronomic recommendations to farmers via handheld devices to harmonize the scaling in Africa of regenerative agriculture—diverse practices whose outcomes include better productivity and environmental quality, economic feasibility, social inclusivity, and nutritional security.

CIMMYT presented research showing that in times of fertilizer shortages, targeting nitrogen supplies from inorganic and organic sources to farms with minimal access to nitrogen inputs can improve nitrogen-use efficiency and helps maintain crop yields while limiting harm from excesses in fertilizer use. Examining how food production is driving climate change, CIMMYT promoted ways to lessen climate shocks, especially for smallholder farmers who inordinately suffer the effects of climate change, including rising temperatures and extended droughts. Improved, climate-resilient crop varieties constitute a key adaptation. Boosting farmer productivity and profits is a vital part of improving rural livelihoods in Africa, Asia, and Latin America.

When asked about CIMMYT’s contribution to COP 28, Bram Govaerts, CIMMYT’s director general, highlighted the inclusion of agriculture in the COP28 UAE Declaration on Sustainable Agriculture, Resilient Food Systems, and Climate Action as part of various potential solutions for climate change, an effort that CIMMYT supported through advocacy with leaders and government officials.

“Our participation addressed some of the pressure points which led to this significant recognition. It further cleared our role as an active contributor to discussions surrounding the future of food and crop science,” said Govaerts.

Unlocking the potential of crop genetic diversity

“The diversity stored in today’s gene banks contains the potential to unlock genes that can withstand drought and warmer temperatures,” said Sarah Hearne, CIMMYT’s director of Genetic Resources at a side-event: Crop diversity for climate change adaptation and mitigation contributing to resilient and nature positive futures for farmers globally.

Sarah Hearne presents on the potential of crop diversity to help combat climate change impacts on agrifood systems. (Photo: Food Pavilion/COP 28)

Hearne explained the process that characterizes plant DNA to identify the ideal, climate-adaptable breeding traits. This classification system also opens the door for genetic modeling, which can predict key traits for tomorrow’s climatic and environmental conditions.

“Our thinking must shift from thinking of gene banks to banks of genes, to make vibrant genetic collections for humanity, opening up genetic insurance for farmers,” said Hearne.

Working towards a food system that works for the environment

With an increased strain on food production, sustainability becomes critical for long-term human and environmental health. Sarah Hearne and Tek Sapkota, agricultural systems and climate change senior scientist, from CIMMYT participated in a panel discussion: Responsible consumption and sustainable production: pathways for climate-friendly food systems. They shared how progress in genetic innovation and fertilizer use can contribute to sustainable consumption and a resilient food system.

Fertilizer use remains highly skewed, with some regions applying more fertilizer than required and others, like sub-Saharan Africa, not having sufficient access, resulting in low crop yields. However, to achieve greater food security, the Global South must produce more food. For that, they need to use more fertilizer. Just because increased fertilizer use will increase greenhouse gases (GHGs) emissions, institutions cannot ask smallholder farmers not to increase fertilizer application. Increased GHGs emission with additional fertilizer application in low-input areas can be counterbalanced by improving Nutrient-Use Efficiency (NUE) in high-output areas thereby decreasing GHGs emissions. This way, we can increase global food production by 30% ca with the current level of fertilizer consumption.

Tek Sapkota speaks on how sustainable and efficient fertilizer use can contribute to a resilient food system. (Photo: Food Pavilion/COP 28)

“This issue needs to be considered through a holistic lens. We need to scale-up already proven technologies using digital extensions and living labs and linking farmers with markets,” said Sapkota.

On breeding climate-resilient seeds, Hearne addressed whether farmers are accepting new seeds and how to ensure their maximum adoption. Hearne detailed the partnership with CGIAR and NARS and the numerous technologies advancing the selection of ideal breeding traits, considering shortened breeding cycles, and responding to local needs such as heat or flood tolerance, and traditional preferences.

“Drought-tolerant maize, developed by CIMMYT and the International Institute of Tropical Agriculture (IITA), has benefited over 8 million households in sub-Saharan Africa, which proves that farmers are increasingly receptive to improved seeds. With a better selection of appropriate traits, we can further develop and distribute without yield penalties,” said Hearne.

Regenerative and agroecological production systems

Researchers have studied regenerative and agroecological production systems for decades, with new and old research informing current debates. These systems restore and maintain ecosystems, improving resource use efficiency, strengthening resilience, and increasing self-sufficiency. In his keynote presentation, Sapkota presented 3 examples of regenerative agriculture and agroecological systems:  conservation agriculture, cropping system diversification and site-specific nutrient management and their impact on food production, climate change adaptation and mitigation.

“As the science continues to develop, we need to harness digital capacity to co-create sustainable solutions alongside local, indigenous knowledge,” said Sapkota. “While we should continue research and innovation on cutting-edge science and technologies, we should also invest in knowledge sharing networks to spread access to this research; communication is fundamental for further adoption of these practices.”

CIMMYT at COP27

COP27, the UN Climate Change Conference for 2022, took place this year in Sharm El-Sheikh, Egypt, between November 6-18. Scientists and researchers from the International Maize and Wheat Improvement Center (CIMMYT) represented the organization at a wide range of events, covering gender, genebanks, soil health, and digital innovations.

Gender and food security

In an ICC panel discussion on Addressing Food Security through a Gender-Sensitive Lens on November 7, Director General Bram Govaerts presented on CIMMYT’s systems approach to address gender gaps in agriculture. This event formed part of the ICC Make Climate Action Everyone’s Business Forum, which aimed to bring together experts to determine solutions to the planet’s biggest environmental challenges.

Govaerts highlighted the importance of extension and training services targeting female farmers, particularly those delivered by women communicators. This can be achieved through training female leaders in communities, which encourages other women to adopt agricultural innovations. He also emphasized the obstacles to global food security caused by conflict, climate change, COVID-19, and the cost-of-living crisis, which will in turn create more challenges for women in agriculture.

The role of CGIAR genebanks in a climate crisis

Govaerts and Sarah Hearne, principal scientist, introduced the Agriculture Innovation Mission for Climate (AIM4C) innovation sprint on Fast Tracking Climate Solution from Genebank Collections, at a virtual side event organized by the Foundation for Food & Agriculture Research (FFAR).

Hearne explained that the development of current and future varieties is dependent upon breeders sourcing and repackaging native genetic variation in high value combinations. The CGIAR network of germplasm banks holds vast collections of crops that are important for global food and feed supplies. Among the diversity in these collections is currently unexplored and unused native variation for climate adaptation.

Through strong partnerships, multi-disciplinary activities, and the harnessing of diverse skillsets in different areas of applied research and development work, the sprint will help to identify genetic variations of potential value for climate change adaptation and move that variation into products that breeders globally can adopt in their variety development work. Through these efforts, the sprint improves access to specific genetic variation currently sat in the vaults of germplasm banks and facilitates crop improvement programs to develop the varieties that farmers demand.

The sprint is a clear example of the shift in paradigms we are looking for, so that people in the year 2100 know we took the right decisions in 2022 for them to live in a better world, said Govaerts. He continued by emphasizing the need for the initiative to be integrated within the systems it aims to transform, and the importance of accelerating farmers’ access to seeds.

The initiative is only possible because of the existence of the genebank collections that have been conserved for humanity, and due to cross-collaboration across disciplines and sharing of data and resources.

Addressing soil fertility management

Tek Sapkota, senior scientist, presented at Taking Agricultural Innovation to the Next Level to Tackle the Climate Crisis, the AIM4C partner reception on November 11, which gathered critical actors committed to making agriculture one of the most impactful climate solutions. Hosted on the one-year anniversary of the AIM4C launch at COP26 and on the eve of the COP27 day on adaptation and agriculture, the event was a celebration of progress made to date to address the climate crisis by 2025.

Along with 20 partners, CIMMYT submitted an AIM4C innovation sprint on climate-resilient soil fertility management by smallholders in Africa, Asia, and Latin America, which was announced at COP27 alongside other sprints.

Sapkota, who leads a project that is part of CIMMYT’s AIM4C innovation sprint submission, presented alongside the Minister of Climate Change and Environment from the United Arab Emirates, the Secretary of Agriculture for the United States, and the Regional Director for Central Asia, West Asia and North Africa at CGIAR.

Digital solutions for sustainable systems

Tharayil Shereef Amjath Babu, agricultural economist in modeling and targeting, hosted an event on Accelerating Digital Climate Services for resilient food systems in the Global South, exploring the work of two CGIAR Initiatives: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience and Transforming Agrifood Systems in South Asia (TAFSSA) on November 17.

In the Global South, farmers are being affected by unreliable weather patterns caused by climate change, which means they can no longer rely on their traditional knowledge. However, demand climate services can fill this vacuum, enabling meteorological agencies to produce accurate climate information, co-create digital climate services for agricultural systems, and support sustainable and inclusive business models.

Cover photo: A CIMMYT staff member at work in the maize active collection in the Wellhausen-Anderson Plant Genetic Resources Center, as featured in a session on Fast Tracking Climate Solution from Genebank Collections at COP27. (Photo: Xochiquetzal Fonseca/CIMMYT)

Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

A female farmer using digital agricultural tools. (Credit: C. De Bode/CGIAR)

Research shows that digital innovations can increase small-scale farmers’ incomes, boost the adoption of better practices, and increase resilience to climate shocks while reducing the gender gap and managing food system risks. However, these benefits are not universal. More than 600 million people and 40 percent of small farms are still not covered by mobile internet, especially in those countries most dependent on agricultural production. Across low- and middle-income countries, women are 7 percent less likely than men to own a mobile phone and 15 percent less likely to use mobile internet.

A new CGIAR Research Initiative, Digital Innovation, has been launched to research pathways to bridge this digital divide, improve the quality of information systems, and strengthen local capacities to realize the potential of digital technologies.

Read the original article: Connect rural areas with digital innovations to unlock climate resilience for hundreds of millions of farmers

Digitization equipment set to accelerate Kenya’s breeding programs

Last month, the CGIAR Excellence in Breeding (EiB) platform handed over digitization equipment to the Kenya Agricultural and Livestock Research Organization (KALRO) as part of ongoing efforts to modernize the public agency’s crop breeding programs. The handover of the equipment, valued at roughly $85,000, took place at KALRO headquarters in Nairobi on March 8, 2021, with representatives from the International Maize and Wheat Improvement Center (CIMMYT), EiB and KALRO in attendance.

KALRO received 23 units of equipment including seed counters, label printers, handheld data collectors, tablets and package printers. These will help the organization speed up and enhance the accuracy of various breeding processes, including seed preparation, data collection and data analysis. They will also support inventory management within KALRO’s maize, wheat, rice, sorghum, bean, soybean and potato breeding programs at six of its research centers in Kenya.

(L-R) CIMMYT Regional Representative for Africa and Kenya Country Representatives Moses Siambi, CGIAR EiB NARS Coordinator Biswanath Das, KALRO Director General Eliud Kireger and KALRO Deputy Director General for Crops Felister Makini at the digitization equipment handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Dispensing with laborious systems 

A lack of digitization equipment hampers the research efforts of many national agricultural research systems (NARS) across Africa. This adverse situation is compounded by unreliable institutional memory, which constrains NARS efforts to breed an assortment of crop varieties efficiently.

“Currently, KALRO uses very laborious systems including manual layouts and collection, followed by manual data entry into computers. This old age process is prone to data entry errors and delays in analysis, publication and reporting,” says KALRO Director General Eliud Kireger.

“With the equipment we are receiving, information and data can be recalled by a click of a button. The equipment will also significantly reduce research costs related to labor, thus freeing our scientists to focus on core research activities.”

The equipment will also support KALRO’s ongoing efforts to digitize its historical data, especially for the maize and wheat programs using the Breeding Management System (BMS). So far, 20 years of maize historical data has been uploaded onto the BMS platform for ease of access.

Prepped for emerging challenges  

The CGIAR EiB platform was established in 2017 to help modernize public breeding programs in the CGIAR and NARS to increase their rates of genetic gain. In recent years, there has been an upsurge in challenges including climate change, population growth, rapid urbanization, changing dietary inclinations, transboundary movement of pests and diseases. These have exerted an enormous strain on food production systems and elicited the urgency to prioritize the adoption of new plant breeding techniques and technologies to address current and emerging threats. This calls for a holistic approach to tackle the issues including better agronomy and policy, according to EiB NARS Coordinator Biswanath Das.

“Modernizing our plant breeding programs to develop new, climate smart, market driven varieties will be at the heart of the solution,” says Das. “We must ensure that public plant breeding programs are not left behind because for many crops in Africa, there is limited private sector interest. Public breeding programs must shoulder the responsibility for ensuring the development and adoption of the next generation of crop varieties.”

CGIAR EiB NARS Coordinator Biswanath Das shares remarks at the digitization handover event in Nairobi, Kenya. (Photo: Joshua Masinde/CIMMYT)

Already, KALRO breeding programs, in collaboration with international CGIAR centers, have played a leading role in supporting farmers in sub–Saharan Africa to address many emerging plant threats such as wheat rust (UG99), maize lethal necrosis (MLN) and fall armyworm.

As part of its commitment to supporting NARS partners, EiB provided over 10 million Kenyan shillings ($92,000) worth of material and in-kind support to various KALRO breeding operations in 2020. This included genotyping support for maize and wheat, support to adopt the BMS digital data management system, technical support and training of KALRO breeders.  Much of the digitization work is driven by EiB’s Operations and Phenoytyping module, led by Gustavo Teixeira. “We’ll continue to consider a whole range of devices and solutions,” says Teixeira. “It’s a part of our culture of continuous improvement, so breeding programs can focus on what really adds value to their clients.”

EiB will continue to support NARS across Africa and beyond to digitize their operations, and is working with partners to secure more equipment, training and resources. With this digitization project, EiB has targeted 24 breeding programs in 14 African countries. These include programs run by AfricaRice, CIMMYT, the International Institute of Tropical Agriculture (IITA) and the International Rice Research Institute (IRRI).

“We want to do more to support centers to improve their operations so they can achieve the most effective and cost efficient phenotypic processes — agronomic practices, seed processing and other areas,” explains Teixeira. “We aim to expand to more programs and partners.”

EiB and partners are supported by CGIAR Trust Fund Contributors and the Crops to End Hunger initiative, via the Bill and Melinda Gates Foundation, GIZ, BMZ, USAID, UK Aid, ACIAR and other partners

New tools guide interventions against acid soils in Africa using lime

Researchers visit maize fields in Ethiopia's Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)
Researchers visit maize fields in Ethiopia’s Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)

One major reason why maize productivity in sub-Saharan Africa is very low is poor soil health. Soil acidity is often mentioned because of its impact on crop yields and the extent of acid soils in the region. A recent soil mapping exercise, conducted by the Ethiopian Soil Information System (EthioSIS) under the administration of the Ethiopian Agricultural Transformation Agency (ATA), estimated that 43% of arable lands were affected by acid soils and that 3.6 million people, about 10% of the total rural population, live in areas with acidic soils.

Very acid soils — those with a pH below 5.5, roughly one hundred times more acidic than neutral soils — are associated with certain toxicities, like aluminum and iron excess, and some nutrient deficiencies. Soil acidity pushes soil nutrients out of reach of the plant, leading to stunting of root system and plant. As a result, the plant becomes also less tolerant to drought.

Soil acidification depends on soil nature, agroecology and farming systems. It happens through natural leaching of CO2 after rainfall and excess application of nitrogenous fertilizer or organic matter, for instance.

As a result, soil acidity significantly affects maize yields. In Ethiopia, studies have revealed substantial impacts on crop productivity related to acid soils and the importance of acid soil management for Ethiopia’s food security. The Ethiopian Institute of Agricultural Research (EIAR) estimated that soil acidity on wheat production alone costed the country over 9 billion Ethiopian Birr, about $300 million per year.

Acidic soils in the limelight

Preliminary analysis led by the International Food Policy Research Institute (IFPRI) suggests that yields of major cereal crops, such as wheat and barley, could increase by 20 to 40% with the application of lime in acidic areas of the country.

While these preliminary results are significant, we need to know more about local farmers’ experience with acidic soil and their mitigation strategies. Such impact assessments are however typically determined at either the national or experimental plot level and do not map where mitigating against acid soils would be the most profitable.

To improve acid soils, farmers may apply lime on their fields to raise the pH, a practice known as liming. How much lime to apply will depend on the crop, soil type but also on the quality of lime available. Liming has multiple beneficial effects like improving nitrogen fixation of legume nodules, boosting yields of legume crops.

But liming has a cost. It can quickly become a very bulky affair as we need to apply 3 to 4 tons per hectare for sandy soils and up to 8 tons per hectare for clay and humifere soils.

Furthermore, existing lime markets are quite limited or even non-existent in many areas, even those where acidic soils are prevalent. Developing supply chains from scratch is difficult and costly. Understanding the costs and potential returns to such investments is important. There are many questions to ask at different levels, from the farm and farming system to the lime supply chain. What are the available lime sources — calcitic, dolomite or blend — and lime quality? Where are the lime processing units and how could you assess the transport cost to the farms? What could be the crop yield response depending on the lime application?

User-friendly and scalable dashboard

IFPRI, in collaboration with EIAR, the International Maize and Wheat Improvement Center (CIMMYT) and the German aid agency GIZ, developed a pilot in Ethiopia’s Amhara region to help better target lime interventions for a greater impact. Amhara region was chosen because of the importance of acid soils, and access to extensive soil data.

Combination of several spatial datasets on soil quality, agroecological, weather, long-term agronomic trials and crop modelling tools enabled to generate at scale, georeferenced estimates of crop yield responses for different lime applications. Calibration of this spatial model for wheat estimated a yield increase of approximately 30% increasing the pH from 5.5 to 6.5, which is relatively consistent with general research data and expert opinion.

Mapped estimates of the grain prices and the delivered costs of lime, based on the location of the lime crushers in the region and transport costs, enables then to map out the spatial profitability of lime operations.

Initial calculations revealed a great variability of lime costs at the farmgate, with transportation representing at least half of total lime costs. It showed also that farmers often do not use the most cost-effective combination of inputs to tackle soil acidity.

Another possible application is to determine maize growing areas where lime benefits outweigh the costs, which would be ideal sites for demonstrating to farmers the positive impact lime applications could have to their livelihoods.

This Amhara lime dashboard prototype demonstrated its scalability. A national dashboard is currently being developed, which includes lime sources GPS location, grain prices and district-level soil quality mapping. This approach is tested also in Tanzania.

CIMMYT and its partners plan to package such tool in a user-friendly open-access web version that can be rapidly updated and customized depending on the area of intervention, for instance integrating a new lime source, and applied for different crops, and across the Eastern African region. Such dashboards will help development organizations and government make better informed decisions regarding lime investments.

Digital imaging tools make maize breeding much more efficient

Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.
Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.

To keep up with growing maize demand, breeders aim at optimizing annual yield gain under various stress conditions, like drought or low fertility soils. To that end, they identify the genetic merit of each individual plant, so they can select the best ones for breeding.

To improve that process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) are looking at cost-effective ways to assess a larger number of maize plants and to collect more accurate data related to key plant characteristics. Plant phenotyping looks at the interaction between the genetic make-up of a plant with the environment, which produces certain characteristics or traits. In maize, for example, this may manifest in different leaf angles or ear heights.

Recent innovations in digital imagery and sensors save money and time in the collection of data related to phenotyping. These technologies, known as high-throughput phenotyping platforms, replace lengthy paper-based visual observations of crop trials.

Authors of a recent review study on high-throughput phenotyping tools observe that obtaining accurate and inexpensive estimates of genetic value of individuals is central to breeding. Mainassara Zaman-Allah, an abiotic stress phenotyping specialist at CIMMYT in Zimbabwe and one of the co-authors, emphasizes the importance of improving existing tools and developing new ones. “Plant breeding is a continuously evolving field where new tools and methods are used to develop new varieties more precisely and rapidly, sometimes at reduced financial resources than before,” he said. “All this happens to improve efficiency in breeding, in order to address the need for faster genetic gain and reduction of the cost of breeding.”

“Under the Stress Tolerant Maize for Africa (STMA) project, we are working on implementing the use of drone-based sensing, among other breeding innovations, to reduce time and cost of phenotyping, so that the development of new varieties costs less,’’ said Zaman-Allah. “The use of drones cuts time and cost of data collection by 25 to 75 percent  compared to conventional methods, because it enables to collect data on several traits simultaneously — for example canopy senescence and plant count,” he explained.

Another great innovation developed under this CIMMYT project is what Zaman-Allah calls the ear analyzer. This low-cost digital imaging app allows to collect maize ear and kernel trait data 90 percent faster. This implies higher productivity and rigor, as more time is dedicated to data analysis rather than time spent on data collection. Using digital image processing, the ear analyzer gives simultaneous data of more than eight traits, including ear size and number, kernel number, size and weight.

Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.
Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.

Some national agricultural research systems and NGOs have adopted this digital imagery tool to better assess maize yields in farmers’ fields. For instance, CIMMYT and GOAL have used this tool to assess the extent of fall armyworm impact on maize crops yield in eastern Zimbabwe.

Scientists are exploring the use of different sensors for phenotyping, such as Red, Green and Blue (RGB) digital imaging or Light Detection and Ranging (LIDAR) devices. Infrared thermal and spectral cameras could lead to further progress towards faster maize breeding.

Such sensors can help collect numerous proxy data relating to important plant physiological traits or the plant environment, like plant height and architecture, soil moisture and root characteristics. This data can be used to assess the maize crop yield potential and stress tolerance.

Such breeding innovations are also making maize research more responsive to climate change and emerging pests and diseases.