Skip to main content

Tag: cropping systems

How one farmer is learning and leading the way in improved millet and groundnut seed production in Uganda

CIMMYT, in partnership with the National Semi-Arid Resources Research Institute (NaSARRI), is transforming dryland farming by giving farmers access to drought-tolerant and disease-resistant crop varieties. Through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, many farmers have not only improved their yields but also built resilience to the challenges of unpredictable rainfall. Dennis Obua, a farmer who has benefited from these research advances, shares his inspiring journey to promote improved finger millet and groundnut seed varieties within his community.  

“My name is Dennis Obua, a farmer from Tewayo village in Lira district. I began my farming journey back in 2018, inspired by the local farmers I met while visiting a nearby region. As I spent time with them, observing how they tilled the land, I felt a strong urge to get involved in farming myself—especially focusing on drought-tolerant cereals, which are crucial in our region due to inconsistent rainfall. 

It all started with a small amount of finger millet seeds—just a handful that I obtained from NaSARRI. At the time, some visitors from NaSARRI had planted a few experimental plots nearby. One of my friends was conducting his own trials, so I approached him and asked for a small sample of seeds to plant on my farm. That was how I started growing improved finger millet varieties NAROMIL 2 and SEREMI 2 (U15). Now, I not only grow millet, but I am also actively promoting it in my community. 

Dennis, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

If you look around today, you will see that many people here have started growing finger millet here too. It’s becoming quite popular. In fact, recently, some researchers from Makerere University came to our village to look for finger millet, and I took them to a nearby home where they’re doing their own research on finger millet and sorghum.  

More and more people are getting into farming now, especially finger millet, because it’s proving to be profitable.  I’m really grateful for the way things have turned out. It’s incredible to see that something that started with just a small handful of seeds has grown into something so significant for our community. 

Alongside finger millet, I also plant groundnuts. Currently, I have three different varieties planted in neat rows: SERENUT 8R, SERENUT 11, and SERENUT 14. Before these varieties were introduced to my farm, I used to grow a local variety called Red Beauty. We would get the seeds from our local market or sometimes travel to town to buy them but often these seeds didn’t germinate well, so we started relying more on local farmers who save seeds from one season to the next. That’s how we accessed it. That’s how we got access to them. We also have auctions here at the beginning of the season where farmers bring seeds to sell.  

Dennis showcases one of the groundnut varieties planted in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

However, since switching to these new varieties— SERENUT 8R, SERENUT 11, and SERENUT 14 —I’ve seen a significant difference. Among the three, SERENUT 14 is my favorite. I’ve been growing it for several seasons now. It’s drought tolerant, disease resistant, and produces a good yield. It also has a good number of pods. When I plant it, I can usually harvest 14 to 16 bags per acre, with each bag weighing between 42 to 46 kilograms. Compared to SERENUT 8R, which yields slightly less—around 12 to 14 bags per acre— SERENUT 14 performs better in our soil conditions.  

What I appreciate most about SERENUT 14 is that it’s also more resistant to rot and rosette disease. While SERENUT 11 and SERENUT 8R varieties are also drought tolerant, SERENUT 14 has proven to be the most reliable, making it my preferred choice. When you consider yield, disease tolerance, and quality, SERENUT 14 stands out.  

I am proud to say that I’m not the only one growing these improved varieties anymore. Many farmers in my village have adopted them because I’ve been giving them seeds, and they’ve seen the benefits for themselves. Now, they too are switching to these improved varieties of groundnut and finger millet. The two finger millet varieties I have been growing are NAROMIL 2 and SEREMI 2 (U15) and they are also catching up. Among them, NAROMIL 2 is my preferred variety because it yields well, is drought tolerant, and has a great taste — perfect for food. Before this, we only grew our local finger millet varieties. This is the first time we’ve been introduced to these improved varieties.  

Dennis, displays a freshly harvested groundnut plant from his demonstration plot, showcasing the success of improved, drought-tolerant groundnut varieties (Photo: Marion Aluoch/CIMMYT)

Farming has allowed me to give back to my community. It’s amazing to see how the success of one farmer can affect an entire village. More farmers now understand the importance of using quality seeds that are not only drought-tolerant but also disease-resistant. They come to me for seeds because they trust the results they’ve seen. 

That’s not to say there haven’t been challenges. There was one week where we had heavy rains after a long dry spell, which caused some of the groundnut plants to rot. Before that, there had been no rain after planting, although we had managed to do the initial weeding. I’m sure the yield would have been even better if the rains had been more consistent. Despite the challenges, the yield has still been great. That’s one of the reasons I like these varieties—they’re resilient. 

I am grateful for the knowledge and experience I have gained. By sharing what I’ve learned, I hope to help more farmers in my community succeed, just as I have. I’ve seen first-hand how improved varieties of both finger millet and groundnuts can transform farming practices. The combination of drought tolerance, disease resistance, and high yield has made a significant difference to my farm’s production, and I’m hopeful that more farmers will continue to adopt these crops.” 

Navigating the seed market and transforming agricultural productivity

At the heart of the agricultural sector, grain off-takers/processors play a crucial role in ensuring that farmers have access to quality seeds that can increase productivity and improve livelihoods. One such processor, AgriNet in Uganda, led by Paul Nyande is deeply involved in managing the complex dynamics of seed and grain production, market demand and variety turnover making a significant impact on both the farming community and the wider agricultural market. 

AgriNet is known for its role in grain and legume markets. The company buys a range of grains and legumes, including sorghum, finger millet, soybeans, and maize. After buying these commodities from farmers, the company adds value by processing and packaging them for a diverse market. Their customers range from markets that demand raw grain to high-end consumers who buy blended flour for products such as porridge. AgriNet operates its own milling facility, enabling it to efficiently meet the needs of these different markets efficiently.  

Variety turnover is central to the processor’s work. Over time, crop varieties that have been in use for 30 or 40 years become less relevant as new research leads to the development of improved varieties. These newer varieties are better suited to evolving market needs, offering traits that align with current preferences for drought tolerance, disease resistance, and higher yields. 

Paul Nyande leads AgriNet, a company involved in managing seed and grain production (Photo: Marion Aluoch/CIMMYT)

“We have definitely seen situations where the market asked for a particular variety, and we have worked with research institutions such as National Semi-Arid Resources Research Institute (NaSARRI) to fulfill that demand. This collaboration has led to shifts in what seed companies produce to keep pace with changing agricultural conditions and market needs,” explains the processor. 

For example, through stakeholders’ interactions, AgriNet worked with NaSARRI, to communicate the market’s needs for crops such as maize and sorghum. NaSARRI produced foundation seeds based on these requirements, which the processor then marketed and distributed to specific farmers for production of certified seed that was given to grain producers. However, managing seed demand isn’t always straightforward, especially since the market can change rapidly.    

“We’ve had instances where the market suddenly surged with high demand for sorghum seeds, but we couldn’t meet it,” says Paul. “Sometimes these opportunities arrive unexpectedly, and we’re not fully prepared to supply the required volumes.” Paul notes that they still need to promote and improve productivity, as there are gaps in farming practices that hinder maximum yields. One persistent challenge is Striga, a parasitic weed that significantly reduces cereal yields. To tackle this, Paul promotes crop rotation and integration, to help farmers manage such issues. 

Despite these challenges, AgriNet has made strategic efforts to manage the risks associated with seed production. By working closely with partners like NaSARRI and using foundation seed, they have been able to balance supply and demand. The processor typically manages seed for one or two generations before reintroducing new varieties to keep up with changing market conditions. 

Paul with the CIMMYT and NaSARRI team at his office during their visit to learn more about AgriNet (Photo: Marion Aluoch/CIMMYT)
The role of technology and partnerships

A key part of AgriNet’s work is maintaining a robust supply chain. Using digital platforms, they have developed a system to profile farmers, track training sessions, monitor input distribution and communicate with farmers in real time via SMS. “We can send out information about market prices, weather updates, or available seeds. It’s a great tool, but maintaining the platform requires significant resources to maintain the platform,” says the processor. 

AgriNet currently works with around 2,000 farmers groups and have also developed an agent network to engage with these groups more effectively. Each agent works with multiple farmer groups, facilitating sales, input distribution, and grain purchases. This structure not only ensures efficient operations but also creates accountability by holding agents responsible for managing the process. 

However, one of the biggest challenges facing processors is capacity. They need to expand their storage and processing facilities to take in more grain, especially during the rainy season. Without sufficient storage and drying facilities, their ability to process large volumes of grain is limited, which in turn affects their ability to meet market demand. 

Balancing seed and grain markets

Paul emphasizes the difference between seed and grain. “For grain, we don’t face many issues. We can store it for a long time by fumigating it and keeping it safe. But seeds are different—you can’t keep them for long. They need to be used within a specific timeframe.” This dynamic adds complexity to the seed business, especially when the market shows a sudden spike in demand. 

Pricing is another challenge. “We used to think about getting seeds cheaply—from research and then to farmers. But there are costs involved, and you have to consider the seed market carefully and how it compares with others,” he says. It’s important to find the right balance between affordable prices for farmers and maintaining sustainable business operations. 

The way forward: Expanding capacity and supporting farmers

Paul is focused on expanding AgriNet’s storage and processing capabilities to better manage the supply chain and take in more grain during peak seasons. Increasing their capacity would allow them to meet the growing market demand more effectively. 

There’s also a strong need to support smallholder farmers, particularly in terms of access to quality seed. “We need to ensure that farmers have access to quality inputs at affordable prices,” he emphasizes. “Subsidizing seeds or finding sustainable ways to produce them for the most vulnerable farmers could encourage the adoption of improved varieties, which would increase yields and incomes.” 

Paul also acknowledges that improving farming practices is critical to achieving higher productivity. While they have good seed varieties available, the challenge lies in ensuring that farmers follow the correct management practices to fully realize the potential of these seeds. 

AgriNet’s efforts have not gone unnoticed. The company has been recognized as one of Uganda’s top 100 medium enterprises for 2017/2018 and 2018/2019, a testament to its commitment to quality, innovation, and market responsiveness. This recognition highlights AgriNet’s ability to navigate the complex agricultural landscape while continuously striving to improve its operations and support the farming community. 

In its mission to boost agricultural productivity, AgriNet benefits from key partnerships with NaSARRI, which works in collaboration with CIMMYT, through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, to ensure farmers have access to improved seed varieties. By aligning research with market demands and processor capacity, CIMMYT and NaSARRI are helping to bridge the gap between innovation and practical solutions that directly benefit farmers.

Transforming Farming in Uganda: The journey of four farmers and their demonstration plots

On the lush soils of Uganda, four farmers are using awareness creation demonstration plots to showcase the performance of improved varieties of groundnut, sorghum, and finger millet and their impact on transforming transform livelihoods.  

Not only are these farmers improving their yields, but they are also inspiring their neighbours to adopt more resilient and climate-smart crops as part of a larger collaboration initiative between the National Semi-Arid Resources Research Institute (NaSARRI) and CIMMYT through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. The AVISA project, funded by BMGF, aims to improve food security and resilience in the drylands of Uganda and other eight countries in eastern and southern Africa (Ethiopia, Kenya, Tanzania, Malawi, Mozambique, South Sudan, Zambia, and Zimbabwe). The efforts of these four farmers in Uganda highlight the importance of demonstration plots as a powerful tool for creating awareness and promoting transformational agricultural technologies like improved crop varieties and other recommended agronomic practices.  

Dennis Obua, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

Demonstration plots serve as practical, hands-on learning sites, where farmers can observe the performance of improved crop varieties under farming conditions in their localities. Apart from demonstrating crop performance, these demonstration plots also serve as sources of seed for the farmers, which when selected can be grown in bigger plots in subsequent seasons targeting seed production This ensures that seed of the target crop varieties are available to local farmers. Through these demonstration plots, farmers not only witness firsthand improved yields, but farmers also make informed decisions for adoption of specific varieties for their environments to improve productivity, food security and resilience, especially in regions vulnerable to climate change. They also provide a platform for knowledge sharing, as farmers can interact with other farmers, researchers and extension agents to enhance uptake of practices that lead to success. 

Farmers Driving Variety Adoption through Demonstration Plots

In Lira District, Dennis Obua, a farmer from Teyawo village, has embraced improved varieties of drought-tolerant crops. His journey into farming began in 2018 after observing the challenges faced by local farmers due to inconsistent rainfall. He started small, with a handful of finger millet seed obtained from NaSSARI, which he multiplied and shared with neighbouring farmers. With support from the seed systems unit at NaSSARI, Dennis now manages demonstration plots of groundnut, sorghum, and finger millet and promotes these crops in his community. 

In the current season of 2024 (Mar-Jul), Dennis planted three improved groundnut varieties — SERENUT 8R, SERENUT 11 and SERENUT 14, which were released in 2011. In his assessment, his preferred variety is SERENUT 14 as it yields about 14 to 16 bags per acre. The variety is drought tolerant, disease resistant, especially rot and rosette, produces a good yield and also has a good number of pods.  Under demonstration are two finger millet varieties, NAROMIL 2 and SEREMI 2 (U15) though he prefers NAROMIL 2 (released in 2017) for its drought tolerance, high yield and red colour of the grain. His success has inspired many local farmers to adopt these improved varieties, with many seeking seeds to grow on their own plots. The seed demand generated from these demonstration plots is communicated by the host farmer to the research institute, which works on making the seed available through local entities. The host farmer keeps records of seed requests and preferred varieties from farmers visiting the demonstrations. 

Bagonza Simon oversees demonstration plots, which serve as a hub for agricultural learning, showcasing groundnut, finger millet, and sorghum varieties (Photo: Marion Aluoch/CIMMYT)

At the Kihola Demonstration Centre, the farm manager, Bagonza Simon oversees demonstration plots that serve as a hub for agricultural learning. Working with NaSARRI, Simon has introduced improved varieties of groundnut (SERENUT 8R, SERENUT 11, and SERENUT 14), sorghum (NAROSORGH 2 and SESO 1), and finger millet (NAROMIL 2 and SEREMI 2). Farmers visit the center to observe these varieties and learn about their benefits. The selection of preferred sorghum varieties by farmers appears to be influenced by the degree of bird damage observed across different types. For example, the white-grained sorghum (SESO 1) suffered significant bird damage, which led farmers to naturally favor the red-grained NAROSORG-2, released in 2017. In addition to being less susceptible to bird damage, NAROSORG-2 also demonstrates drought and striga tolerance, further enhancing its appeal among farmers. 

Simon has been particularly impressed by the attributes of the groundnut variety SERENUT 8R, which has performed well despite the challenging weather conditions observed in the season characterized by very erratic rainfall patterns. His demonstration plots have become a beacon of hope and innovation, inspiring local farmers to adopt drought-tolerant crop varieties. Farmer to farmer seed exchanges are common in this locality due to seed shortages and he therefore plans to share seed from his plots to interested farmers and is working with NaSARRI to expand seed availability across the region. 

Steven Odel from Kaloka village has drought-tolerant varieties of sorghum, finger millet, and groundnut in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

In Bukedea District, farmers Steven Odel from Kaloka village and Nelson Ekurutu from Kasoka village are also leading the way with their demonstration plots. Both are testing drought-tolerant varieties of sorghum, finger millet, and groundnut. While Steven encountered challenges with his sorghum crop due to midge attacks, he has had great success with NAROSORG-2, which he describes as having better germination and faster maturity, and therefore enabling the plants to escape midge attack. 

Steven is also growing red finger millet variety SEREMI2, which is very popular for its early maturity and high market demand for making porridge and local beer. He regularly hosts farmers on his plots, sharing his knowledge and experience.  

Nelson Ekurutu is trialling three new groundnut varieties—SERENUT 8, SERENUT 11, and SERENUT 14—and is optimistic about their performance. His experience with finger millet, particularly the red variety- SEREMI2, has been positive, noting its fast growth and high demand in local markets. Nelson also grows red sorghum (NAROSORG 2), which he prefers for its resistance to bird damage. These demonstration plots provide a platform for Steven and Nelson to test new varieties in their local context, helping them and others understand what works best in their locality.  

Nelson Ekurutu is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Increasing awareness and seed availability 

Utilizing these demonstrations to bring new varieties closer to farmers can further accelerate seed uptake and demand. Farmer-managed demonstrations in their own environments ensure that variety selections align with local preferences and adaptability. Farmers who consistently host these demonstrations build trust in the varieties within their communities, while also creating opportunities for local seed businesses to explore. Strengthening the linkages between research institutions, farmers, and seed producers is crucial for ensuring the rapid adoption of new and improved varieties. Additionally, the distribution of small seed packs at scale is essential to enable more farmers to test these varieties on their own farms, ensuring wider adoption and transforming livelihoods in these communities. 

ADCIN strengthens agricultural capacity and resilience in sub-Saharan Africa

The Africa Dryland Crops Improvement Network (ADCIN) emphasizes capacity building as a cornerstone for sustainable development and agricultural innovation. By addressing both human and infrastructure development, ADCIN is empowering research institutions and individuals across Africa to enhance agricultural practices, strengthen food security, and improve livelihoods in dryland regions.

In 2023, ADCIN made significant strides toward these goals by investing $1 million to strengthen National Agricultural Research and Extension Systems (NARES). This initiative focused on enhancing human capacity and infrastructure, equipping researchers, students, and institutions to address the unique challenges of dryland agriculture. The funding supported 32 awardees from East and Southern Africa (ESA) and West and Central Africa (WCA), including 15 visiting scientists, 7 students, 4 group training sessions, and 6 infrastructure development projects.

In 2024, ADCIN organized multiple training sessions in Senegal, Ethiopia, Nigeria, and Kenya, targeting seed system development, business sustainability, crop production improvements, and advanced data management techniques. These capacity-building efforts promoted knowledge sharing, collaborative research, and best practices in seed systems, crop breeding, agronomy, and data analytics. Four group training sessions were held: two in Kenya and Ethiopia for the ESA region, and two in Senegal and Nigeria for the WCA region.

Strengthening Seed Companies and CBOs for Growth in Nigeria

ADCIN, in collaboration with Syngenta Foundation Nigeria, hosted a two-day capacity-building workshop for seed companies and community-based organizations (CBOs) in Kano, Nigeria, on September 4–5. Supported by partners such as CDA, IITA, ICRISAT, and NASC, the workshop aimed to enhance seed production and commercialization efforts while promoting AVISA crops like sorghum, pearl millet, groundnut, and cowpea.

The workshop attracted 30 participants, including 20 CBOs and 10 seed companies, who were trained in topics such as seed production best practices, post-harvest handling, and seed certification standards. Key outcomes included the implementation of modern innovations like e-certification and seed tracking technologies, designed to improve transparency and efficiency in the seed sector.

Participants of the training in Nigeria on strengthening seed companies and community-based organizations (CBOs) to enhance seed production and commercialization effort (Photo: CIMMYT)

Participants were also introduced to the Farmers’ Hub concept, which offers smallholder farmers access to essential agricultural inputs, machinery, and market opportunities. Many participants expressed enthusiasm about using the Farmers’ Hub to expand their customer base and grow their businesses.

“The networking opportunities provided by this training have been invaluable. I’m looking forward to applying what I’ve learned and taking my business to the next level,” shared one participant.

The training is expected to have a lasting impact on seed quality and foster business growth in Nigeria. By equipping CBOs to transition into fully operational seed companies, ADCIN is advancing the sustainability of Nigeria’s seed industry. Participants are now better prepared to tackle challenges in seed production, marketing, and regulatory compliance, paving the way for a more resilient seed sector.

With the knowledge gained from the workshop, participants are now better prepared to address the challenges of seed production, marketing, and regulatory compliance, paving the way for a more resilient and robust seed industry in Nigeria. 

Promoting Crop Improvement in Senegal

From August 20-27, 2024, more than 50 breeding and crop protection technicians from nine West and Central African countries gathered in Saly, Senegal for a comprehensive training session. The training, co-funded by the AVISA project and organized by CIMMYT in collaboration with National Agricultural Research and Extension Systems (NARES) from nine West and Central African countries, including Burkina Faso, Cameroon, Chad, Ghana, Mali, Niger, Nigeria, Togo, and Senegal, aimed to improve the efficiency of cowpea, groundnut, pearl millet, and sorghum breeding operations. 

Participants gained hands-on experience in key areas such as seed trial management, electronic data collection, and genotyping. These skills are essential for improving crop varieties and making them more resilient to local conditions. 

Field trips to Bambey, Senegal allowed participants to practice techniques such as setting up and managing seed trials, leaf sampling for genotyping, and electronic data collection using tablets making research more efficient and accurate. 

Participants of the training in Senegal on improving the efficiency of cowpea, groundnut, pearl millet and sorghum breeding operations (Photo: CIMMYT)

“This training has given me new insights into how we can improve our breeding programs and provide better seeds for our farmers. The practical sessions were particularly helpful,” said a participant.

By enhancing technicians’ skills in trial management and data collection, the training is expected to improve field data accuracy and contribute to the development of climate-resilient crop varieties, directly addressing regional food security challenges.

Enhancing Seed Producers’ Skills in Ethiopia

ADCIN held a three-day workshop in Addis Ababa, Ethiopia, from July 30 to August 1, 2024, focusing on building the capacity of the country’s seed producers. Organized in collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and supported by CIMMYT, the workshop aimed to strengthen Ethiopia’s seed producers by improving their skills in key areas such as seed health management, seed business management, variety maintenance, breeder seed production, and postharvest handling. 

The training attracted 19 participants from both the public and private sectors, including seed companies, producer associations and research centers. The sessions provided critical insights into the management of seed-borne diseases such as mycotoxins and aflatoxins, which affect crops like sorghum, chickpea, beans, and finger millet. Participants learned how to incorporate seed health testing into Ethiopia’s national certification process, which will help ensure healthier seeds and increased crop productivity. 

Participants of the training in Ethiopia whose aim was to strengthen Ethiopia’s seed producers by improving their skills in key areas (Photo: Marion Aluoch/CIMMYT)

The seed business management session introduced participants to the Business Model Canvas (BMC), a framework for creating viable and demand-driven seed business models. By emphasizing sustainable practices in seed production, processing, and marketing, the training equipped participants with the tools they need to grow their seed businesses and contribute to Ethiopia’s growing agricultural sector. 

The workshop also discussed the importance of variety maintenance and breeder seed production, focusing on the genetic integrity of improved varieties. The postharvest handling session focused on seed storage techniques and pest management, helping participants in maintaining seed quality after harvest. 

“This workshop has really opened our eyes to new business strategies and how we can ensure that our seed businesses remain profitable and sustainable,” shared a representative from a local seed company. 

Through this training, ADCIN is supporting Ethiopia’s seed producers in their efforts to improve seed quality and business sustainability, thereby contributing to the long-term growth of the seed industry. 

Equipping Breeders with Advanced Data Management Skills in Kenya

ADCIN held a training on modern biometrics, quantitative genetics and data management in Nairobi, Kenya, from 10 to 14 June. This capacity-building initiative brought together 43 participants from nine Eastern and Southern African (ESA) countries, representing breeding leaders, data champions, and young breeders working on crops such as chickpea, finger millet, pearl millet, pigeonpea, and sorghum. 

Participants of the training in Kenya that focused on data-driven decision-making in breeding programs (Photo: CIMMYT)

The training focused on data-driven decision-making in breeding programs and covered topics such as experimental design, advanced data analysis using the CGIAR Breeding Analytical Pipeline, and managing genotype x environment (GxE) interactions. Participants learned about the Breeding Management System (BMS), quality control processes, and practical applications of the CGIAR Breeding Analytical Pipeline, which enhanced their ability to analyze large data sets and improve breeding accuracy across the CGIAR-NARES network. 

A Holistic Approach to Capacity Development

These training programs are just a small part of ADCIN’s broader initiative to build capacity across Africa’s dryland regions. These efforts, which focus on critical areas such as seed production, crop improvement, business sustainability, and data management, are helping to develop resilient agricultural systems capable of withstanding the challenges of dryland agriculture. As ADCIN works to strengthen robust and sustainable seed industries, these capacity-building programs will play an important role in increasing food security and improving the livelihoods of communities in Africa’s drylands. 

Unlocking Zambia’s maize potential through crop diversity

While maize is the primary staple food crop in Zambia, its productivity on farmers’ fields reaches on average only about 20 percent of what it could achieve with good agronomic practices. Some reasons for this inefficiency are use of traditional varieties, low fertilizer use, and ineffective weed and pest control.

Closing the gap between potential and realized yields would have major benefits for farmers in Zambia, both in terms of income and food security at the household and national levels. One possibility to increase maize productivity is by increasing crop diversity through the inclusion of legumes in maize-based farming systems. This could be done through intercropping, growing legumes in the rows between maize plants, or crop rotations and alternating maize and legumes in the same field from season to season.

CIMMYT scientists, along with collaborators from the Zambia Agriculture Research Institute (ZARI) and the University of Zambia’s School of Agricultural Science, set out to determine which cropping systems might lead to increased productivity for maize farmers in Zambia and their results were published in the journal Field Crops Research.

“There is great potential in Zambia to increase yields to help ensure food security,” said Mulundu Mwila, PhD candidate and scientist at ZARI. “We wanted to determine the cropping systems that offered the most benefits.”

Setting up the study

For this research, ZARI and CIMMYT scientists established maize-based cropping systems trials, comprising maize monocropping, and maize-legume rotations and intercrops under both ‘conventional’ tillage, and Conservation Agriculture, across 40 farms in a variety of agroecological zones in Zambia.  The team also conducted household surveys in the same communities hosting the on-farm trials to determine the share of households with enough cultivated land to benefit from the tested cropping systems.

Researchers found that the tested cropping systems produced more maize per hectare compared to non-trial host farms in the same region. The greatest positive effect uncovered was that maize-legume rotations in Zambia’s Eastern Province had the potential to increase maize yield by 1 to 2 tons per hectare, per growing season. “The Eastern Province trials showed better results because of stable and adequate rainfall amounts and distribution and because of using groundnut as a rotation crop,” said Mwila.

Researchers attributed the small effect of legumes on maize yield in the Southern Province to low levels of biomass production and nitrogen fixation, due to low and erratic rainfall, and to low residue incorporation because of livestock grazing. Conversely, the small effect of legumes on maize yield in the Northern Province might be attributed to the high rainfall amount in the region, leading to high rates of leaching of residual nitrogen during the growing season as well as the use of common beans as the preceding crop.

Finding the right amount of land

With evidence showing the potential benefits of maize-legume rotations, the availability of land is a constraint for small farms across sub-Saharan Africa, thus it is important to quantify the land area needed for farmers to implement maize-legume rotations.

“Our findings match prior research showing the benefits of maize-legume rotations in Eastern Zambia” said Silva. “However, implementing maize-legume rotations remains a challenge for many smallholders due to small farm sizes.”

Nearly 35, 50, and 70% of the surveyed farms in the Northern, Eastern, and Southern Provinces, respectively, had enough land to achieve the same level of maize production obtained on their farm with the yields of the maize-legume rotations tested in the on-farm trials. “With our findings showing increased maize yields, and our efforts to determine the amount of land needed for food and nutrition security at household level, the next steps can be to facilitate methods to disseminate this information to policy makers and to farmers that have enough land area to benefit from diversified cropping systems,” said Silva.

For farmers with not enough land to reap the benefits of maize-legume rotations, intercropping legumes within the maize has shown promising results. The researchers also call for further research to specify the contributing factors to small farms not seeing benefits from maize-legume rotations.

Launch of a new Global Partnership for the Vision for Adapted Crops and Soils initiative

Traditional and nutrient-rich crops are vital for global food security. (Photo: CIMMYT)

Rome/Texcoco, Mexico – An initiative to build resilient agrifood systems grounded in diverse, nutritious, and climate-adapted crops grown in healthy soils, today marked another milestone through a new partnership between the Food and Agriculture Organization of the United Nations (FAO) and CIMMYT, a CGIAR Research Center.

FAO and CIMMYT signed a Memorandum of Understanding establishing a Partnership for the Vision for Adapted Crops and Soils (VACS) initiative. The joint Partnership will play a pivotal role leading efforts to coordinate, grow, and strengthen the VACS movement across a wide range of public and private stakeholders.

“By joining forces with CGIAR and CIMMYT, we bring together our collective capacities to build a strong momentum and platform to advance the VACS,” said FAO’s Director-General QU Dongyu. “VACS effectively brings together the Four Betters set out in the FAO Strategic Framework 2022-31: better production, better nutrition, a better environment and a better life – leaving no one behind.”

“Our 2030 Strategy focuses on strengthening agrifood systems to increase nutritional value and climate resilience,” said CIMMYT’s Director General, Bram Govaerts. “We are proud to stand united, through VACS, with FAO, whose excellent track record on policy work and networking with national governments will help equip farmers with resilient seed and climate-smart cropping systems that regenerate, rather than degrade, the soils on which their diets and livelihoods depend.”

Launched in 2023 by the U.S. Department of State in partnership with the African Union and FAO, the VACS movement aims to build sustainable and resilient agrifood systems by leveraging opportunity crops and building healthy soils to enhance agricultural resilience to climate change and improve diets. Nutrient-rich and traditional crops like sorghum, millet, cowpea, and mung bean are vital for food security and nutrition under climate change but have seen little attention so far. VACS recognizes the interdependence of crops and soils: Crops need good soil to be productive, and different crops can only be sustainably grown on some types of land.

FAO-CIMMYT partnership aims to boost farm productivity and nutrition

Since its launch the VACS initiative has supported many activities including the Quick Wins Seed Systems Project in Africa, which promotes the adoption of climate-resilient dryland grains and legumes and helps smallholders access seeds of local nutritious crops like pearl millet, finger millet, and mung bean, and connects them with markets and agri-services. Meanwhile, the VACS Fellows programme trains African breeding professionals, strengthening regional agrifood systems. In Central America, InnovaHubs partner with CGIAR, Mexico, and Norway to connect farmers with markets, technologies, and high-quality seeds. FAO, through its work, including as part of the International Network on Soil Fertility and Fertilizers (INSOILFER) and the Soil mapping for resilient agrifood systems (SoilFER) project, assists members with the implementation of sustainable and balanced soil fertility management for food security and to promote actions to enhance the link between nourished healthy soils and opportunity crops.

Leveraging on the expertise and mandates of both CIMMYT and FAO, the new joint VACS Partnership will support, coordinate and amplify the impact of all stakeholders of the VACS movement, public and private, through the following functions:

  • Strategy: The Partnership will develop and maintain a VACS strategy, including by defining its mission, objectives, and approach.
  • Resource Mobilization: The Partnership will work with public and private sector donors to increase investments in VACS-aligned work.
  • Donor and Implementer Coordination: The Partnership will coordinate work among major VACS donors and implementers, including by coordinating the VACS Implementers’ Group.
  • Stakeholder Engagement: The Partnership will strengthen ties across public and private stakeholders to catalyze action in support of VACS, including by coordinating the VACS Community of Practice and the VACS Champions program.
  • Shaping the Policy Environment: The Partnership will coordinate the development of a VACS policy agenda and work to advance it at the local, national, and multinational levels.
  • Communications: The Partnership will elevate the importance of diverse crops and healthy soils as a fundamental means of advancing a range of sustainable development goals.
  • Results Management: The Partnership will develop and maintain a results management framework to track progress in achieving VACS objectives.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

About FAO

The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads international efforts to defeat hunger.

Our goal is to achieve food security and nutrition for all by enabling all people to have regular access to enough locally appropriate high-quality nutritious food to prevent all forms of malnutrition and to lead active, healthy lives. With 195 members – 194 countries and the European Union, FAO works in over 130 countries worldwide.

For more information or interviews:

Jelle Boone
Interim Head of Communications, CIMMYT
j.boone@cgiar.org
Mobile/WhatsApp: +52 595 1247241

Peter Mayer
FAO News and Media
peter.mayer@fao.org

Transforming agriculture in sub-Saharan Africa: a new dawn for millet production

As the world grapples with climate change, resilient crops such as millets play an increasingly important role. Their ability to thrive in low soil fertility and limited moisture levels makes them ideal for Africa’s changing climate. However, despite their potential, it remains largely untapped.

In an initiative to address the untapped potential and the growing challenges associated with the cultivation of pearl and finger millets in Africa, a high-profile discussion convened experts from various fields. This session, part of a workshop titled “Bottlenecks to Expansion of Pearl and Finger Millets in Africa,” organized by the Bill & Melinda Gates Foundation in collaboration with the Senegalese Institute of Agricultural Research (ISRA) and CIMMYT, aimed to identify and prioritize key bottlenecks in crop improvement.

A panel of experts from different organizations discuss the importance of national and international initiatives in promoting crop improvement and millet innovations, emphasizing collaboration as a key driver of agricultural progress. (Photo: Marion Aluoch/CIMMYT)

Significance of the International Year of Millets

The United Nations General Assembly declared 2023 the International Year of Millets to raise awareness of and direct policy attention to the nutritional and health benefits of millets and their suitability for cultivation under adverse and changing climatic conditions. The program highlighted the critical need to promote sustainable agriculture and enhance food security by adopting climate-resilient crops like millets, which play an important role in mitigating the effect of climate change, due to their adaptability to adverse and changing climatic conditions.

“We have been actively engaged in gathering input and support from all over the world, not just from Africa and Asia but also from regions like Latin America and Eastern Europe,” said Makiko Taguchi of the Food and Agriculture Organization (FAO). “This year has seen a surge in interest and collaboration in the millet community and we are excited about the possibilities that lie ahead,” she added.

Makiko Taguchi of the Food and Agriculture Organization (FAO) emphasizes the significance of the 2023 International Year of Millets. Kevin Pixley, director of CIMMYT’s Dryland Crops Program, attentively listens. (Photo: Marion Aluoch/CIMMYT)

National strategies to enhance millet production

In an effort to ensure food security and achieve production goals over the next five years in Senegal, a strategic plan encompassing various key initiatives will be implemented to meet the demands of millets.

Hamidou Diallo, from the Ministry of Agriculture, Rural Equipment, and Food Sovereignty of Senegal (MAERSA), summarized the strategy. First, is a focus on enhancing production and productivity. Second, the plan calls for the use of high-quality seeds and collaboration with ISRA to provide foundational seeds. Third, aiming to equip producers with the necessary tools and equipment. Last, the plan seeks to increase the overall cultivated area of millets.

“We align ourselves with the needs of the local community. By doing this, it ensures that the initiatives undertaken are not only impactful but also resonate with the agricultural landscape and the needs of the communities served,” said Diallo.

Hamidou Diallo from Senegal’s Ministry of Agriculture, Rural Equipment, and Food Sovereignty (MAERSA) highlights the government’s strategic plan for meeting the country’s millet demand. (Photo: Marion Aluoch/CIMMYT)

Innovative initiatives for the Dryland Crops Program

Kevin Pixley, director of the Dryland Crops Program (DCP) and Wheat Program director a.i. at CIMMYT, highlighted four initiatives in which the program is involved. One is the establishment of the Africa Dryland Crops Improvement Network, comprising national program scientists and led by the steering committee from Eastern and Southern Africa (ESA) and Western and Central Africa (WCA). Their mandate is examining investments in capacity development and infrastructure and shape breeding programs. Second, a legumes mining project at Colorado State University, focusing on genetic diversity and using big data tools to identify resilient traits. Third, working on gene editing projects such as reducing rancidity in pearl millets in countries that are open to these technologies. Last, the Vision for Adapted Crops and Soils (VACS) project, that will include millets as a prioritized crop. These initiatives are crucial for creating pathways to improve farmers’ livelihoods and popularize millets.

“Creating an effective pathway is critical to these approaches. We need to find innovative ways to reach more farmers with options to improve their livelihood and popularize millets across different market segments,” said Pixley.

Kevin Pixley, director of the Dryland Crops Program at CIMMYT, discusses CIMMYT’s current initiatives as Hamidou Diallo (MAERSA, Senegal) and Makiko Taguchi (FAO) listen. (Photo: Marion Aluoch/CIMMYT)

CIMMYT’s program on Dryland Crops is at the forefront to improving breeding and seed systems, with the aim to improve the livelihoods of small-scale producers and consumers of these crops in sub-Saharan Africa.

Aware of the changing needs of the global community, CIMMYT has begun on a journey to advance research and broaden its impact by implementing the Dryland Crops Program. This approach is based CIMMYT’s 2030 Strategy, which has the potential to shape the future of agriculture as a catalyst of climate resilience, sustainable and inclusive agricultural development, and food and nutrition security.

The program is critical in promoting climate resilience, sustainable agricultural practices, and food and nutrition security in sub-Saharan Africa.  CIMMYT is working on dryland crops like millets and legumes, which have untapped potential for contributing to food security, particularly in climate-vulnerable regions.

Research and innovative labs

Geoff Morris from Colorado State University shared insights on the recently concluded United States Agency for International Development (USAID) Innovation Lab on Sorghum and Millets. This activity spanned the entire value chain from trait discovery to breeding program support to the development of value-added products. The most successful projects, in his opinion, were those led by African-based scientists.

“It is essential for Africa scientists to be in the driver sear to ensure that research agenda aligns with their needs,” he said. “There is a gap in knowledge not about what we know here but about what U.S. researchers know about supporting African breeders. It’s crucial for researchers to define the needs to guide effective collaborations,” said Morris.

Pioneering role in millet sector growth

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) has contributed significantly to driving growth in the millet sector, including innovation generation and knowledge sharing. Damaris Odeny, ICRISAT India, highlighted the organization’s contributions particularly in the agri-business incubation platform. The platform serves as a bridge, identifying suitable technologies to specific regions and supporting local entrepreneurs in deploying these technologies to reach smallholder farmers. While the model has been successful in India, its adoption in Africa has been slower, owing to regional differences and varying levels of investments.

Damaris Odeny of ICRISAT India shares insights on ICRISAT’s impact on the agri-business incubation platform. (Photo: Marion Aluoch/CIMMYT)

The Feed the Future Innovation Lab for Crop Improvement, managed by USAID and Cornell University efforts in fostering regional collaborations funds a center for innovations across regions, fostering regional collaborations that are critical for sharing knowledge and resources, benefiting not only regions within Africa but also further afield.

“Moving forward, we should align these initiatives and identify synergies to maximize their impact. This approach will encourage greater engagement and the adoption of innovative solutions at the local level,” said Odeny.

The path forward for millets in Africa and beyond is not only promising but essential for addressing issues of food security, climate resilience, and sustainable development. This can be accomplished by aligning these initiatives with global sustainability goals and focusing on innovative, collaborative efforts.

Changing the narrative through communication

Turning to the power of communication, Douglas Gayeton, co-founder of The Lexicon emphasized the role of effective messaging in changing people’s perceptions of millets.

“When consumers understand what they are purchasing and how it aligns with their values, they can make informed decisions that benefit the entire food system,” said Gayeton.

He also underscored the importance of changing the narrative around millets. He emphasized the importance of shifting away from terms like ‘neglected’ and ‘orphaned’ crops to more positive empowering language that resonates with consumers and policy makers.

“In order to change the food system, we must provide consumers with information at the point of purchase that applies to their values. By linking that benefit to consumer values, this approach has the potential to significantly expand millet markets,” said Gayeton.

Douglas Gayeton, co-founder of The Lexicon, emphasizes the role of effective messaging while Geoff Morris from Colorado State University shared insights on research and innovation labs on sorghum and millets. (Photo: Marion Aluoch/CIMMYT)

The discussions highlighted the valuable lessons to be learned from the efforts to enhance millet utilization in Africa and other regions. The collaboration across various sectors, from government to research institutions and the private sector, highlights the multifaceted approach in addressing the challenges facing millet cultivation and utilization. Recognizing the significance of local engagement and the empowerment of local scientists underscores a crucial lesson: solutions need to be tailored to the specific context, utilize local knowledge, and address local needs to ensure sustainability. In addition, the significant impact of communication in reshaping perceptions about millets demonstrates the importance of storytelling in shaping consumer behavior and policy.

Regional network to scale impact of dryland crops in sub-Saharan Africa

The Dryland Crops Program (DCP), in collaboration with National Agricultural Research and Extension Systems (NARES) partners, IITA, Alliance Bioversity & CIAT, and other African institutions, has established the African Dryland Crop Improvement Network (ADCIN). Aiming to strengthen partnerships and collaboration among partner institutions, the network focuses on improving dryland crops through crop enhancement. The ADCIN will have regional governance bodies in West and Central Africa (WCA) and Eastern and Southern Africa (ESA).

Consultative approach to establish ADCIN and governance structure

In 2021, CIMMYT was asked to lead a CGIAR varietal improvement and seed delivery project for dryland crops with an initial focus in Africa and funding from the Bill & Melinda Gates Foundation, the United States Agency for International Development (USAID), and the CGIAR Accelerated Breeding Initiative. This aligns with CIMMYT’s 2030 strategic objectives, which will contribute to shaping the future of agriculture to drive climate resilience, sustainable and inclusive agricultural development, and food and nutrition security.

As CIMMYT embarked on its work to further strengthen the work on dryland crops, it held a series of consultation meetings with several NARES in the region. A joint consultation workshop with NARES and CGIAR colleagues was held in Senegal in February 2022. This was followed by the broader network members and stakeholders meeting in Ghana in January 2023. These events brought together experts and representatives from the WCA and ESA regions and various partner institutions to discuss the best approaches to improve the impact of our work on dryland crops through crop improvement. Experts discussed within and across disciplines defining breeding targets using socio-economic and gender information, developing modern breeding processes and approaches, seed systems, data-science, and forging new models of partnerships.

Stakeholders from CGIAR and NARES convene in Ghana for a meeting. Experts, partner institutions, and representatives from the WCA and ESA regions, engage in comprehensive discussions to advance dryland crop improvement strategies. (Photo: Eagle Eye Projects)

One significant outcome of these meetings was the recommendation to establish a formal regional dryland crop improvement network to strengthen and enhance the current partnership among NARES and CGIAR partner institution and scientists. Establishing a governance structure for this network for effective coordination and monitoring of the network partnerships was also recommended. It was agreed that this network will have two regional bodies, one each in ESA and WCA, with their own steering committees.

Later in 2023, two initial regional steering committees were formed following consultations with CGIAR and NARES partners. The goal of the committees is to improve crop varieties in the region while ensuring equitable resource allocation and promoting collaboration among network partners. Each committee is expected to provide regional governance and oversight for the diverse dryland crop networks that operate in each region. Specific roles and responsibilities include prioritizing capacity development activities for network members, approving and allocating budgets for development plans, reviewing infrastructure needs, budgeting and accounting for investments, mobilizing resources from donors, coordinating collaboration among partners, monitoring and evaluating performance, supporting policy issues, and resolving disputes among members.

The African Dryland Crops Improvement Network (ADCIN) structure.

Critical role of steering committees for sustainability of ADCIN

The WCA steering committee comprises 14 members: 11 from NARES and three from CGIAR, met in Saly, Senegal in August 2023. The ESA committee comprises 12 members: nine from NARES and three from CGIAR, met in Nairobi, Kenya. Both committees explored their roles and responsibilities.

The ESA and WCA committees proposed, represented, and discussed several strategic areas. They developed and implemented strategies to enhance capacity and infrastructure, promote effective budget management, establish regional learning mechanisms, and lead resource mobilization to ensure sustained support for the DCP initiatives.

Members of the WCA Steering Committee meet in Senegal for a strategic meeting. (Photo: CIMMYT)

AlliThe committees also discussed the network’s vision, terms of reference, committees’ governance (by-laws), and a review of the network agreement. They also defined the network’s aspirations and aligned its resources to regional and national infrastructure needs and priorities.

A significant outcome from the meetings was CIMMYT’s allocation of US $1 million to the committees to facilitate personnel and infrastructure development. This budget allocation was decided upon after careful deliberation on how to best use the available resources to meet the network’s needs. Both committees then agreed to call for proposals in various capacity development areas.

They also elected the leadership for the committees. The WCA committee elected four officials: the chairperson, vice-chairperson, secretary, and financial secretary. The ESA committee elected three officials, including the chairperson, vice-chairperson, and secretary.

Subcommittees were also formed to oversee the operations of the steering committees and ensure a comprehensive approach to achieving the network’s goal. “These subcommittees are focused on capacity development, finance and monitoring, evaluation and learning and networks sustainability,” said Happy Daudi, the ESA steering committee secretary.

Kevin Pixley, director of CIMMYT’s Dryland Crops Program, highlighted the importance of regional steering committees in promoting agricultural progress, food security, nutritional stability, resources, and partnerships.

“The creation of the ADCIN marks a pivotal moment in our collective journey towards sustainable agricultural development,” said Pixley. “By bringing together the expertise and resources of CGIAR and NARES partners, ADCIN embodies our shared commitment to turning the challenges of dryland agriculture into opportunities for growth, resilience, and prosperity for the farmers and the communities we serve.”

The meetings also provided an opportunity for the committees to initiate the selection of a unified name for the network. The African Dryland Crop Improvement Network (ADCIN) was decided through a consensus-driven naming process among network members.

The ADCIN also establishes a critical support network for Africa-NARES and breeding programs through the ESA and WCA regional networks, allowing them to co-design and co-implement projects, leverage regional resources and capacity, and sustain dryland crop improvement activities through alignment of investment with priorities, capacity building, and connect the network to other initiatives.

Accelerating progress: from governance to brand identity

Subsequently, the two committees met in December 2023 to discuss and finalize previously discussed key areas. Significant progress had been made in reviewing and confirming the terms of reference and bylaws, which are required for smooth operations and a clear understanding of the governance structure among all the network members.

Following a thorough review and deliberation, the committees agreed on a set of criteria and a template for the call for proposals. The call was made public in December 2023, with submissions due by January 30, 2024. The ESA and WCA steering committees reviewed the applications and communicated the results to the successful applicants. Out of nearly 100 applications submitted, 19 successful candidates are from WCA and 13 from ESA.

Recognizing the importance of a strong and consistent identity, the steering committees established guidelines for the branding and marking process. Part of this process includes creating a logo, which will be shared with the steering committees and the network for a final selection and approval. This step is crucial in developing a visual identity that reflects the network’s values and objectives.

Reinventing collaborative efforts for the future with a unique model

The network and the steering committees operate on an inclusive model in which CGIAR, NARES, and regional stakeholders collaborate to allocate resources for regional projects. This approach not only addresses each region’s unique needs but also ensures tailored development of infrastructure, human capacity, and coordination, increasing the impact on dryland crop cultivation.

“This is a one-of-a-kind collaborative model that was meticulously developed within the region by both CGIAR and NARES, who jointly decided on strategic priorities for regional projects and allocated a budget to support their region,” said Harish Gandhi, associate program director. “The ‘fit principle’ is critical for infrastructure and human capacity development, as well as improving regional coordination.”

This collaboration is about more than just pooling resources; it’s also about leveraging unique strengths, knowledge, and perspectives to create synergies that will help address complex regional challenges effectively. The network can respond to the specific needs of each region and places the onus of responsibility on the steering committees, allowing them to make critical regional decisions. By ensuring that projects are designed with a thorough understanding of regional needs, ADCIN aims to achieve more long-term and significant results.

Revolutionizing food security: Africa’s millet renaissance

In a landmark initiative to bolster sustainable agriculture and food security, the consultative workshop ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ marked a pivotal step towards revitalizing millet cultivation across the continent. Spearheaded by the Bill & Melinda Gates Foundation, in collaboration with CIMMYT and the Senegalese Institute of Agricultural Research (ISRA), a meeting held in Senegal united global experts to unlock the untapped potential of millets as a cornerstone of sustainable agriculture and food security in Africa.

The discussions included identifying the symptoms of the problem, underlying issues causing these symptoms, and the interventions needed to be implemented to address these issues. This collaborative efforts among national and international organizations including government bodies, research institutes, and NGOs, demonstrated the goal of revitalizing millet cultivation through partnerships.

A group photo of the participants in the ‘Bottlenecks to Expansion of Pearl and Finger Millets in Africa’ workshop in Senegal. (Photo: Marion Aluoch/CIMMYT)

The United Nations General Assembly declared 2023 the International Year of Millets to raise awareness of and direct policy attention to millets’ nutritional and health benefits and their suitability for cultivation under adverse and changing climatic conditions.

Long overlooked but brimming with potential, millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.

Lessons learned from India

India, a key player in millet production, provided valuable insights into millet cultivation and consumption, providing a potential model for Africa to emulate in its millet-related strategies.

To understand the growth of millets in India, the Indian Ambassador to Senegal, Naba Kumar Pal, highlighted the strategies used by the Indian government to raise awareness about millets as a nutritious cereal that contributes to food security and provides a nutritious dietary option aimed at eliminating hunger and improving nutrition in his opening remarks.

“The first step the government did was to rebrand millets from ‘coarse grains’ to ‘nutri-cereals’, a move that has significantly increased domestic consumption and market interest of millets in India,” said the ambassador.

Indian Ambassador to Senegal, Naba Kumar Pal, highlights the Indian government’s efforts to promote millets as a nutritional powerhouse. (Photo: Marion Aluoch/CIMMYT)

In Africa, millets are under appreciated and not utilized as crops. They are often labeled as a ‘poor man’s crop,’ ‘neglected crop,’ or ‘orphan crop’.  The negative connotations have, among other areas, influenced consumers’ perceptions. By changing the vocabulary from demeaning to empowering, millets’ image can be transformed from an overlooked option to a crop of choice in Africa.

The workshop also delved into policy advocacy and commercialization efforts in India, and how these strategies could be replicated in African contexts. Tara Satyavati and Dayakar Rao, representing Indian institutions, shared insights on millet production, nutritional evaluation, and the development of value-added products. The importance of policy intervention, such as increasing the Minimum Support Price (MSP) for millets and including them in public meal programs in India, was discussed. These measures not only provided financial incentives to farmers but also increased accessibility and consumption among the general population.

The two asserted that “millets offer a sustainable solution for both farmers and consumers in terms of profitability, adaptability, and sustainability in farming, as well as healthier dietary options for consumers.”

Millets are adaptable to diverse climates, have low water requirements, and provide nutritional benefits. African countries, which face similar issues in terms of climate change and food security, can use millets as a crop to promote environmental sustainability and economic viability.

National and international collaborations

A panel discussion shed light on national and international initiatives that highlighted collaborative efforts in crop improvement and millet innovations. On the national level, Hamidou Diallo from the Ministry of Agriculture, Rural Equipment, and Food Sovereignty of Senegal (MAERSA) outlined a multi-pronged approach for Senegal. These approaches included increasing millet production, providing high-quality seeds, equipping local producers with essential tools and equipment, providing fertilizers to farmers, and expanding the overall cultivated areas of millet. These efforts represent a focused approach to leveraging agricultural innovation in millets to improve livelihoods and income for small-scale farmers.

“Aligning with the needs of the local community ensures the initiatives are impactful and resonate with the agricultural landscape and community needs,” he emphasized.

Insights into the international initiatives included discussions on innovative initiatives in the Dryland Crop Program (DCP), presented by Dryland Crops Program Director and Wheat Program Director Kevin Pixley, included the establishment of the African Dryland Crops Improvement Network, gene editing, a legumes mining project and the Vision for Adapted Crops and Soils (VACS) project, that will include millets as a prioritized crop.

“We need to find innovative ways to reach more farmers with options to improve their livelihood and popularize millets across different market segments,” said Pixley.

From left to right: Damaris Odeny (ICRISAT India), Geoff Morris (Colorado State University), Douglas Gayeton (co-founder of The Lexicon), Hamidou Diallo (MAERSA, Senegal), Kevin Pixley (director of the Dryland Crops Program), and Makiko Taguchi (FAO), engage in a panel discussion on the importance of national and international initiatives in promoting crop improvement and millet innovations, highlighting the collaborative spirit driving agricultural progress.

Other topics covered included insights from the United States Agency for International Development (USAID) innovation lab on sorghum and millets, emphasizing the importance of African-led projects and addressing the knowledge gap between African and U.S. researchers.

The pioneering role of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), particularly in agri-business incubation, was noted, along with the Feed the Future Innovation Lab for Crop Improvement, managed by USAID and Cornell University efforts in fostering regional collaborations.

Makiko Taguchi of the Food and Agriculture Organization of the United Nations (FAO) emphasized the importance of global engagement in promoting millets as a sustainable and nutritious food source for global food security and agricultural development and highlighted the various initiatives and projects born of the International Year of Millets. Douglas Gayeton, co-founder of The Lexicon emphasized the role of effective messaging in changing people’s perceptions of millets. He underscored the importance of shifting away from terms like ‘neglected’ and ‘orphaned’ crops to more positive empowering language that resonates with consumers and policy makers.

CIMMYT’s role in dryland crop innovation

Recognizing the ever-evolving needs of society at large, CIMMYT began an initiative to advance research and broaden its impact by implementing the Dryland Crops Program. This approach is based on CIMMYT’s 2030 strategy, which will shape agriculture’s future as a driver of climate resilience, sustainable, and inclusive agricultural development, and food and nutrition security, all while meeting the United Nations Sustainable Development Goals and Africa 2063 by promoting food security, improving nutrition, and mitigating the effects of climate change.

The meeting underscored the immense potential of millets in Africa to contribute to a resilient and nutritious future, reinforcing the need for continued collaboration, innovation, and investment in this vital crop. With the right mix of policy support, technological innovation and market development, millets could be the key to Africa’s resilient and sustainable agricultural future. The workshop concluded with a call to action for stakeholders to collaborate and implement innovative practices to enhance the growth of the millet sector in Africa.

Every drop of water matters: Leading global research institutes ally to aid farmers in dry and saline ecosystems

CIMMYT and ICBA sign a memorandum of understanding. (Photo: ICBA)

Dubai/Mexico City, 10 January 2024 – An award-winning not-for-profit agricultural research center recognized for its work on sustainable agriculture in the Middle East and North Africa is joining forces with the global organization whose breeding research has contributed to half the maize and wheat varieties grown in low- and middle-income countries.

The International Center for Biosaline Agriculture (ICBA) and CIMMYT have signed an agreement to jointly advance the ecological and sustainable intensification of cereal and legume cropping systems in semi-arid and dryland areas.

“Farmers in such settings confront enormous risks and variable conditions and often struggle to eke out a livelihood, but they still comprise a critical part of the global food system and their importance and challenges are mounting under climate change,” said Bram Govaerts, director general of CIMMYT. “ICBA brings enormously valuable expertise and partnerships to efforts that will help them.”

The specifics of the two centers’ joint work are yet to be defined but will cover soil health, salinity management approaches, crop productivity and breeding, gender-transformative capacity development, and finding markets for underutilized crops, among other vital topics.

Established in 1999 and headquartered in the United Arab Emirates (UAE), ICBA conducts research and development to increase agricultural productivity, improve food security and nutrition, and enhance the livelihoods of rural farming communities in marginal areas. The center has extensive experience in developing solutions to the problems of salinity, water scarcity and drought, and maintains one of the world’s largest collections of germplasm of drought-, heat- and salt-tolerant plant species.

“We are excited about the synergies our partnership with CIMMYT will create. It will focus on a range of areas, but the priority will be given to developing breeding and cropping system innovations to improve farmers’ food security and nutrition, while enhancing water security and environmental sustainability, and creating jobs and livelihoods in different parts of the world,” said Tarifa Alzaabi, director general of ICBA.

Based in Mexico but with projects in over 80 countries and offices throughout Africa, Asia and Latin America, CIMMYT operates a global seed distribution network that provides 80% of the world’s breeding lines for maize and wheat, including many that offer superior yields and resilience in dry conditions and in the presence of crop diseases and pests.

The center is also conducting breeding and seed system development for dryland crops such as sorghum, millet, groundnut, cowpea, and beans, known for their climate resilience and importance as foods and sources of income for smallholder farm households and their communities.

With global and local partners, CIMMYT is also refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

As part of the new agreement, the centers will also explore research collaborations with universities and research institutions in the UAE to develop and test maize varieties that are suitable for the UAE’s climate and soil conditions, as well as organizing training programs and workshops for farmers, extension workers, and other stakeholders in the UAE to build their capacity in maize production and management.

About ICBA

The International Center for Biosaline Agriculture (ICBA) is a unique applied agricultural research center in the world with a focus on marginal areas where an estimated 1.7 billion people live. It identifies, tests, and introduces resource-efficient, climate-smart crops and technologies that are best suited to different regions affected by salinity, water scarcity, and drought. Through its work, ICBA helps to improve food security and livelihoods for some of the poorest rural communities around the world.

www.biosaline.org

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

staging.cimmyt.org

For more information or interviews:

CIMMYT

Sarah Fernandes

Head of Communications

s.fernandes@cgiar.org

ICBA

Abdumutalib Begmuratov

Head of Knowledge Management and Communications

a.begmuratov@biosaline.org.ae

Extension capacity-building leverages Nepal soil, seed and science for rice farming

Workshop participants. (Photo: CIMMYT)

Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day “training of trainers” workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.

Held in Nepalgunj, midwestern Nepal, the workshop focused on the “4Rs” for soil fertilization—right source, right rate, right time, and right place—along with other best farming and soil nutrient stewardship practices for rice-based farming systems.

“Subject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,” said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. “Topics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.”

Support to sustainably boost Nepal’s crop yields

With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.

Agriculture provides livelihoods for two-thirds of Nepal’s predominantly rural population, largely at a subsistence-level. Rice is the nation’s staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.

Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approaches—crucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.

“Topics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,” explained Choudhary. “The participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.”

Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.

Breeding for the traits of tomorrow

Climate change poses a significant challenge to agricultural production and food security worldwide. “Rising temperatures, shifting weather patterns and more frequent extreme events have already demonstrated their effects on local, regional and global agricultural systems”, says Kevin Pixley, Dryland Crops Program director and Wheat Program director a.i. at CIMMYT. “As such, crop varieties that can withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximizing risk avoidance, productivity and profitability under climate-changed environments.”

In a new study published in Molecular Plant, scientists from CIMMYT, Alliance of Bioversity International and CIAT, the International Institute of Tropical Agriculture (IITA) and national agricultural research programs in Burkina Faso, Ethiopia, Nigeria, Tanzania and Uganda to predict novel traits that might be essential for future varieties of popular crops. Having surveyed nearly 600 agricultural scientists and stakeholders, they identify likely agronomic changes in future cropping systems seeking sustainability, intensification, resilience and productivity under climate change, as well as associated essential and desirable traits, especially those that are not currently prioritized in crop improvement programs.

Focusing on six crops which hold vital importance for African food security and CIMMYT and CGIAR’s mission—maize, sorghum, pearl millet, groundnut, cowpea and common bean—the authors review opportunities for improving future prioritized traits, as well as those they consider ‘blind spots’ among the experts surveyed.

Predicting future essential traits

The results of the study speak to the need for considering cropping systems as central to climate change resilience strategy, as well as the need to reconsider the crop variety traits that will eventually become essential.

Overall, experts who participated in the survey prioritized several future-essential traits that are not already targeted in current breeding programs — mainly water use efficiency in pearl millet, groundnut, and cowpea; adaptation to cropping systems for pearl millet and maize; and suitability for mechanization in groundnut. The survey confirmed that many traits that are already prioritized in current breeding programs will remain essential, which is unsurprising and consistent with other recent findings. While smarter and faster breeding for currently important traits is essential, the authors suggest that failure to anticipate and breed for changing needs and opportunities for novel characteristics in future varieties would be a big mistake, compromising farmers’ resilience, improved livelihood opportunities, and food security in the face of changing climate.

Groundnuts. (Photo: CIMMYT)

Importantly, the authors explain, the predicted future-essential traits include innovative breeding targets that must be prioritized. They point to examples such as improved performance in inter- or relay-crop systems, lower nighttime respiration, improved stover quality, or optimized rhizosphere microbiome, which has benefits for nitrogen, phosphorous and water use efficiency.

The authors emphasize that the greatest challenge to developing crop varieties to win the race between climate change and food security might be innovativeness in defining and boldness to breed for the traits of tomorrow. With this in mind, they outline some of the cutting-edge tools and approaches that can be used to discover, validate and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision and speed.

Read the full study: Redesigning crop varieties to win the race between climate change and food security

Scaling impact of dryland crops research through regional crop improvement networks

A section of key speakers at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

The formation of regional crop improvement networks took center stage at a meeting held in January 2023 in Accra, Ghana. The meeting convened more than 200 scientists and stakeholders in dryland crops value chains from 28 countries from Africa and across the globe to co-design a network approach.

The meeting followed a series of consultative visits and discussions between three CGIAR research centers — the International Maize and Wheat Improvement Center (CIMMYT), Alliance of Bioversity International and CIAT, and the International Institute of Tropical Agriculture (IITA) — African National Agricultural Research Institutes (NARIs), and other common-visioned partners during 2021 and 2022. These earlier discussions gathered insights, brainstormed, and co-designed approaches to empower national programs to deliver impact through their crop improvement programs.

“The idea is to add value to the existing capacities in National Agricultural Research and Extension Services, through networks where the partners agree on the goals and resources needed to achieve desired outcomes. So, it’s really a collaborative model,” said Harish Gandhi, breeding lead for dryland legumes and cereals at CIMMYT. He added that the teams have been learning from and aiming to add value to existing models such as the Pan-Africa Bean Research Alliance (PABRA), USAID Innovation Labs, and Innovation and plant breeding in West Africa (IAVAO).

Paradigm shift for African National Agricultural Research Institutes

Making the opening remarks, Ghana Council for Scientific and Industrial Research (CSIR) Director General, Paul Bosu said that at the very least, African countries should aim to feed themselves and transition from net importers to net exporters of food. “Dryland legumes and cereals, especially millet and sorghum, are very well adapted to the continent and offer great opportunity towards achieving food security”, said Bosu. He applauded the Bill & Melinda Gates Foundation and other partners for investing in research on these crops.

Representing West and Central African Council for Agricultural Research and Development (CORAF), Ousmane Ndoye noted that research in dryland legumes and cereals is a valid and needed action amidst the COVID-19 pandemic and civil unrest in different parts of the world. He added that the first and crucial step to increasing food production especially in sub-Saharan Africa is the availability of sufficient quantities of seed.

Director General of Uganda’s National Agriculture Research Organization (NARO), Ambrose Agona observed that a paradigm shift should occur for desired transformation in agriculture. He noted that African governments ought to commit adequate budgets to agriculture and that seed funding should serve to complement and amplify existing national budgets for sustainability.

He commended efforts to consult NARIs in Africa and noted that the quality of ideas exchanged at the meeting strengthen the work. “The NARIs feel happier when they are consulted from the very beginning and contribute to joint planning unlike in some cases where the NARIs in Africa are only called upon to make budgets and are excluded from co-designing projects”, said Agona.

Participants following the proceedings at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

Challenge to deliver effectively

During his remarks at the meeting, CIMMYT Director General Bram Govaerts noted that the focus legume and cereal crops are key to transforming and driving diversification of food systems in Africa. “It is therefore an honor and a privilege to work together with partners to improve cereal and legume systems. We will put forward our experience in breeding and commit to innovative systems approaches towards achieving impact and leverage what we are already good at, to become even better,” said Govaerts.

Referencing his visit with the United States Special Envoy for Global Food Security Cary Fowler to Southern Africa in January 2023, Govaerts narrated witnessing firsthand a food, energy and fertilizer crisis impacting Zambian and Malawian farmers. He challenged the meeting participants to envision the future impact they would like to see their breeding programs have as they design and strategize at the meeting. He pointed out that farmers are more interested in the qualities and characteristics of varieties released than the institutions responsible for the release.

CIMMYT Global Genetic Resources Director and Deputy Director General, Breeding and Genetics, Kevin Pixley also underscored the need to generate more impact through adoption of improved varieties in Africa. Pixley noted that on average, fewer than 30 percent of farmers are using improved varieties of sorghum, millet, and groundnut across the countries with ongoing work.

The meeting heard One CGIAR’s commitment to deliver resilient, nutritious and market preferred varieties as part of its Genetic Innovation Action Area, alongside improving systems and processes for sustainability from CGIAR Senior Director Plant Breeding and Pre-Breeding, John Derera. Speaking in the capacity of IITA’s Breeding Lead, Derera noted the progress made in IITA cowpea breeding program, including its modernization, owing to strong partnerships, cross learning and germplasm exchange between institutions.

PABRA Director & Leader of the Bean Programme at the Alliance of Bioversity International and CIAT, Jean-Claude Rubyogo, pointed out that despite remarkable achievements, such as those witnessed in the bean research, more effort is needed to tackle the challenges of climate change and also increase understanding of consumers traits.

Commenting on innovative pathways to improve adoption of improved varieties, the Director General of the Institute of Agricultural Research (IAR) in Zaria, Nigeria, Mohammad Ishiyaku observed the tendency for some seed companies to continue selling specific seed varieties for years, even when the productivity of the variety is low. He noted the seed companies always claimed consumer preferences concluding then that amidst investor demands, breeders ought to keenly investigate the expectations of consumers and famers to arrive at the best parameters for breeding choices.

A group photo of over 200 scientists and stakeholders in dryland crops value chains that participated at the Drylands Legumes and Cereals Network Meeting in Accra, Ghana in January 2023. (Photo: Eagle Eye Projects)

International Year of Millets, 2023

The gathering commemorated the International Year of Millets by listening to a keynote address on “Millets for food and nutritional security and mitigating climate change – #IYM2023” by Lake Chad Research Institute, Nigeria, Research Director, Zakari Turaki. The keynote was followed by statements on the importance of millets for various countries and wider Africa from: Sanogo Moussa Daouda, representing Director General of Mali’s Institut d’Économie Rurale (IER); Ibrahima Sarr, Director of Senegal’s Institut Sénégalais de Recherches Agricoles’s Centre National de Recherches Agronomiques; Hamidou Traore, Director of Burkina Faso’s Institut de L’Environnement et de Recherches Agricoles; and Ambrose Agona, Director General of NARO, Uganda.

High-level statements on approaches to gender integration in agricultural research and development were delivered by Scovia Adikini, NARO millet breeder, Geoffrey Mkamillo, Director General of Tanzania’s Agricultural Research Institute (TARI), Francis Kusi of Ghana’s Savanna Agricultural Research Institute (SARI), and Aliou Faye, Director of Senegal’s Regional Center of Excellence on Dry Cereals and Associated Crops (CERAAS).

AVISA Achievements

Finally, this meeting marked the transition from the recently ended Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project to align with One CGIAR initiatives under the Genetic Innovation Action Area, with specific focus on dryland crops.

Solomon Gyan Ansah, the Director of Crop Services at the Ministry of Food and Agriculture, Ghana, acknowledged the success of AVISA Project and commended the forum’s efforts to build on the gains made by the project in developing the new approach.

“By the end of 2022, AVISA project partners had reached 4.8 million farmers with 30,600 metric tons of seed of improved legume and cereal varieties, covering almost one million hectares of land”, revealed Chris Ojiewo, Strategic Partnerships and Seeds Systems Lead. Other achievements supported by the AVISA Project include upgrading of NARES facilities and building capacities of researchers through short- and long-term trainings.

The meeting was hosted by Ghana Council for Scientific and Industrial Research (CSIR) and Ghana’s Savannah Agricultural Research Institute (SARI), and was organized by CIMMYT, in partnership with IITA and the Alliance of Bioversity and CIAT (ABC).

Space data applications for wheat and maize research

In 2017, a call for proposals from Copernicus Climate Change Service Sectoral Information Systems led the International Maize and Wheat Improvement Center (CIMMYT to collaborate with Wageningen University, the European Space Agency (ESA), and other research and meteorological organizations to develop practical applications in agricultural and food security for satellite-sourced weather data.

The project, which recently ended, opened the door to a wide variety of potential uses for this highly detailed data.

ESA collects extremely granular data on weather, churned out at an hourly rate. CIMMYT researchers, including Foresight Specialist Gideon Kruseman, reviewed this data stream, which generates 22 variables of daily and sub-daily weather data at a 30-kilometerlevel of accuracy, and evaluated how it could help generate agriculture-specific weather and climate data sets.

“For most people, the reaction would be, ‘What do we do with this?’ Kruseman said. “For us, this is a gold mine.”

For example, wind speed — an important variable collected by ESA satellites — is key for analyzing plant evaporation rates, and thus their drought tolerance. In addition, to date, information is available on ideal ago-climatic zones for various crop varieties, but there is no data on the actual weather conditions during a particular growing season for most sites.

By incorporating the information from the data sets into field trial data, CIMMYT researchers can specifically analyze maize and wheat cropping systems on a larger scale and create crop models with higher precision, meaning that much more accurate information can be generated from the trials of different crop varieties.

The currently available historic daily and sub-daily data, dating back to 1979, will allow CIMMYT and its partners to conduct “genotype by environment (GxE)” interaction analysis in much higher detail. For example, it will allow researchers to detect side effects related to droughts and heat waves and the tolerance of maize and wheat lines to those stresses. This will help breeders create specific crop varieties for farmers in environments where the impact of climate change is predicted to be more apparent in the near future.

“The data from this project has great potential fix this gap in information so that farmers can eventually receive more targeted assistance,” said Kruseman.

These ideas are just the beginning of the agricultural research and food security potential of the ESA data. For example, Kruseman would like to link the data to household surveys to review the relationship between the weather farmers experience and the farming decisions they make.

By the end of 2019, the data will live on an open access, user-friendly database. Eventually, space agency-sourced weather data from as far back as 1951 to as recent as five days ago will be available to researchers and weather enthusiasts alike.

Already CIMMYT scientists are using this data to understand the potential of a promising wheat line, for seasonal forecasting, to analyze gene-bank accessions and for a statistical analysis of maize trials, with many more high-impact applications expected in the future.