Skip to main content

Tag: consumers

Market segmentation and Target Product Profiles (TPPs): developing and delivering impactful products for farming communities

Experimental maize field. (Photo: CIMMYT)

With the ever-changing climate conditions, including the unpredictable El Niño, and dynamic changes in government policies, understanding farmers’ preferences and market segmentation has become crucial for implementing impactful breeding programs. Market segmentation is a strategic process which divides a market into distinct group of consumers with similar needs, preferences, and behaviors. This allows organizations to tailor their products and services to specific customer segments, thus ensuring maximum value and impact.

In today’s fast-paced and evolving agricultural landscape, market segmentation plays a vital role in helping organizations navigate the complexities of a dynamic market. CIMMYT’s maize breeding program has a successful track record in developing and delivering improved varieties that are climate-resilient, high-yielding and suited to the rainfed tropical conditions in Africa. To further strengthen the impact, it is important to have a clear understanding of the evolving needs of farmers in different agroecological regions and the emerging market scenario so that breeding processes can be tailored based on market needs and client requirements.

Questions arise on how to refine the breeding programs relative to country-specific market segments, what efforts are underway to target these markets, and how do these markets transition. Recognizing the importance of market segmentation in refining breeding programs at the country and regional levels, CIMMYT hosted two workshops on maize market intelligence in Kenya and Zimbabwe, under the CGIAR Market Intelligence Initiative for eastern and southern Africa.

“Market intelligence in breeding programs is critical to understand the evolving needs of key stakeholders, including farmers, consumers, and the seed industry. It helps continuously improve the breeding pipelines to develop and deliver impactful products in targeted market segments. The workshops brought together relevant experts from the national programs and seed companies for focused discussions to develop a harmonized breeding strategy. This would help to address the needs of smallholder maize farmers in eastern and southern Africa,” said Director of CIMMYT’s Global Maize program and One CGIAR Global Maize Breeding Lead, B.M. Prasanna.

B.M. Prasanna delivers a presentation. (Photo: CIMMYT)

The workshops constituted a strategic continuation of the Product Design Team (PDT) meetings under CGIAR Market Intelligence, with a focus on the refinement of gender-intentional target product profile design. Guided by the expertise of CIMMYT’s Global Maize program, Market Intelligence, and ABI-Maize Transform teams, the sessions saw active participation from key stakeholders including lead breeders, seed systems experts, and market specialists from the National Agricultural Research and Extension Systems (NARES), alongside collaborative engagement with seed company partners. The workshops underscored the commitment to incorporate diverse perspectives, aligning with the evolving maize market landscape in eastern and southern Africa.

“The workshop provided critical insights on opportunities to improve market penetration of improved maize varieties. There is a need to strike a balance between the needs of the farmers, seed industry, and consumers in variety development; actively involve farmers and consumers in variety selection and understanding their preferences; and focus on emerging needs of the market such as yellow maize for feed and food,” said James Karanja, maize breeding lead at the Kenya Agriculture & Livestock Research Organization, Kenya.

Insights from both workshops underscored the importance of providing breeders with pertinent information and comprehensive training. The discussions illustrated the necessity for breeders to define their objectives with a 360-degree outlook, aligning breeding programs with market segments and interfacing with CIMMYT’s regional vision.

Workshop participants. (Photo: CIMMYT)

“The market intelligence workshop is an excellent initiative for the breeding programs. It shows how traits can be identified and prioritized, based on farmers’ requirements. The maize value chain is broad, and the synergy between the developer of the product (breeder), the producer (farmer), and the consumer needs to be effective. Hence, streamlining of the market segments and eventually the target product profiles is key in ensuring that the breeders develop improved products/varieties with relevant traits that address the needs of farmers, consumers, and the seed industry,” said Lubasi Sinyinda, breeder from the Zambia Agricultural Research Institute, Zambia.

Another participant, Lucia Ndlala, a maize breeder at the Agricultural Research Council, South Africa, echoed similar enthusiasm. “The workshop was exceptionally informative, providing valuable insights into target product profiles and market segments. This knowledge will undoubtedly prove instrumental in shaping future breeding strategies,” she said.

When applied through a breeding lens, market segmentation is a vital tool in refining breeding programs at both country and regional levels, enabling breeders to better understand and address the diverse needs of the farmers, and ensuring that the improved varieties are tailored to market segments.

Exploring the potential for scaling nutritious cereal-based foods

Agrifood systems contribute to at least 12 of the 17 Sustainable Development Goals (SDGs). To advance these goals, agrifood systems need to deliver more nutritious food to more people and simultaneously be environmentally sustainable and resilient. Changes are required at multiple levels to include more sustainable farming, reduce food losses in distribution and retail, and increase the intake of healthier foods by consumers.

Recent studies show that piecemeal interventions focusing on only one aspect or area are insufficient to make the required transformation. Issues related to food security and improved nutrition are complex, and their solutions must transcend traditional disciplinary and institutional boundaries.

Agrifood systems research looks to understand how systems work and actions by governments, non-governmental organizations (NGOs), and the private sector that can positively influence outcomes at scale. Researchers and development professionals use this approach to assess how different actors, practices and policies share the production, marketing, availability, and consumption of food. Agriculture, trade, policy, health, environment, transport, infrastructure, gender norms and education all have a role to play in achieving resilient agrifood systems that deliver greater benefits to farmers and consumers.

CIMMYT combines the expertise of economists, agronomists, crop breeders, nutritionists, and gender specialist to create more sustainable, nutritious, and profitable agrifood systems in multiple ways. It works to ensure that cereal crops are grown in the most sustainable way, that the public and private sectors are informed about consumer preferences, and that quality improved seed is available to farmers when they need it. CIMMYT also aims to better understand how cereal based foods are processed and sold to consumers and develop options for promoting the consumption of more nutritious cereal-based foods.

Pasta and other supplies on display in a supermarket, Mexico.

Consumer demand in Mexico

Recently, CIMMYT partnered with the National Institute of Public Health of Mexico (INSP), to compare access to healthy processed cereal-based food in supermarkets, convenience stores, and corner stores for consumers from low- and high-income neighborhoods in Mexico City. Discussions continue to rage about how policies can support more nutritious and healthier diets in Mexico, including the new requirement for food warning labels on the front of packaging.

The study showed that availability of healthy products was scarce in most stores, particularly in convenience stores. Compared to supermarkets in the low-income areas, those in high-income areas exhibited a greater variety of healthy products across all categories. A follow up study is underway that examines the outcomes of the new food label warnings on product availability and health claims.

Other CIMMYT studies have explored the demand by lower- and middle-income consumers in central Mexico for healthy cereal-based foods, including their demand for blue maize tortillas and whole grain bread. These studies help policy makers and non-governmental organizations (NGOs) design strategies on how to increase access and consumption of healthier processed wheat and maize products in fast-evolving food systems.

Farmer Gladys Kurgat prepare wheat chapatti with help from her nephew Emmanuel Kirui for her five sons at home near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Blending wheat products in Kenya

In many parts of the world, the Ukraine-Russia war has intensified the need to change how wheat-based products are formulated. For example, Kenya is a country where wheat consumption has been growing rapidly for a decade, yet imports have comprised 90% of its wheat supplies, which up until recently came from Ukraine and Russia. Wheat flour blending in Kenya is a promising option for reducing wheat imports, generating demand for other, lesser-utilized cereals, such as sorghum, and increasing the nutrient profile of bread products. But wheat blending, despite having been discussed for many years in Kenya, has yet to gain traction.

In response, CIMMYT and the Jomo Kenyatta University of Agriculture and Technology (JKUAT) are exploring the feasibility of reducing wheat imports in Kenya by replacing between 5-20% of wheat flour with flour derived from other cereals, including sorghum and millet. While existing evidence suggests that consumers may except up to 10% blending in cereal flours, the stakes are high for both the wheat industry and government. Robust and context specific evidence is needed on consumers’ willingness to accept blended products in urban Kenya and the economic feasibility of blending from the perspective of millers and processors.

Among the critical questions to be explored by CIMMYT and JKUAT: What flour blends will consumers most likely to accept? What are the potential health benefits from blending with sorghum and millet? Is there enough sorghum and millet readily available to replace the wheat removed from flour? And finally, what is the business case for wheat flour blending?

Cover photo: Wheat harvest near Iztaccíhuatl volcano in Juchitepec, Estado de México. (Photo: CIMMYT/ Peter Lowe)

Can Uganda attain zero-hunger?

Uganda is one of the fastest economically growing nations in sub-Saharan Africa and is in the midst of socio-economic transition. Over the past two decades the country’s GDP has expanded, on average, by more than 6% each year, with per capita GDP reaching $710 in 2019. Researchers project that this will continue to rise at a rate of 5.6% each year for the next decade, reaching approximately $984 by the year 2031.

This growth is mirrored by a rising population and rapid urbanization within the country. In 2019, 24.4% of the Uganda’s 44.3 million citizens were living in urban areas. By 2030, population is projected to rise to 58-61 million, 31% of whom are expected to live in towns and cities.

“Changes in population, urbanization and GDP growth rate all affect the dietary intake pattern of a country,” says Khondoker Mottaleb, an economist at the International Maize and Wheat Improvement Center (CIMMYT). “Economic and demographic changes will have significant impacts on the agricultural sector, which will be challenged to produce and supply more and better food at affordable prices.”

This could leave Uganda in a precarious position.

In a new study, Mottaleb and a team of collaborators project Uganda’s future food demand, and the potential implications for achieving the United Nations Sustainable Development Goal of zero hunger by 2030.

The authors assess the future demand for major food items, using information from 8,424 households collected through three rounds of Uganda’s Living Standards Measurement Study — Integrated Surveys on Agriculture (LSMS-ISA). They focus on nationwide demand for traditional foods like matooke (cooking banana), cassava and sweet potato, as well as cereals like maize, wheat and rice — consumption of which has been rising alongside incomes and urbanization.

A conceptual framework of changing food demand in the Global South. (Graphic: CIMMYT)

The study findings confirm that with increases in income and demographic changes, the demand for these food items will increase drastically. In 2018, aggregate consumption was 3.3 million metric tons (MMT) of matooke, 4.7 MMT of cassava and sweet potato, 1.97 MMT of maize and coarse grains, and 0.94 MMT of wheat and rice. Using the Quadratic Almost Ideal Demand System (QUAIDS) estimation approach, the authors show that in 2030 demand could be as high as 8.1 MMT for matooke, 10.5 MMT for cassava and sweet potato, 9.5 MT for maize and coarse grains, and 4 MMT for wheat and rice.

Worryingly, Mottaleb and his team explain that while demand for all the items examined in the study increases, the overall yield growth rate for major crops is stagnating as a result of land degradation, climate extremes and rural out-migration. For example, the yield growth rate for matooke has reduced from +0.21% per year from 1962-1989 to -0.90% from 1990-2019.

As such, the authors call for increased investment in Uganda’s agricultural sector to enhance domestic production capacity, meet the growing demand for food outlined in the study, improve the livelihoods of resource-poor farmers, and eliminate hunger.

Read the full article, Projecting food demand in 2030: Can Uganda attain the zero hunger goal?

In the best possible taste

The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.

They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.

In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.

In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.

Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.

Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.

Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Tastes differ

“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”

For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.

A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.

“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.

Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)

That’s the way I like it

For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.

Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.

While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.

“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”

Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.

“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.

Whole grains

The most recent dietary guidelines provided by the World Health Organization and other international food and nutrition authorities recommend that half our daily intake of grains should come from whole grains. But what are whole grains, what are their health benefits, and where can they be found?

What are whole grains?

The grain or kernel of any cereal is made up of three edible parts: the bran, the germ and the endosperm.

Each part of the grain contains different types of nutrients.

  • The bran is the multi-layered outer skin of the edible kernel. It is fiber-rich and also supplies antioxidants, B vitamins, minerals like zinc, iron, magnesium, and phytochemicals — natural chemical compounds found in plants that have been linked to disease prevention.
  • The germ is the core of the seed where growth occurs. It is rich in lipids and contains vitamin E, as well as B vitamins, phytochemicals and antioxidants.
  • The largest portion of the kernel is the endosperm, an interior layer that holds carbohydrates, protein and smaller amounts of vitamins and minerals.
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)

A whole grain is not necessarily an entire grain.

The concept is mainly associated with food products — which are not often made using intact grains — but there is no single, accepted definition of what constitutes a whole grain once parts of it have been removed.

Generally speaking, however, a processed grain is considered “whole” when each of the three original parts — the bran, germ and endosperm — are still present in the same proportions as when the original one. This definition applies to all cereals in the Poaceae family such as maize, wheat, barley and rice, and some pseudocereals including amaranth, buckwheat and quinoa.

Wholegrain vs. refined and enriched grain products

Refined grain products differ from whole grains in that some or all of the outer bran layers are removed by milling, pearling, polishing, or degerming processes and are missing one or more of their three key parts.

For example, white wheat flour is prepared with refined grains that have had their bran and germ removed, leaving only the endosperm. Similarly, if a maize kernel is degermed or decorticated — where both the bran and germ are removed — it becomes a refined grain.

The main purpose of removing the bran and germ is technological, to ensure finer textures in final food products and to improve their shelf life. The refining process removes the variety of nutrients that are found in the bran and germ, so many refined flours end up being enriched — or fortified — with additional, mostly synthetic, nutrients. However, some components such as phytochemicals cannot be replaced.

A hand holds grains of wheat. (Photo: Thomas Lumpkin/CIMMYT)
A hand holds grains of wheat. (Photo: Thomas Lumpkin/CIMMYT)

Are wholegrain products healthier than refined ones?

There is a growing body of research indicating that whole grains offer a number of health benefits which refined grains do not.

Bran and fiber slow the breakdown of starch into glucose, allowing the body to maintain a steady blood sugar level instead of causing sharp spikes. Fibers positively affect bowel movement and also help to reduce the incidence of cardiovascular diseases, the incidence of type 2 diabetes, the risk of stroke, and to maintain an overall better colorectal and digestive health. There is also some evidence to suggest that phytochemicals and essential minerals — such as copper and magnesium — found in the bran and germ may also help protect against some cancers.

Despite the purported benefits, consumption of some wholegrain foods may be limited by consumer perception of tastes and textures. The bran in particular contains intensely flavored compounds that reduce the softness of the final product and may be perceived to negatively affect overall taste and texture. However, these preferences vary greatly between regions. For example, while wheat noodles in China are made from refined flour, in South Asia most wheat is consumed wholegrain in the form of chapatis.

Popcorn is another example of a highly popular wholegrain food. It is a high-quality carbohydrate source that, consumed naturally, is not only low in calories and cholesterol, but also a good source of fiber and essential vitamins including folate, niacin, riboflavin, thiamin, pantothenic acid and vitamins B6, A, E and K. One serving of popcorn contains about 8% of the daily iron requirement, with lesser amounts of calcium, copper, magnesium, manganese, phosphorus, potassium and zinc.

Boiled and roasted maize commonly consumed in Africa, Asia and Latin America are other sources of wholegrain maize, as is maize which has been soaked in lime solution, or “nixtamalized.” Depending on the steeping time and method of washing the nixtamalized kernels, a portion of the grains used for milling could still be classed as whole.

Identifying wholegrain products

Whole grains are relatively easy to identify when dealing with unprocessed foods such as brown rice or oats. It becomes more complicated, however, when a product is made up of both whole and refined or enriched grains, especially as color is not an indicator. Whole wheat bread made using whole grains can appear white in color, for example, while multi-grain brown bread can be made primarily using refined flour.

In a bid to address this issue, US-based nonprofit consumer advocacy group the Whole Grains Council created a stamp designed to help consumers identify and select wholegrain products more easily. As of 2019, this stamp is used on over 13,000 products in 61 different countries.

However, whether a product is considered wholegrain or not varies widely between countries and individual agencies, with a lack of industry standardization meaning that products are labelled inconsistently. Words such as “fiber,” “multigrain” and even “wholegrain” are often used on packaging for products which are not 100% wholegrain. The easiest way to check a product’s wholegrain content is to look at the list of ingredients and see if the flours used are explicitly designated as wholegrain. These are ordered by weight, so the first items listed are those contained more heavily in the product.

As a next step, an ad-hoc committee led by the Whole Grain Initiative is due to propose specific whole grain quantity thresholds to help establish a set of common criteria for food labelling. These are likely to be applied worldwide in the event that national definitions and regulations are not standardized.

One-minute science: Trent Blare and blue maize products

Some of Mexico’s favorite dishes are taking on a new hue with blue corn chips, blue tortillas or blue tamales. But should breeders, millers, processors and farmer organizations invest in expanding the production of blue maize and blue maize products? Are consumers really interested, and are they willing to pay more?

CIMMYT markets and value chain specialist Trent Blare explains, in one minute, the results of his study, which gives insight into Mexican consumers’ preferences and demand for blue maize tortillas. Consumers near Mexico City perceived blue maize tortillas to taste better and were willing to pay up to a third more to buy them for special family events or to consume them in a restaurant .

Blue maize is all the rage, but are consumers willing to pay?

Step into supermarkets or restaurants in Mexico City and surrounding towns and you might see products made from blue maize — food which would not have been available just a few years ago. Some of Mexico’s favorite dishes are taking on a new hue with blue corn chips, blue tortillas or blue tamales. But should breeders, millers, processors and farmer organizations invest in expanding the production of blue maize and blue maize products? Are consumers really interested, and are they willing to pay more?

These are some of the questions researchers at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico set out to answer. They set up study to test consumer preferences and willingness to pay for this blue maize tortillas.

Maize is a main staple crop in Mexico and tortillas form the base of many traditional dishes. Blue maize varieties have existed for thousands of years, but until recently they were mostly unknown outside of the farming communities that grew them. In addition to its striking color, the grain has gained popularity partly due to its health benefits derived from anthocyanin, the blue pigment which contains antioxidants.

Trent Blare (left), economist at CIMMYT and leader of the study, conducts a choice experiment with interviewee Luis Alcantara. (Photo: Carolyn Cowan/CIMMYT)
Trent Blare (left), economist at CIMMYT and leader of the study, conducts a choice experiment with interviewee Luis Alcantara. (Photo: Carolyn Cowan/CIMMYT)

“Demand for blue maize has skyrocketed in the past few years,” said Trent Blare, economist at CIMMYT and the leader of the research.” Three years ago, white and blue maize sold at the same price. One year ago, blue maize cost just a few Mexican pesos more, and now blue maize is worth significantly more. However, we still lack information on consumer demand and preferences.”

According to Blare, the end goal of the study is to explore the demand for blue maize and try to better understand its market potential. “If we want farmers who grow blue maize to be able to get better market value, we have to know what the market looks like.”

This research received funding from Mexico’s Agency for Commercialization Services and Agricultural Market Development (ASERCA), which has been working with farmer organizations on post-harvest storage solutions for their maize. As blue maize is softer than typical white or yellow varieties, it requires special storage to protect it against insects and damage. In order to help provide farmers with the correct maize storage technology, ASERCA and others in Mexico will benefit from a deeper understanding of the market for blue maize in the region. In addition, researchers were interested to know if there is a premium for growing blue maize, or for making tortillas by hand. Premiums could help convince farmers to invest in post-harvest technologies and in the production of blue maize.

“There is this idea that demand should come from producers, but there are many steps along the maize value chain. We’re basically going backwards in the value chain: is there demand, is there a market, going all the way from the consumer back to the farmer,” Blare explained.

“There was an interesting gender aspect to this research: it was mostly women buying and making these maize-based foods, and women were more willing to pay a premium for blue maize,” said Miriam Perez (right), research assistant and interviewer. (Photo: Carolyn Cowan/CIMMYT)
“There was an interesting gender aspect to this research: it was mostly women buying and making these maize-based foods, and women were more willing to pay a premium for blue maize,” said Miriam Perez (right), research assistant and interviewer. (Photo: Carolyn Cowan/CIMMYT)

A matter of taste

The study was conducted in Texcoco, just outside of Mexico City, where CIMMYT’s global headquarters are based. This town in the State of Mexico was chosen because of its long history growing and consuming blue maize. Interviews were held in three different locations, a local traditional market and two local shopping malls, in order to ensure that different socioeconomic groups were included.

“There is a certain pride in the blue tortilla. As Mexicans, the tortilla is something that brings us together,” said Mariana Garcia Medina, research assistant and interviewer. (Photo: Carolyn Cowan)
“There is a certain pride in the blue tortilla. As Mexicans, the tortilla is something that brings us together,” said Mariana Garcia Medina, research assistant and interviewer. (Photo: Carolyn Cowan)

The team interviewed 640 consumers, asking questions such as where do they buy different types of tortillas, in which dishes they use different types of tortillas and if they faced difficulties in purchasing their preferred tortilla. The team also conducted sensory analysis and attributes, and gave study participants a choice between handmade blue maize tortillas, handmade white maize tortillas, and machine-made white maize tortillas.

The interviewees were given three different scenarios. Would they be willing to pay more for blue tortillas compared to other tortillas if eating quesadillas at a restaurant? To serve during a special event or visit from a family member? For everyday use?

The answers allowed researchers to quantify how much more consumers were willing to pay and in what circumstance, as they were given different price points for different types of tortillas in different scenarios.

True colors

The researchers found that preferences for blue and white maize were distinct for different dishes, and that there was a particular preference for blue maize when used in traditional dishes from this region, such as tlacoyos or barbacoa. A majority of consumers was willing to pay more for higher quality tortillas regardless of the color, as long as they were made handmade and fresh from locally grown maize. Interviewers also saw a noticeable difference in preference for blue tortillas depending on the situation: blue tortillas are demanded more for special occasions and in traditional markets.

“I found it fascinating that there is a difference in blue maize consumption based on the circumstance in which you are eating it.” Blare said. “This is one of the innovations in our demand study — not analyzing the demand for a food product in general but analyzing differences in demand for a product in different contexts, which is important as food is such an important component for celebrations.”

“We think there is potential to replicate this in other places in Mexico, to see consumer preference and price willingness for blue maize and other value-added maize products,” said Jason Donovan, senior economist at CIMMYT. “This will not just inform farmers and markets but also how to do this kind of research, especially in middle-income economies. This study is the first of its kind.”

“As a Colombian, it really surprised me that Mexicans were able to distinguish between white and blue maize tortillas even when blindfolded! It really shows the importance of maize to their diet and culture,” said Diana Ospina Rojas (left), research assistant and interviewer. (Photo: Carolyn Cowan/CIMMYT)
“As a Colombian, it really surprised me that Mexicans were able to distinguish between white and blue maize tortillas even when blindfolded! It really shows the importance of maize to their diet and culture,” said Diana Ospina Rojas (left), research assistant and interviewer. (Photo: Carolyn Cowan/CIMMYT)

Still got the blue

Overall, the results revealed that women were willing to pay 33% more for blue maize tortillas while men were willing to pay 19% more. For every additional year of education, a consumer was willing to pay 1% more for blue maize tortillas. Interestingly, a person’s income had no effect on her or his willingness to pay for more blue maize tortillas. Many people interviewed expressed a preference for blue maize, but commented that they cannot always find it in local markets.

The information collected in these choice experiments will help farmers, breeders, and other actors along the maize value chain make more informed decisions on how to best provide blue maize varieties to the public — and give consumers what they want.

“It was a very interesting experience, I’ve never participated in a survey like this before and I think it is important to take the time to think about our decisions about food,” said Brenda Lopez, one of the interviewees in the choice experiment. Lopez preferred the handmade tortillas, especially those made with blue maize. “I think they have more flavor,” she said. “I just bought handmade tortillas in the market before participating in this survey, but I had to buy white because there was no blue available.”

Another interviewee, Luis Alcantara, agreed. “I prefer blue because of the flavor, the texture, even the smell,” he said. “At home we eat machine-made tortillas because it is hard to find handmade tortillas, and even if you do, they are not blue. We would buy blue if we could.”

Cover photo: Blue maize tortillas (Photo: Luis Figueroa)