Written by Bea Ciordia on . Posted in Uncategorized.
Abel Saldivia Tejeda is an agronomist at CIMMYT Headquarters in El Batán, Mexico, where he oversees field experimentation for conservation agriculture-based trials and testing of post-harvest storage technologies.
Saldivia also works with local research partners at different sites in north and central Mexico for the development of sustainable crop management practices and post-harvest technologies.
Jannatul Ferdous Asha is a Machinery Development Officer working with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. She joined CIMMYT in 2019.
Asha completed an undergraduate degree in agricultural engineering and a masters degree in farm power and machinery at Bangladesh Agricultural University.
With ten years of experience as a crop scientist, Vimbayi Grace Petrova Chimonyo’s research focuses on integrated crop management to address food and nutrition security issues, climate change and rural development. She works primarily with crop simulation modelling as a tool for adapting to climate change and variability and improving food security, especially for smallholder farmers.
She has a good understanding of resource use (water, soil nutrients and solar radiation) within the agricultural sector, Water-Food-Nutrition-Health nexus, the Water-Energy-Food nexus within food system landscapes, and the need for transformative strategies for inclusive food security.
Her main research interests are developing resilient cropping systems with an emphasis on sustainable intensification under climate variability and change.
Jessica Jazmín González Regalado is a Post-Harvest and Platform Coordinator working with CIMMYT’s Integrated Development program.
González Regalado is an agroecology engineer. She coordinates strategic research activities based on the agronomic and postharvest needs of production systems of the VAM, VAGP and PCTO innovation nodes in Mexico. Her activities include field experiments monitoring and training in experimental management and the use of agronomic and postharvest technologies, which may offer a potential impact on productivity and/or conservation of agricultural systems. She also works on sustainable technologies to scale.
Planning meeting and field day with farmers who want to participate in the Agriba Sustentable project, in El Greco, Pénjamo, in Mexico’s Guanajuato state. (Photo: CIMMYT)
A new partnership announced today between the International Maize and Wheat Improvement Center (CIMMYT), PepsiCo and Grupo Trimex will greatly contribute to scale out sustainable farming practices in the central Mexican states of Guanajuato and Michoacán, which together form the country’s second wheat producing region.
The project Agriba Sustentable — a shortened reference for Bajío Sustainable Agriculture — will promote the adoption of conservation agriculture-based sustainable intensification practices among local farmers who will have access to PepsiCo’s wheat grain supply chain via Grupo Trimex.
“A part of the wheat that we use in Mexico for our products comes from the Bajío region,” said Luis Treviño, Director of Sustainability at PepsiCo Latin America. “However, agricultural production in the region has needs and areas of opportunity that we were able to identify thanks to the experience and deep knowledge that CIMMYT has developed over the years.”
Agriba Sustentable is the latest example of the new business models that CIMMYT is exploring as part of its integrated development approach to agri-food systems transformation, which seeks to engage multiple public, private and civil sector collaborators in cereals value chain development and enhancement efforts.
CIMMYT agronomist Erick Ortiz (center) meets with farmers from Colorado de Herrera, Pénjamo, in Mexico’s Guanajuato state, who want to participate in the Agriba Sustentable project. (Photo: CIMMYT)
“The project’s specific goal is to improve the sustainability of the wheat production system in the Bajío region by enabling the adoption of technological innovations and sustainable production practices among at least 200 farmers in the Grupo Trimex supply chain during the first year of implementation, and to gradually scale out to reach many more farmers,” said Bram Govaerts, Director General of CIMMYT.
CIMMYT’s long-term field trials in Mexico have shown that conservation agriculture-based sustainable intensification practices raise wheat yields by up to 15% and cut greenhouse gas emissions by up to 40%.
“The farming practices that CIMMYT promotes reduce environmental impact,” said Mario Ruiz, Sourcing Manager of Grupo Trimex. “Conservation agriculture can cut CO2 emissions by up to 60% from reduced diesel consumption, lower fuel use by up to 70% and water consumption by 30%.”
According to PepsiCo Mexico, Agriba Sustentable is an important step for its global vision PepsiCo Positive (pep+), which seeks to offset its agricultural footprint by promoting sustainable farming on 2.8 million hectares globally. The plan also aims to improve the livelihoods of 250,000 people who are part of their global agricultural supply chain and to source sustainably 100% of the company’s key ingredients by 2030.
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, PLEASE CONTACT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
Md. Zakaria Hasan is a field office coordinator with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He coordinates all the CIMMYT activities in the Faridpur region.
Hasan completed his undergraduate and masters degrees in Agricultural Science from Bangladesh Agricultural University. He started his career as a research associate in soil science at the Bangladesh Institute of Nuclear Agriculture (BINA), then joined the International Rice Research Institute (IRRI) as a researcher in agronomy.
Joining CIMMYT in 2012, Hasan’s main expertise is in agronomy, mechanized crop production, adaptive research, public and private sector engagement, and management of field activities.
At the 8th World Congress on Conservation Agriculture (8WCCA), Martin Kropff, Director General of CIMMYT, argued that “agriculture cannot take a toll on the environment”, praising conservation agriculture for its contribution to building resilience to drought.
Irrigated fields under conservation agriculture practices at CIMMYT’s experiment station near Ciudad Obregón, Sonora, northern Mexico. Permanent raised beds improve soil structure and require less water than conventional tillage and planting. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) announced a new three-year public–private partnership with the German development agency GIZ and the beverage company Grupo Modelo (AB InBev) to recharge aquifers and encourage water-conserving farming practices in key Mexican states.
The partnership, launched today, aims to contribute to a more sustainable use of water in agriculture. The project will promote sustainable farming and financing for efficient irrigation systems in the states of Hidalgo and Zacatecas, where Grupo Modelo operates. CIMMYT’s goal is to facilitate the adoption of sustainable intensification practices on more than 4,000 hectares over the next three years, to reduce the water footprint of participant farmers.
Mexico is at a high risk of facing a water crisis in the next few years, according to the World Resources Institute. The country needs to urgently begin reducing its use of available surface and ground water supplies if it is to avert the looming crisis.
Farming accounts for nearly 76% of Mexico’s annual water consumption, as estimated by Mexico’s Water Commission (CONAGUA). Farmers, therefore, have a key role to play in a more sustainable use of this valuable natural resource.
“We need to take care of the ecosystem and mitigate agriculture’s impact on the environment to address climate change by achieving more sustainable agri-food systems,” said Bram Govaerts, chief operating officer, deputy director general of research a.i. and director of the Integrated Development program at CIMMYT.
The project, called Aguas Firmes (Spanish for “Firm Waters”), also seeks to recharge two of Mexico’s most exploited aquifers, by restoring forests and building green infrastructure.
“Our priority is water, which is the basis of our business but, above all, the substance of life,” said Cassiano De Stefano, chair of Grupo Modelo, one of the Mexico’s leading beer companies. “We’ve decided to lead by example by investing considerably in restoring two aquifers that are essential to Zacatecas and Hidalgo’s development.”
The German development agency GIZ, one of CIMMYT’s top funders, is also investing in this alliance that will benefit 46,000 farmers in Hidalgo and 700,000 farmers in Zacatecas.
“We are very proud of this alliance for sustainable development that addresses a substantial problem in the region and strengthens our work on biodiversity conservation and sustainable use of natural resources in Mexico,” said Paulina Campos, Biodiversity director at GIZ Mexico.
CIMMYT undertakes participatory agricultural research activities with local farmers to collaboratively develop and implement sustainable farming practices and technologies that help reduce water consumption in grain production by up to 30%.
INTERVIEW OPPORTUNITIES:
Bram Govaerts – Chief Operating Officer, Deputy Director General of Research a.i. and Director of the Integrated Development program, CIMMYT
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
Smallholder farmer Sita Kumari holds fertilizer in her hands. (Photo: C. de Bode/CGIAR)
An international team of scientists has strengthened our understanding of how better fertilizer management could help minimize nitrous oxide (N2O) emissions while still achieving high crop yields in the new publication: Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. This research was conducted through a meta-analysis, where the results of multiple scientific studies were statistically combined.
To meet the world’s growing demand for food, farmers need fertile soil. Nitrogen, an essential element in plant fertilizer, can have extremely deleterious effects on the environment when not managed effectively. Numerous studies have confirmed that improving nitrogen use in agriculture is key to securing a food secure future and environmental sustainability.
“Society needs nuanced strategies based upon tailored nutrient management approaches that keep nitrogen balances within safe limits,” said Tai M Maaz, researcher at University of Hawaii at Manoa and lead author of the study.
When farmers apply nitrogen fertilizer to their crop, typically only 30-40% of it is taken up by the plant and the rest is lost the the environment. One byproduct is nitrous oxide (N2O), one of the most potent greenhouse gases in the atmosphere. Global agriculture is a major contributor of greenhouse gas emissions, especially those derived from nitrous oxide emissions.
Although farmers are now commonly told to practice fertilizer rate reduction, or simply put, to apply less fertilizer, there are cases where that strategy is either not possible or not advisable.
Alternative predictors of emissions
The study found that output indicators such as partial nitrogen balance (PNB), an indicator for the amount of nitrogen prone to loss, and partial factor productivity (PFP), a measure of input-use efficiency, predicted nitrous oxide emissions as well as or better than the application rate alone. This means that in some cases, where nitrogen rate reduction is not possible, nitrous oxide emission can still be reduced by increasing yield through implementation of improved fertilizer management practices, such as the “4Rs:” right source, right timing, right placement and right application rate.
Tek B Sapkota, climate scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the study, emphasized that “rate reduction is still important in the cropping systems where the current level of nitrogen application is excessively high. But, when comparing the systems at the same nitrogen application rates, nitrous oxide emission can be reduced by increasing yield.”
“The 4R nutrient management practices must be tailored to specific regions to help close yield gaps and maintain environmental sustainability: the win-win scenario. The future will require public and private institutions working together to disseminate such nutrient management information for specific cropping systems in specific geographies,” said Sapkota, who is also a review editor of the Intergovernmental Panel on Climate Change (IPCC) sixth assessment report.
FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:
Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT. m.macneil@cgiar.org
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org
The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.
CIMMYT’s role is focused on the following project outputs:
Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.
Surender Prasad stands next to his Happy Seeder-mounted tractor in Uttar Pradesh, India. (Photo: Ajay K Pundir/CIMMYT)
The agricultural sector is possibly the largest livelihood provider in India, with the smallholder farming community in the vast Indo-Gangetic Plains making the bulk of it. They are the community responsible for growing the food available on our table. In celebration of India’s National Farmer’s Day on December 23 — known in Hindi as Kisan Diwas — we share the story of a farmer-turned-entrepreneur from eastern Uttar Pradesh, where the International Maize and Wheat Improvement Center (CIMMYT) and its partners have invested in supporting smallholder farmers to implement best farming practices and improve yields through sustainable intensification.
“I am a farmer and I am hopeful of a future for my children in the farming sector,” says Surender Prasad, a 52-year-old farmer from Umila village in Santkabir Nagar district, Uttar Pradesh. Prasad is one of the innovative farmers in and around the district who has time and again strived to introduce new implements and technologies on his farm — often a big risk for smallholders like him.
In 2014, Prasad met researchers from CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project while visiting the village Lazar Mahadeva during an inter-district traveling seminar. After seeing the farmer demonstration plots for himself — which, incidentally, is one of the best ways of raising farmer awareness in the region — Prasad was convinced of the efficiency of transplanting rice by machine and using zero tillage in wheat production.
Through his continued association with the project, Prasad has now adopted both practices, in addition to direct seeded rice (DSR) and Laser Land Levelling. With a single 35 horsepower tractor, cultivator and harrow, Prasad was able to improve his wheat grain yield by one ton per hectare during the 2014-15 cropping season, and secure improved profit margins as a result.
Encouraged by these results, in 2018 Prasad purchased a 55 horsepower New Holland Tractor, a Happy Seeder, a tractor-mounted sprayer and other machinery for custom hire under the state government’s machinery bank scheme. His aspiration for entrepreneurship grew in the months following these purchases and he has since established himself as a local service provider, alongside his role as a farmer. According to Prasad, his continued association with CSISA and its network of partners helped him gain better technical knowledge and skills as well as confidence with using conservation agriculture-based machinery, thanks to trainings provided by the project team.
Surender Prasad stands in his field, where wheat grows under rice-crop residue. (Photo: Ajay K Pundir/CIMMYT)
A budding entrepreneur
Today Prasad is an important entrepreneur in the region, providing custom hiring services for Happy Seeder and DSR and promoting agricultural mechanization in his community. Going forward, scale-appropriate farm mechanization will help farmers in the area to intensify their cropping system at a lower cost, supported by use of the conservation agriculture approaches encouraged by the CSISA project team, which have been shown to improve yields, reduce farmer costs and preserve natural resources. For example, using these best management practices Prasad was able to harvest an additional 1.1 tons of wheat from the 10 acres of land owned by him and his brother, and most farmers in his village now follow his crop management advice.
He is quick to adopt new ideas and has become something of an influencer in the area, earning him friends among the farming community and helping the CSISA team reach more farmers with new innovations.
This year the opportunity for hiring out mechanization services has been immense, largely due to the impact of the COVID-19 pandemic, which has created difficulties for farmers engaged in rice transplanting. As a result, Prasad managed to sow 90 acres of DSR on his own farm and in the nearby village, as well as seeding 105 acres of wheat in the fall 2020 season. “Thanks to mechanization we were far less affected by the COVID-19 disruptions and managed to plant rice and then wheat without much delay,” he explains. Prasad also provided tractor-mounted sprayer services for applying herbicides and insecticide on 90 acres of rice crop. Considering these successes, he has now planned to offer year-round extension services.
“I feel overwhelmed after serving my own community as a service provider,” says Prasad. “I feel proud of myself when other farmers come asking for my assistance.” Endorsing his contribution as an innovative farmer, the Department of Agriculture for the Government of Uttar Pradesh recognized him with awards in 2015 and 2019. He attributes his success to his exposure to CSISA interventions and support and believes that CSISA acted as a facilitator, encouraging him to use his ideas for his own benefit and for the benefit of the larger agrarian community around him.
Surender Prasad drives his Happy Seeder-mounted tractor in Uttar Pradesh, India. (Photo: Ajay K Pundir/CIMMYT)
Gokul Paudel is an agricultural economist working to streamline farming practices in South Asia. He seeks to understand, learn from and improve the efficiency of on-farm management practices in a vast variety of ways. Although he joined the International Improvement Center for Wheat and Maize (CIMMYT) right after university, Paudel’s on-farm education started long before his formal courses.
“I was born in a rural village in Baglung district, in the mid-hills of Nepal. My parents worked on a small farm, holding less than half a hectare of land,” he says. “When I was a kid, I remember hearing that even though Nepal is an agricultural country, we still have a lot of food insecurity, malnutrition and children who suffer from stunting.”
“I would ask: How is Nepal an agricultural country, yet we suffer from food insecurity and food-related problems? This question is what inspired me to go to an agricultural university.”
Paudel attended Tribhuvan University in Nepal, and through his coursework, he learned about plant breeding, genetic improvement and how Norman Borlaug brought the first Green Revolution to South Asia. “After completing my undergraduate and post-graduate studies, I realized that CIMMYT is the one organization that contributes the most to improving food security and crop productivity in developing countries, where farmers livelihoods are always dependent on agriculture,” he explains.
Approaching the paradox
Paudel is right about the agriculture and food paradox of his home country. Almost two thirds of Nepal’s population is engaged in agricultural production, yet the country still has shockingly high numbers in terms of food insecurity and nutritional deficiency. Furthermore, widespread dissemination of unsustainable agronomic practices, like the use of heavy-tilling machinery, present similar consequences across South Asia.
If research and data support the claim that conservation agriculture substantially improves crop yields, then why is the adoption of these practices so low? That is exactly what Paudel seeks to understand. “I want to help improve the food security of the country,” he explains. “That’s why I joined the agricultural sector.”
Paudel joined CIMMYT in 2011 to work with the Socioeconomics Program (SEP) and the Cereal Systems Initiative for South Asia (CSISA), providing regional support across Bangladesh, India and Nepal.
His work is diverse. Paudel goes beyond finding out which technological innovations increase on-farm yield and profit, because success on research plots does not always translate to success on smallholder fields. He works closely with farmers and policy makers, using surveys and high-tech analytical tools such as machine learning and data mining to learn about what actually happens on farmers’ plots to impact productivity.
Gokul Paudel holds up two bags of wheat crop-cuts in a farmer’s field. (Photo: CIMMYT)
A growing future for conservation agriculture
Over the last two decades, the development of environmentally sustainable and financially appealing farming technologies through conservation agriculture has become a key topic of agronomic research in South Asia.
“Conservation agriculture is based on three principles: minimum disturbance of the soil structure, cover crop and crop rotation, especially with legumes,” Paudel explains.
Leaving the soil undisturbed through zero-till farming increases water infiltration, holds soil moisture and helps to prevent topsoil erosion. Namely, zero-till farming has been identified as one of the most transformative innovations in conservation agriculture, showing the potential to improve farming communities’ ability to mitigate the challenges of climate change while also improving crop yields.
Can farm mechanization ease South Asia’s labor shortage?
In South Asia, understanding local contexts is crucial to streamlining farm mechanization. In recent years, many men have left their agricultural jobs in search of better opportunities in the Gulf countries and this recent phenomenon of labor out-migration has left women to take up more farming tasks.
“Women are responsible for taking care of the farm, household and raising their children,” says Paudel. “Since rural out-migration has increased, they have been burdened by the added responsibility of farm work and labor scarcity. This means that on-farm labor wages are rising, exacerbating the cost of production.”
The introduction of farm machinery, such as reapers and mini-tillers, can ease the physical and financial burden of the labor shortage. “Gender-responsive farm mechanization would not only save [women’s] time and efforts, but also empower them through skills enhancement and farm management,” says Paudel. However, he explains, measures must be taken to ensure that women actually feel comfortable adopting these technologies, which have traditionally been held in the male domain.
Gokul Paudel records the total above-ground biomass of maize and other maize yield attributes in a farmer’s field in Kanchunpur, Nepal. (Photo: Ashok Rai/CIMMYT)
From farm-tech to high-tech
Right now, amidst the global lockdown due to COVID-19, Paudel’s field activities are highly restricted. However, he is capitalizing on an opportunity to assess years’ worth of data on on-farm crop production practices, collected from across Bangladesh, India and Nepal.
“We are analyzing this data-set using novel approaches, like machine learning, to understand what drives productivity in farmers’ fields and what to prioritize, for our efforts and for the farmers,” he explains.
Although there are many different aspects of his work, from data collection and synthesis to analysis, Paudel’s favorite part of the job is when his team finds the right, long-lasting solution to farmers’ production-related problems.
“There’s a multidimensional aspect to it, but all of these solutions affect the farmer’s livelihood directly. Productivity is directly related to their food security, income and rural livelihoods.”
A changing landscape
About 160 km away from where he lives now, Paudel’s parents still own the farm he grew up on — though they no longer work on it themselves. They are proud to hear that his work has a direct impact on communities like theirs throughout the country.
“Every day, new problems are appearing due to climate change — problems of drought, flooding and disease outbreak. Though it’s not good news, it motivates me to continue the work that I’m doing,” says Paudel. “The most fascinating thing about working at CIMMYT is that we have a team of multidisciplinary scientists working together with the common goal of sustainably intensifying the agricultural systems in the developing world.”
A researcher from the Borlaug Institute for South Asia (BISA) walks through a wheat field in India. (Photo: BISA)
New research by an international team of scientists, including scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR), shows that adopting a portfolio of conservation agriculture and crop diversification practices is more profitable and better for the environment than conventional agriculture.
Reported last month in Nature Scientific Reports, the results of the study should encourage farmers and policymakers in South Asia to adopt more sustainable crop management solutions such as diversifying crop rotations, direct-seeding rice, zero tillage and crop residue retention.
Rice-wheat has for a long time been the dominant cropping system in the western Indo-Gangetic plains in India. However, issues such as water depletion, soil degradation and environmental quality as well as profitability have plagued farmers, scientists and decision makers for decades. To tackle these issues, researchers and policymakers have been exploring alternative solutions such as diversifying rice with alternative crops like maize.
“Climate change and natural resource degradation are serious threats to smallholder farmers in South Asia that require evidence-based sustainable solutions. ICAR have been working closely with CIMMYT and partners to tackle these threats,” said SK Chaudhari, deputy director general of the Natural Resource Management at ICAR.
In the study, CIMMYT scientists partnered with the ICAR-Central Soil Salinity Research Institute, International Rice Research Institute (IRRI), Borlaug Institute for South Asia (BISA), Swami Keshwan Rajasthan Agriculture University and Cornell University to evaluate seven cropping system management scenarios.
The researchers measured a business-as-usual approach, and six alternative conservation agriculture and crop diversification approaches, across a variety of indicators including profitability, water use and global warming potential.
Wheat grows under a systematic intensification approach at the Borlaug Institute for South Asia (BISA) in India. (Photo: BISA)
They found that conservation agriculture-based approaches outperformed conventional farming approaches on a variety of indicators. For example, conservation agriculture-based rice management was found to increase profitability by 12%, while decreasing water use by 19% and global warming potential by 28%. Substituting rice with conservation agriculture-based maize led to improvements in profitability of 16% and dramatic reductions in water use and global warming potential of 84% and 95%. Adding the fast-growing legume mung bean to maize-wheat rotations also increased productivity by 11%, profitability by 25%, and significantly decreased water use by 64% and global warming potential by 106%.
However, CIMMYT Principal Scientist and study co-author M.L. Jat cautioned against the allure of chasing one silver bullet, advising policymakers in South Asia to take a holistic, systems perspective to crop management.
“We know that there are issues relating to water and sustainability, but at the same time we also know that diversifying rice — which is a more stable crop — with other crops is not easy as long as you look at it in isolation,” he explained. “Diversifying crops requires a portfolio of practices, which brings together sustainability, viability and profits.”
With South Asia known as a global “hotspot” for climate vulnerability, and the region’s population expected to rise to 2.4 billion by 2050, food producers are under pressure to produce more while minimizing greenhouse gas emissions and damage to the environment and other natural resources.
“Tackling these challenges requires strong collaborative efforts from researchers, policymakers, development partners and farmers,” said Andrew McDonald, a systems agronomist at Cornell University and co-author of the study. “This study shows this collaboration in action and brings us closer to achieving resilient, nutritious and sustainable food systems.”
“The results of this study show that one-size doesn’t fit all when it comes to sustainable crop management,” said PC Sharma, director of India’s ICAR-Central Soil Salinity Research Institute (ICAR-CSSRI). “Farmers, researchers and policymakers can adopt alternative crop rotations such as maize-wheat or maize-wheat-mung bean, but they can also improve existing rice-wheat rotations using conservation agriculture methods.”
As part of a rural resilience project in Zimbabwe, the International Maize and Wheat Improvement Center (CIMMYT) has published a new guide to stress-tolerant crop varieties for smallholder farmers in Zimbabwe.
The guide is a critical output of a project led by CIMMYT and the international humanitarian response agency GOAL, in collaboration with the United Nations World Food Programme (WFP), the Government of Zimbabwe and other partners. With financial support from the Swiss Agency for Development and Cooperation (SDC) and the U.S. Agency for International Development (USAID), the project aims to reach 5000 smallholder farmers in target areas in the country.
Among the project components is the promotion of stress-tolerant seed and climate-smart agriculture practices to rural smallholders. With increasing threats of climate change and a decline in soil fertility, using these improved varieties and climate-smart practices is critical to help farmers adapt to external stresses.
To support variety adoption, a team of CIMMYT experts have identified suitable drought-tolerant and nutritious maize, sorghum and millet varieties. These will be promoted through “mother and baby” trials, designed to facilitate conversations among farmers, extension, and researchers, in these areas.
The new crop variety guide aims to help smallholder farmers in target areas make informed choices by providing critical information about the prioritized products and their maturity length, drought-tolerance, nutritional value, and pest and disease resistance. Direct linkages with private sector seed companies will ensure that farmers have access to this seed at affordable prices.
Implementing crop rotation between these best-suited, stress-tolerant varieties and climate-resilient cowpeas and groundnuts in a conservation agriculture system can improve food and nutrition security even under a variable climate.
Starting with good seed, and enhanced with improved agronomic practices, smallholder farmers have a greater chance of reliable yields and improved income.