Halima Bibi stands on her field in the district of Malda, West Bengal, India.
In recent years, due to increasing demand and financial advantage, maize is gaining importance as a significant cash crop in West Bengal, India.
Halima Bibi is one of the farmers who embraced the possibilities of the crop. All the hard work she put into maize cultivation paid off when she learnt that she would receive the Krishi Karman Prize, awarded by India’s Ministry of Agriculture, for best maize production for the year 2017-2018. “I couldn’t believe my ears when officials from the state agriculture department told me that I had won the award,” Bibi excitedly shared.
As most other farmers in the district of Malda, Bibi and her husband Zakir Hossain were growing rice in their 10-bigha (3.3-acre) land, but life was still a struggle for the couple and their two children, trying to make ends meet.
Life took a turn for Bibi and her family when she observed field activities of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project and she realized the importance of no-till maize cultivation. In 2015, she hired a zero-till multi-crop planter and sowed maize in her land. Since then, there was no looking back.
“When I learnt about the high demand for maize, we started cultivating the crop on half of our land, but gradually shifted to growing maize across our entire 10 bighas,” Bibi said. “The agriculture department helped me a lot.”
Rewarding productivity
Sefaur Rahman, a researcher and assistant director of agriculture in the district of Malda, predicted a dramatic growth in maize cultivation in West Bengal in the coming years, because farmers are now aware of the crop’s increased productivity, profitability and cost efficiency.
Through the SRFSI project, the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR) have reached out to a large number of smallholder farmers, especially marginalized women, to promote conservation agriculture and other sustainable techniques that make farming more profitable. In West Bengal, the project team has worked in partnership with Uttar Banga Krishi Viswavidyalaya agricultural university and the West Bengal Department of Agriculture, among others.
In the 2017-18 crop season, Bibi produced 16,800 kg of maize from her land. She initially invested 20,000 rupees ($280) per acre, which led to a net profit of 150,000 rupees ($2,113) in total.
A quick lesson learned, the right decision at the right time, and a lot of hard work led Bibi to win the Krishi Karman Prize. These awards are given to the best performing states for raising the country’s food grain production. Taking to Twitter, the Chief Minister of West Bengal, Mamata Banerjee, expressed her satisfaction. “I am happy to share that West Bengal has been selected once again for Krishi Karman Award by Govt. of India for the year 2017-18, primarily for maize production,” she said.
As Bibi’s story confirms, embracing conservation agriculture techniques is the way to reap maximum benefits and profits from the farm. In this case, the zero-till cultivation of maize paved a new road towards self-sufficiency and sustainability for the farmers of West Bengal.
Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.
“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.
Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.
While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Good for the soil and good for the farmer
“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”
Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.
“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.
Climate mitigation or resilience?
There is growing recognition of the importance of soils in our quest for sustainability.
Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.
The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.
“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.
“The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”
“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.
“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.
Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.
“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.
December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.
The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.
Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.
However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.
A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.
Mary Twaya is an exemplary farmer in Lemu, a rural drought-prone community in southern Malawi, near Lake Malombe. On her one-hectare farm she grows cotton, maize, and legumes like groundnut and cowpea, which she just picked from her fields. Since agriculture is Twaya’s sole livelihood, it is important for her to get good harvests, so she can support her three children and her elderly mother. She is the only breadwinner since her husband left to sell coffee in the city and never returned.
Agriculture is critically important to the economy and social fabric of Malawi, one of the poorest countries in the World. Up to 84% of Malawian households own or cultivate land. Yet, gender disparities mean that farmland managed by women are on average 25% less productive than men. Constraints include limited access to inputs and opportunities for capacity building in farming.
Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)
Twaya was part of a CIMMYT project that brought climate-smart agriculture practices to smallholder farmers in Malawi, Zambia and Zimbabwe.
She was enthusiastic about adopting climate-smart agriculture practices and conservation agriculture strategies in her plot. “I have always considered myself an active farmer, and when my husband left, I continued in the project around 2007 as part of the six lead ‘mother farmers’ with about 30 more ‘baby farmers’ learning through our field trials,” Twaya explained.
“We worked in Lemu since 2007 with Patrick Stanford, a very active and dedicated extension officer who introduced conservation agriculture to the village,” said CIMMYT agronomist Christian Thierfelder. “Farmers highlighted declining yields. The Lemu community was keen to transform their farming system, from conventional ridge tillage to more sustainable and climate-adapted cropping systems.” This was an ideal breeding ground for new ideas and the development of climate-smart solutions, according to Thierfelder.
Mulching, spacing and legume diversification
Showing her demonstration plot, which covers a third of her farm, Twaya highlights some of the climate-smart practices she adopted.
“Mulching was an entirely new concept to me. I noticed that it helps with moisture retention allowing my crops to survive for longer during the periods of dry spells. Compared to the crops without mulching, one could easily tell the difference in the health of the crop.”
“Thanks to mulching and no tillage, a beneficial soil structure is developed over time that enables more sustained water infiltration into the soil’’, explained Thierfelder. “Another advantage of mulching is that it controls the presence of weeds because the mulch smothers weeds unlike in conventional systems where the soil is bare.”
Research shows that conservation agriculture practices like mulching, combined with direct seeding and improved weed control practices, can reduce an average of 25-45 labor days per hectare for women and children in manual farming systems in eastern Zambia and Malawi. This time could be used more productively at the market, at home or in other income-generating activities.
A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)
After 12 years of practicing conservation agriculture, Twaya confirms that she does not spend too much time in the field because she just uproots the weeds with no need for using a hoe. This makes the weeding task less laborious and allows her to spend her time on other chores such as fetching water, washing laundry or cleaning her homestead. “I have time to also go to the village banking and loan savings club to meet with others”.
Adopting optimum plant density, instead of throwing in three seeds in each planting hole was another transformational change. The “Sasakawa spacing” — where maize seeds are planted 25 centimeters apart in rows spaced every 75 centimeters — saves seed and boosts yields, as each plant receives adequate fertilizer, light and water without competing with the other seeds. This practice was introduced in Malawi in the year 2000 by Sasakawa Global.
Twaya pays more attention to the benefits of planting nitrogen-fixing crops alongside her maize, as she learned that “through crop rotation, legumes like pigeon pea improve the nutrition of my soil.” In the past she threw pigeon pea seeds loosely over her maize field and let it grow without any order, but now she practices a “double-up legume system,” where groundnut and pigeon pea are cropped at the same time. Pigeon peas develop slowly, so they can grow for three months without competition after groundnut is harvested. This system was introduced by the Africa RISING project, funded by USAID.
Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)
A mother farmer shows the way
Switching to climate-smart agriculture requires a long-term commitment and knowledge. Some farmers may resist to the changes because they initially find it new and tedious but, like Twaya observed, “it may be because they have not given themselves enough time to see the long-term benefits of some of these practices.”
With all these innovations — introduced in her farm over the years with the support of CIMMYT and the Ministry of Agriculture, Irrigation and Water Development of Malawi — Twaya reaped important economic and social benefits.
When Twaya rotates maize and pigeon pea, the maize stalks are healthy and the cobs are big, giving her higher yields. Passing-by neighbors will often exclaim ‘‘Is this your maize?’’ because they can tell it looks much more vigorous and healthier than what they see in other fields.
For the last season, Twaya harvested 15 bags of 50kg of maize from her demo plot, the equivalent of five tons per hectare. In addition to her pigeon pea and groundnut crops, she was able to feed her family well and earned enough to renovate her family home this year.
This new way of managing her fields has gained Twaya more respect and has improved her status in the community.
Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)
Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.
“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.
Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)
Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.
As CIMMYT research shows, these practices can boost production and make farmers more food secure. This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.
Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe — farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.
Mastering climate-smart techniques, season by season
On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.
“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.
“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.
Yields and food security
With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.
Overcoming challenges and building resilience
However, the new farming practices did not come without challenges.
“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.
They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.
Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.
Scaling climate smart technologies beyond the Maravire homestead
After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.
For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.
Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.
The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)
CIMMYT researcher Bram Govaerts participates in the World Food Prize and Borlaug Dialogue.
Expertise, multiple achievements and a significant contribution to sustainable agri-food systems in Mexico and globally, have merited Bram Govaerts, director of the Integrated Development Program and regional representative for the Americas at the International Maize and Wheat Improvement Center (CIMMYT), Cornell University’s appointment as Andrew D. White Professor-at-Large. This is a distinction granted to individuals whose work in science, education, social sciences, literature and creative arts has had great impact and international visibility.
Cornell University launched the Professors-at-Large program to commemorate its centenary and to honor its first president, Andrew D. White. The program secures a connection between the university and its faculty with the world, global issues, great thinkers and outstanding intellectuals. Since then, personalities such as philosopher Jacques Derrida, writer and poet Octavio Paz, geneticist M. S. Swaminathan, and Nobel Peace Prize recipient Norman Borlaug have received this distinction.
“I was honored to learn about my nomination and glad to be interviewed, but I was happily surprised and humbled to learn that I had been chosen to join this group of distinguished thinkers and artists, which has welcomed such outstanding members as Norman Borlaug and Octavio Paz,” said Govaerts.
Professors-at-Large take the responsibility to participate, over a six-year period, in several activities that strengthen the international academic community and are, afterwards, considered distinguished and lifetime members of the university.
Govaerts takes inspiration from the “take it to the farmer” vision, and has been instrumental to the development of CIMMYT’s project portfolio, which integrates innovations in maize and wheat production systems by minimizing their environmental impact.
Govaerts shares this acknowledgement with his team and collaborators who have joined efforts to achieve the objectives set in Colombia, Ethiopia, Guatemala, Mexico and many other countries that have taken the decision to make a difference.
In 2014, Bram Govaerts received from the World Food Prize Foundation the Norman E. Borlaug Award for Field Research and Application, endowed by the Rockefeller Foundation, for leading the MasAgro project and finding innovative ways of applying science to improve the productivity and resilience of small and medium-sized maize and wheat farmers in Mexico.
Experimental harvest of provitamin A-enriched orange maize, Zambia. (Photo: CIMMYT)
In just over a decade there will be around 8.5 billion people on earth, and almost 10 billion by 2050, according to the United Nations World Population Prospects 2019: Highlights.
The report said the newcomers will be concentrated in regions already facing grave food insecurity, rising temperatures, scarce water and erratic rainfall, such as sub-Saharan Africa and South Asia.
Even now, hungry persons worldwide exceed 850 million and an estimated 2 billion suffer micronutrient malnutrition, with costly health and social impacts.
By mid-century 7 of every 10 people will live in cities, according to United Nations data. With more mouths to feed and fewer farmers, food systems will be hard-pressed to grow and supply enough nutritious fare at affordable prices, while mitigating environmental damage.
Facing the challenges
As the examples below show, applied science and partnerships can help address these complex issues.
Decades of research and application by scientists, extension workers, machinery specialists, and farmers are refining and spreading practices that conserve soil and water resources, improve yields under hotter and drier conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.
A farmer tends a long-term on-farm conservation agriculture trial for a rice-wheat-mungbean cropping system in Rajshahi district, Bangladesh. (Photo: CIMMYT)
The sustained support of funders and policymakers will help ensure that CIMMYT staff and partners are able to continue improving the livelihoods and food security of smallholder farmers and resource-poor consumers, as world population density increases.
Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT
African farmers have ten times fewer mechanized tools per farm area than farmers in other developing regions, according to the Malabo Panel’s mechanization report. For the past six years, the Australian Centre for International Agricultural Research (ACIAR) funded Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has explored ways to address poor access to appropriate mechanization solutions, which is costing smallholders a lot in lost productivity.
“One of the key outcomes of the FACASI initiative has been to present women and youth with pathways into diverse profitable income generating businesses using small mechanization,” says Alice Woodhead, professor in rural economies at the University of Southern Queensland in Australia. Woodhead shared her impressions following a field visit to Makonde, in northwestern Zimbabwe, as part of the FACASI Phase 2 final review meeting held in May. Almost 40 public and private sector project partners from Zimbabwe and Ethiopia attended the event in Harare as well as ACIAR representatives.
Farm machinery: women entrepreneurs thrive on two wheels
Agatha Dzvengwe and Marianne Jaji shared their business experience as two-wheel tractor (2WT) service providers in Makonde. The 2WT, which can be used for multiple purposes from transporting, planting, fertilizer application and shelling, allows them to plant efficiently and provides additional income through hiring out their tractors to neighboring farmers. For instance, during the 2018/19 season, Dzvengwe used the Fitarelli planter to plant ten hectares of maize, two hectares of sugar beans and five hectares of soybeans. Because of the planter’s efficiency, she had enough extra time to hire out planting services to neighboring farmers, earning $100 for one hectare of maize, and double for the planting of soybean or sugar beans.
Marianne Jaji provides 2WT based shelling services, which she says generates steady income for her household, enabling her to contribute to important household decisions. Despite the 2018/19 season being characterized by drought, Jaji was confident that she could still earn a decent income from neighboring farmers engaging the 2WT harvesting services. Other women service providers reported relief from labor drudgery and empowerment. “We have been freed from the burden of toiling in the field. Now that I own a 2WT, the society respects me more.”
“In a business dominated by men, women like Agatha and Marianne can become successful entrepreneurs, providing crucial farming services for the community such as shelling, planting and transport,” explains Bertha Tandayi, a FACASI research assistant at the University of Zimbabwe, where she studies the adoption of 2WT based technologies by women entrepreneurs in Makonde and Nyanga districts.
Small-scale mechanization has higher adoption rates in areas where the most profitable services are provided, such as shelling. The benefits for entrepreneurs and the community are visible and include the creation of employment, home renovations, asset accumulation, livestock rearing, borehole drilling and the purchasing of agricultural inputs.
Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT
Sustainable shelling enterprise for Mwanga youth group
Since establishing their enterprise in 2016 following training under the FACASI project, the Mwanga youth group is still going strong in Makonde. During a live demonstration of the medium sized sheller, Masimba Mawire remarked that the shelling business has provided steady and reliable income for the group. Brothers Shepherd and Pinnot Karwizi added that the group has gained from further training in maintenance, facilitated through the FACASI project. “It is evident that the youths have found a way to work as a business team, giving them purpose and to realize aspirations of being a business owner and not just an employee,” said Woodhead.
Of the services provided through the 2WT technologies, shelling services are in greatest demand, as this simple technology significantly reduces the time spent on shelling maize cobs. A medium sized sheller, for example, produces between five and six tons of shelled maize grain per day, over ten times more than manual shelling.
The combined benefits of income, reduced drudgery and high efficiency of the 2WT based technologies have transformed the lives of the youths and women services providers. Confident in their future, they plan to expand their business portfolios, looking at value addition options such as post-harvest processing of other crops.
The indigenous peoples who lived in central and southern Mexico thousands of years ago developed a resilient intercropping system to domesticate some of the basic grains and vegetables that contribute to a healthy diet.
Today, small farmers in roughly the same areas of Mexico continue to use this flexible system called “milpa” to grow chili, tomatoes, beans, squashes, seasonal fruits and maize, which are essential ingredients of most Mexican dishes.
An analysis of the Mexican diet done in the context of a recent report by the EAT – Lancet Commission found that Mexicans are eating too much animal fat but not enough fruits, vegetables, legumes and wholegrains. As a result, a serious public health issue is affecting Mexico due to the triple burden of malnutrition: obesity, micronutrient deficiency and/or low caloric intake. The study also urges Mexico to increase the availability of basic foodstuffs of higher nutritional value produced locally and sustainably.
Although changing food consumption habits may be hard to achieve, the traditional diet based on the milpa system is widely regarded as a healthy option in Mexico. Although nutritional diversity increases with the number of crops included in the milpa system, its nutritional impact in the consumers will also depend on their availability, number, uses, processing and consumption patterns.
Unfortunately, milpa farmers often practice slash-and-burn agriculture at the expense of soils and tropical rainforests. For that reason, it is also important to address some of the production-side obstacles on the way to a healthier diet, such as soil degradation and post-harvest losses, which have a negative effect on agricultural productivity and human health.
The International Maize and Wheat Improvement Center (CIMMYT) engages in participatory field research and local capacity-building activities with farmers, local partners and authorities to foster innovation and to co-create strategies and procedures that help farmers produce food sustainably.
Francisco Canul Poot in his land. (Photo: CIMMYT)
These efforts led Francisco Canul Poot, a milpa farmer from the Yucatan Peninsula, to adopt conservation agriculture concepts in his milpa and to stop burning soil residues since 2016. As a result, his maize yield grew by 70%, from 430 to 730 kg per hectare, and his income increased by $300 dollars. 15 farmers sharing property rights over communal land have followed his example since.
These outstanding results are encouraging more farmers to adopt sustainable intensification practices across Mexico, an important change considering that falling levels of nitrogen and phosphorus content in Mexican soils may lead to a 70 percent increase in fertilizer use by 2050.
By implementing a sustainable intensification project called MasAgro, CIMMYT contributes, in turn, to expand the use of sustainable milpa practices in more intensive production systems. CIMMYT is also using this approach in the Milpa Sustentable Península de Yucatán project.
At present, more than 500 thousand farmers have adopted sustainable intensification practices — including crop diversification and low tillage — to grow maize, wheat and related crops on more than 1.2 million hectares across Mexico.
A recent study shows the slow adoption of conservation agriculture practices in sub-Saharan Africa, despite their multiple benefits for smallholder farmers. In Zimbabwe, it is estimated that no more than 2.5% of cropland is cultivated under conservation agriculture principles.
One of the constraints is the lack of appropriate machinery and tools that reduce drudgery. “Addressing a wide set of complementary practices, from nutrient and weed management and judicious choice of crop varieties to labor demand, is key to making conservation agriculture profitable and feasible for a greater number of farmers,” said Christian Thierfelder, Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT).
Farmers in the district of Murehwa, in Zimbabwe’s Mashonaland East Province, have embraced sustainable farming systems. They are benefitting from higher yields and new sources of income, and they are improving soil fertility.
Netsai Garwe (left) and Cosmas Garwe in their maize field, Ward 4, Murewa district, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Cosmas and Netsai Garwe’s homestead copes well despite the erratic weather. They own a lush one-acre field of maize and well-fed livestock: 18 cows, 9 goats and 45 free-range chickens. Two years after a crop-livestock integration initiative funded by the Australian Centre for International Agricultural Research (ACIAR) ended, the family still benefits from the conservation agriculture practices they learnt.
“We were taught the value of minimum tillage using direct seeding, rotation, mulching and weeding to ensure that our maize crop thrived,” explained Cosmas Garwe. “Intercropping and crop rotation with legumes like soybean, pigeon pea and velvet beans really improved our soil,” said Netsai Garwe.
Like the Garwes, more than 2,000 farmers in Murehwa district are scaling the production of lablab and velvet beans, which implies almost complete adoption. Effective extension support, local innovation platforms, and access to profitable crop and livestock markets have been key drivers for widespread adoption.
Better soil and cash cows
Many of these smallholder farmers’ fields have been under cultivation for generations and the granitic sandy soils, predominant in the area, have become very poor in soil organic matter, a key component of soil fertility.
“Nitrogen-fixing green manure cover crops such as velvet beans, lablab and jack beans can provide an affordable way for smallholder farmers to bring back soil fertility, especially nitrogen, into the soil,” explained Thierfelder. “Once the soils become responsive to mineral fertilizer again, a combination of leguminous crop rotations, manure use and in-organic fertilizer will provide stable and sustained crop yields of maize, their main food crop, even under a changing climate.”
Starting the second year the Garwes tried conservation agriculture on a 0.4-hectare plot, their yields improved, realizing 1.2 tons. As an additional benefit, the cover crops could be used as new animal feed sources, so they could keep maize crop residues as soil cover and increase the amount of organic matter in the soils.
Adoption of green manure cover crops was not easy at first, but farmers from Murehwa quickly realized that lablab and velvet beans improved the fattening of cattle and poultry. Drying the cover crop, they were able to produce protein-rich hay bales, sought-after in winter when other fodder stocks usually run low.
Better-fed, healthier animals meant better sales, as the Garwes could now get around $1,200 for one cow. Neighboring farmers soon found this new crop-livestock system appealing and joined the initiative.
Cattle fattening pens at Cosmas and Netsai Garwe’s homestead. (Photo: Shiela Chikulo/CIMMYT)
Saving for a dry day
The economic opportunities for farmers in Murehwa go beyond cow sales. In 2013, the Klein Karoo (K2) seed company offered contracts to farmers for the production of lablab seed. Suddenly the crop became highly profitable, which trigged adoption by almost all the farmers in the area.
As explained by extension officer Ngairo, “there is lablab and velvet beans grown everywhere, at homestead plots, school gardens… using ripline seeding techniques and showing the widespread adoption of conservation agriculture practices in the ward.”
Better incomes from livestock, fodder and lablab seeds had ripple effects for these Murehwa communities.
Lilian Chimbadzwa shows the house they were able to build in 2013 using proceeds from lablab sales. (Photo: Shiela Chikulo/CIMMYT)
Since they adopted lablab and conservation agriculture practices in 2013, Kumbirai and Lilian Chimbadzwa transformed their asset base. They were able to complete their four-bedroom house, connect their homestead with the national electricity network and send their daughter to a nearby boarding school.
Despite prolonged dry spells during the last season and the threat of fall armyworm, these farmers have been coping much better than those practicing conventional tillage farming.
“Farmers taking up lablab and other leguminous cover crops have not only improved their incomes, but also the resilience of their farming systems,” explained Isaiah Nyagumbo, Cropping Systems Agronomist at CIMMYT. “Conservation agriculture practices such as mulching help retain soil moisture, while pests and diseases are less prominent in diversified fields planted with stress tolerant maize varieties and legume cover crops.”
Crop rotation of maize and velvet bean at Kumbirai and Lilian Chiambadzwa’s plot has guaranteed high yields in an El Nino season. (Photo: Shiela Chikulo/CIMMYT)
For CIMMYT and other institutions willing to scale sustainable intensification practices in Africa, there is plenty to learn from the farmers in Murehwa.
New research in the district has started to test how climate-adapted push-pull systems support smallholder farmers in overcoming the invasive fall armyworm using biological means. These systems involve conservation agriculture, green manure and legume intercropping, and planting high-productivity fodders surrounding the plots. This would also reduce the reliance on pesticides, which may be harmful for humans and the environment.
The International Maize and Wheat Improvement Centre (CIMMYT) and the Association for Strengthening Agricultural Research in Eastern and Southern Africa (ASARECA) gathered agriculture leaders, experts, ministers and permanent secretaries from 14 countries in the region May 2-4, 2019 in Kampala, Uganda. These experts reflected on the lessons learned from the eight year-long Sustainable Intensification of Maize and Legumes farming systems in Eastern and Southern Africa (SIMLESA) project, funded by the Australian Centre for International Agricultural Research (ACIAR).
The minister of agriculture, animal industry and fisheries of Uganda, Vincent Ssempijja, reminded that “Africa is paying a high price from widespread land degradation, and climate change is worsening the challenges smallholder farmers are facing.” Staple crop yields are lagging despite a wealth of climate-smart technologies like drought-tolerant maize varieties or conservation agriculture.
“It is time for business unusual,” urged guest speaker Kirunda Kivejinja, Uganda’s Second Deputy Prime Minister and Minister of East African Affairs.
Research conducted by CIMMYT and national partners in Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda under the SIMLESA project provided good evidence that sustainable intensification based on conservation agriculture works — it significantly increased food crop yields, up to 38%, as well as incomes, while sustainably preserving soil health.
In Malawi, where conservation agriculture adoption rose from 2% in 2011 to 35% in the 2017/18 season, research showed increases in water infiltration compared to the conventional ridge-and-furrow system of up to 90%, while soil organic carbon content increased by 30%. This means that soil moisture is better retained after rainfall, soil is more fertile, and plants grow well and cope much better during dry spells.
The SIMLESA project revealed that many farmers involved in CIMMYT research work, like Joseph Ntirivamunda in Rwanda, were interested in shifting towards more sustainable intensification practices. However, large-scale adoption still faces many hurdles.
“You cannot eat potential,” pointed out CIMMYT scientists and SIMLESA project leader Paswel Marenya. “The promise of conservation agriculture for sustainable intensification needs to be translated into more food and incomes, for farmers to adopt it widely.”
CIMMYT’s director general Martin Kropff (left) greets Uganda’s second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)
The scale conundrum
Farmers’ linkages to markets and services are often weak, and a cautious analysis of trade-offs is necessary. For instance, more research is needed about the competing uses of crop residues for animal feed or soil cover.
Peter Horne, General Manager for ACIAR’s global country programs, explained that science has an important role in informing policy to drive this sustainable transformation. There are still important knowledge gaps to better understand what drives key sustainable farming practices. Horne advised to be more innovative than the traditional research-for-development and extension approaches, involving for instance the private sector.
Planting using a hoe requires 160 hours of labor per hectare. A two-wheel tractor equipped with a planter will do the same work in only 3 hours.
One driver of change that was stressed during the Kampala forum was the access to appropriate machinery, like the two-wheel tractor equipped with a direct planter. While hoe planting requires 160 hours of labor per hectare, the planter needs only 3 hours per hectare, enabling timely planting, a crucial factor to respond effectively to the increased vagaries of the weather and produce successful harvests. While some appropriate mechanization options are available at the pilot stage in several African countries like Ethiopia or Zimbabwe, finding the right business models for service provision for each country is key to improve access to appropriate tools and technologies for smallholder farmers. CIMMYT and ACIAR seek to provide some answers through the complementary investments in the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.
CASI can be scaled but requires tailoring sustainable intensification agronomic advices adapted to local environment and farming systems. Agricultural innovation platforms like the Mwanga mechanization youth group in Zimbabwe are one way to co-create solutions and opportunities between specific value chain actors, addressing some of the constraints farmers may face while implementing conservation agriculture practices.
Providing market incentives for farmers has been one challenging aspect, which may be overcome through public-private partnerships. Kilimo Trust presented a new consortium model to drive sustainable intensification through a market pull, linking smallholder farmers with food processors or aggregators.
“SIMLESA, as a long-term ambitious research program, has delivered remarkable results in diverse farming contexts, and conservation agriculture for sustainable intensification now has a more compelling case,” said Eric Huttner, ACIAR research program manager. “We should not ignore the complexity of conservation agriculture adoption, as shifting to new farming practices brings practical changes and potential risks for farmers, alongside benefits,” he added. As an immediate step, Huttner suggested research to define who in the public and private sectors is investing and for what purpose — for example, access to seed or machinery. Governments will also need further technical support to determine exactly how to mainstream conservation agriculture in future agricultural policy conversations, plans and budgets.
“Looking at SIMLESA’s evidence, we can say that conservation agriculture works for our farmers,” concluded Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union. During the next African Union Specialized Technical Committee in October 2019, she will propose a new initiative, scaling conservation agriculture for sustainable intensification across Africa “to protect our soils and feed our people sustainably.”
Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)
Fall armyworm, a voracious pest now present in both Africa and Asia, has been predicted to cause up to $13 billion per year in crop losses in sub-Saharan Africa, threatening the livelihoods of millions of farmers throughout the region.
“In their haste to limit the damage caused by the pest, governments in affected regions may promote indiscriminate use of chemical pesticides,” say the authors of a recent study on fall armyworm management. “Aside from human health and environmental risks,” they explain, “these could undermine smallholder pest management strategies that depend largely on natural enemies.”
Agro-ecological approaches offer culturally appropriate, low-cost pest control strategies that can be easily integrated into existing efforts to improve smallholder incomes and resilience through sustainable intensification. Researchers suggest these should be promoted as a core component of integrated pest management programs in combination with crop breeding for pest resistance, classical biological control and selective use of safe pesticides.
However, the suitability of agro-ecological measures for reducing fall armyworm densities and impact must be carefully assessed across varied environmental and socioeconomic conditions before they can be proposed for wide-scale implementation.
To support this process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) reviewed evidence for the efficacy of potential agro-ecological measures for controlling fall armyworm and other pests, consider the associated risks and draw attention to critical knowledge gaps. Findings from the Africa-wide study indicate that several measures can be adopted immediately, such as sustainable soil management, intercropping with appropriately selected companion plants and the diversification of farm environments through management of habitats at multiple spatial scales.
Read the full article “Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest” in the Journal of Environmental Management, Volume 243, 1 August 2019, pages 318-330.
Intercropping options for mitigating fall armyworm damage. (Photo: C. Thierfelder/CIMMYT)
Read more recent publications by CIMMYT researchers:
In India’s state of West Bengal, the success of men and women farmers and agri-entrepreneurs is paving the way for the out-scaling of climate-smart conservation agriculture practices for sustainable intensification across the region.
Through the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, the International Maize and Wheat Improvement Center (CIMMYT) is improving productivity, profitability and sustainability across the Eastern Gangetic Plains.
The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa project (SIMLESA), led by the International Maize and Wheat Improvement Center (CIMMYT), has completed a series of country policy forums. The forums focused on maize-legume intercropping systems, Conservation Agriculture based on Sustainable Intensification (CASI) and other innovations that can help farmers in target countries shift to more sustainable farming practices resulting in better yields and incomes.
Policy makers and scientists from eastern and southern Africa will meet in Uganda at a regional forum convened by the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), 3-4 May, 2019. The forum will discuss ways to scale up the learnings of SIMLESA.
In the following interview, Paswel Marenya, CIMMYT scientist and SIMLESA leader, reflects on 8 years of project learning, what CASI means for African smallholder farmers, the dialogue between scientists and policy makers and next steps.
Q: What does sustainable intensification of the maize-legume systems mean in the African context? Why is this important for smallholder farmers?
A: Sustainable intensification is the ability to produce more food without having a negative impact on the environment and the natural resource base, but in an economically profitable, and socially and politically acceptable way. In eastern and southern Africa (ESA), maize is the most important staple and the population’s main calorie source. In Kenya, Malawi, Tanzania and Ethiopia annual per capita consumption of maize is around 100, 130, 70 and 50 kg respectively. This important cereal is at the center of nutrition and food security in the countries where SIMLESA has been working.
Legumes and cereals go hand-in-hand. In ESA the majority of agriculture producers – typically over 70 percent – are small farmers who farm on less than 5 hectares of land. Smallholders need sustainable diversification by intercropping maize with legumes. They get their calories from the cereals and derive proteins from the legumes. If they get marketable surplus, legumes are lucrative crops that typically fetch twice the price of maize.
Currently, the average legume yield in ESA is about 0.5 tons per hectare (t/ha). With the practices and the new varieties that SIMLESA tested, legume yield increased by 1-1.5 t/ha. Such significant yield improvement can have a huge impact on household income, food and nutritional security. For maize, the average yield in the region is about 1 t/ha, although in Ethiopia average yield is 2-2.5 t/ha. Using SIMLESA-recommended CASI practices yields of up to 3.5-4 t/ha were achieved in research-managed fields. Under farmer conditions, the yield can increase from 1-1.5 t/ha to about 2-2.5 t/ha.
SIMLESA has enabled farmers to significantly increase the productivity of maize and legumes without undermining soil health, and allowed farmers to become more resilient, especially in the face of erratic and harsh climate conditions.
Integration of small mechanization in CASI practices, particularly in Tanzania, is another positive outcome of SIMLESA. Farm labor tends to fall disproportionately on women and children in traditional systems, so the integration of machinery that can eliminate labor drudgery might alleviate the labor burden away from women.
Q: How did SIMLESA identify the best approaches to improve yields and incomes in a sustainable way in each target country?
A: Africa has not experienced the green revolution that South and Southeast Asia experienced in the 1960s and 1970s, with improved varieties, irrigation and government support. Africa’s heterogenous environment calls for a different approach that is more systems oriented. The integration of disciplines from agronomy, soil science, breeding, economics and social science – including market studies and policy analysis – are part of the approach SIMLESA has used. This interdisciplinary approach is something you seldom see in many projects.
To identify best approaches, SIMLESA has conducted adaptive agronomy research, which involves scientists replicating successful experiments done in agricultural institutes or research stations in farmers’ fields under farmer resources and local conditions.
SIMLESA also promotes the notion of conservation agriculture to shift thinking in farmer practices. Conservation agriculture involves farmers growing maize and legumes in minimally tilled fields, retaining crop residue on fields without burning or discarding and implementing crop diversification.
Q: What are some of the key takeaways from the policy dialogues SIMLESA initiated in the project countries?
A: One of the things we have done in the final year of SIMLESA is policy outreach. Having done all the adaptive agronomy, socio-economic and gender studies, it is time to mainstream the results. One way of doing this is to share specific, concrete results with decision makers and explain the implication of those results to them. To do that, we organized a series of workshops in seven target countries in the region, at both the local and national levels. We shared ideas on what can be done to mainstream SIMLESA in development and research programs and in knowledge systems.
For SIMLESA practices to become the norm, more farmers need to use conservation agriculture systems, adopt improved, drought-tolerant varieties, integrate and improve legume production and where possible, practice crop rotation. At a minimum, they should do optimal and resource-conserving intercropping, conserve crop biomass for extended periods in order to recycle nutrients and organic matter and move away from aggressive tillage.
Across the seven countries, research on CASI practices should continue with proper knowledge systems put in place. Curated agronomy and socio-economic research data are easily accessible to a range of actors – scientists, farmers or agribusinesses – in a repository. Policy recommendations at country level have been summed up in a series of policy briefs.
The need to strengthen the training and mainstreaming of conservation agriculture in the curriculum at the tertiary-education level was stressed in Kenya and Tanzania. Developing the machinery value chain was recommended in Uganda, Tanzania and Mozambique. Such tools as the hoe, jab planter, riplines and the two-wheel tractor are suitable for implementing conservation agriculture practices like planting seed on untilled or minimally tilled land with crop residue. Another suggestion from Uganda, Tanzania and Mozambique was the need to focus on training of technicians who can provide machinery after-sales services and promote machinery hire to help farmers access the basic tools. Incubating businesses in custom hire services, provision of seed capital, and a focus on multi-functional mechanization also featured prominently. Another idea was to support small last-mile agribusinesses such as agro-dealers to aid scaling efforts.
Workshops also highlighted a need for government to work closely with extension services and industry associations to show the benefits of agricultural inputs on a consistent and long-term basis. This can help create markets and therefore the business case for agribusinesses to expand their distribution networks.
Farmer Anjeline Odero checks maize in her CA plot in Siaya county, Kenya. (Photo: Peter Lowe/CIMMYT)
Q: How relevant is the issue of indigenous or local knowledge in the implementation and scale up of CASI approaches?
A: CASI principles are compatible with traditional African farming practices, especially the diversification element. African agro-ecologies are not conducive to monocropping as such, especially in areas with poor markets. If you don’t have good linkages with the markets, you will lose out, especially on the nutritional aspects. Where will you, for instance, get your proteins? African indigenous agriculture was a more self-containing system and self-regenerative in the sense that people did fallow farming, there was strong crop-livestock integration and mixed cropping systems.
Q: What are some of the adoption constraints that relate to the implementation or scale-up of CASI approaches?
A: Some of the constraints include the availability of appropriate machinery and suitable weed management. Currently, for weed management, the suggestion is to use herbicides. This is facing resistance in countries such as Kenya and Rwanda owing to the environmental effects of widespread herbicide use. The challenge is to find weed management technologies that minimize or eliminate herbicide use. The other constraint relates to markets. When you succeed in raising legume and maize production, you must find markets for them.
Another constraint concerns educating farmers on implementing the practices in the right way on a large scale. This expensive undertaking requires a public-private sector partnership. To have impact, you need large-scale farmer education and demonstrations.
Q: One of the key constraints is labor intensive activities that are inefficient and time wasting. This can be fixed with access to small mechanization. What are some of the approaches that enable smallholders’ access to farm machinery? How sustainable are these approaches?
A: This is one area that needs more work. Although machinery was not an integral part of the project design, SIMLESA scientists and national implementers found ways of assimilating machinery testing, including leveraging other CIMMYT projects such as the Farm Mechanization and Conservation Agriculture for Sustainable Intensification project (FACASI), which was a SIMLESA collaborator on the farm mechanization component. Two-wheel tractors and other conservation agriculture machinery that were tested to promote the agronomy that SIMLESA was working on, especially in Tanzania, came from the FACASI project.
Q: SIMLESA stakeholders will gather at the ASARECA regional forum in early May to discuss actionable CASI programs for the public and private sector alike. What do you expect from this regional forum? If there were two or so policy recommendations to give, what would they be?
A: At the forum, we will engage with top-level officials from governments, development organizations and the private sector from ASARECA countries including Mozambique and Malawi. We expect to share the key lessons we learned from SIMLESA. The focus is on how to catalyze paradigm shifts in smallholder agronomy and accelerate institutional change that will enable the technologies to get to scale. We hope to see a communiqué, expressing the acceptance and commitment of the conclusions from the forum, developed and signed. That should serve as a lasting record of the commitments and agreements made at the forum.
Some policy recommendations include creating an enabling environment that provides nationwide CASI demonstration sites for farmers. We are encouraging the government, the private sector and community organizations to join forces and find ways of facilitating the funding for multi-year, long-term CASI demonstration and learning sites. While CASI practices are becoming mainstream in the thinking of business and government leaders, these now need to be specifically be budgeted into various agricultural programs. One key program to promote CASI is retraining extension workers to on new systems of production based on CASI principles so they can facilitate knowledge transfer and help farmers act collectively and engage with markets more effectively.
Farmer Rukaya Hasani Mtambo weeds her CA plot of maize and beans in Hai District, Tanzania. (Photo: Peter Lowe/CIMMYT)