Skip to main content

Tag: conservation agriculture

Sowing seeds of change to champion Conservation Agriculture

Florence Mutize’s thriving fields of maize, in Bindura, a small town in Mashonaland Central region of Zimbabwe, serve as living proof of the successes of Conservation Agriculture (CA), a sustainable cropping system that helps reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping farmers adapt to climate change. The seeds of her hard work are paying off, empowering her family through education and ensuring that a nutritious meal is always within reach.

“I have been dedicated to these CA trials since 2004, starting on a small plot,” said Mutize. “Now, with years of experience and adaptation to changing climates, I’ve seen my yields increase significantly, harvesting up to a tonne of maize on a 30 by 30m plot using direct seeding and ripping techniques together with crop residue to cover the soil and rotating maize with soybean.”

Mutize is one of many mother trial host farmers implementing CA principles through the CGIAR Ukama Ustawi regional initiative in Bindura. A mother trial is a research approach involving testing and validating a suite of climate-smart agriculture technologies to identify the best-performing ones which can then be adopted on a larger scale.

Nestled in the Mazowe valley, Bindura experiences a subtropical climate characterized by hot, dry summers and mild, wet winters, ideal for agricultural production. But the extremes of the changing climate, like imminent dry spells and El Niño-induced threats, are endangering local farmers. Yet, smallholder farmers like Mutize have weathered the extremes and continued conducting mother trials, supported by the agriculture extension officers of the Agricultural and Rural Development Advisory Services (ARDAS) Department of the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development.

“Where I once harvested only five bags of maize, rotating maize with soybeans now yields 40 bags of maize and 10 bags of soybeans,” Mutize proudly shares.

The UU-supported CA program also extends to farmers in Shamva, like Elphas Chinyanga, another mother trial implementer since 2004.

Elphas Chinyanga and his son inspect maize cobs in their field. (Photo: CIMMYT)

“From experimenting with various fertilization methods to introducing mechanized options like ripping and direct seeding, these trials have continuously evolved,” said Chinyanga. “Learning from past experiences, we have gotten much more benefits and we have incorporated these practices into other fields beyond the trial area. I am leaving this legacy to my children to follow through and reap the rewards.”

Learning has been a crucial element in the dissemination of CA technologies, with CIMMYT implementing refresher training together with ARDAS officers to ensure that farmers continue to learn CA principles. As learning is a progressive cycle, it is important to package knowledge in a way that fits into current training and capacity development processes.

Pre-season refresher training with mother trial host farmers and extension in Hereford, Zimbabwe. (Photo: CIMMYT)

This process could also be labelled as “scaling deep” as it encourages farmers to move away from conventional agriculture technologies. Reciprocally, scientists have been learning from the experiences of farmers on the ground to understand what works and what needs improvement.

Inspired by the successes of his peers in Shamva, Hendrixious Zvomarima joined the program as a host farmer and saw a significant increase in yields and efficiency on his land.

“For three years, I have devoted time to learn and practice what other farmers like Elphas Chinyanga were practicing. It has been 14 years since joining, and this has been the best decision I have made as it has improved my yields while boosting my family’s food basket,” said Zvomarima.

The longevity and success of the initiative can be attributed to committed farmers like Mutize, Chinyanga, and Zvomarima, who have been part of the program since 2004 and are still executing the trials. Farmer commitment, progressive learning, and cultivating team spirit have been the success factors in implementing these trials. CIMMYT’s long-term advocacy and learning from the farmers has been key to a more sustainable, resilient, and empowered farming community.

There’s an increasing interest for hubs in Mexico

Walking methodologies for CIMMYT’s South Pacific hub (Photo: CIMMYT)

“We know about what CIMMYT has done with the hubs here in Mexico, so we’re trying to understand how this methodology works, what happens within the research platforms, in the parcels, the relationship between these two spaces, the technological menus, and how that menu is reaching up to farmers,” says Emmanuel Ekom, from the Ernest and Young team (organization which in the framework of Excellence in Agronomy, a CGIAR initiative) studies how innovation is rising in agriculture.

“We understand that CIMMYT in Mexico has been able to create an innovation approach that prioritizes the farmer. I came from Nigeria with my team, and we are delving ourselves into this approach to comprehend its functioning and see if we can replicate these brilliant ideas in several other countries of the Global South. So, we have visited many interesting hubs in all Mexico,” says Emmanuel.

“One of the most interesting things we were able to experience in one of the hubs was that the mayor from a small town was trained by CIMMYT staff. He understood what the agriculture conservation involves and had contributed to share this knowledge to his people”, mentions Emmanuel who also highlights the participation and inclusion from both private, public, and teaching institutions in the operation of the hubs.

“You could see their faces fill with excitement, especially farmer women when they were talking about how much time they could have saved if they had used the technology developed by CIMMYT and its collaborators. Such methodology is not only making life easier, but it’s also driving farmer women to increase their incomes and helping them save time so that they concentrate on other things. Just the same, I was able to see how the gender-based approach is coping with CIMMYT’s goal and that’s impressive”, says Emmanuel.

“I saw first-hand how the hubs’ function had made an impact on farmers lives, but the most interesting part was seeing both hubs’ managers and farmers get along very well. Every time we went to a parcel, our plan was to only visit one farmer but sometimes we ended up visiting 10 or 15, and the manager would go and chat with them. And I think that’s amazing”, says Emmanuel, for whom the experience of the hubs in Mexico will allow him to draw up the path to replicate this methodology in other latitudes.

This blog piece was originally published in Spanish. 

It’s time to scale: Emerging lessons from decades of Conservation Agriculture research in Southern Africa

CA in action at the farmer level. (Photo: Christian Thierfelder/CIMMYT)

For decades, smallholder farmers in Southern Africa have battled the whims of a changing climate—from withered crops to yield reductions and looming food insecurity concerns. And the outlook is not improving. Based on the latest available science, the sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) reaffirms the projected negative impacts of climate change on livelihoods in Southern Africa.

Conservation Agriculture (CA) has been considered as an important step to make smallholder farming systems climate smart and resilient. The principles of CA are simple yet potent: minimal soil disturbance, crop cover, and diverse rotations, which tend to have lasting implications on rebuilding soil health, conserving moisture, and nurturing a thriving ecosystem. A strong evidence base from on-farm and on-station trials show that CA has the potential to build the adaptive capacity and resilience of smallholder farming systems to climate stress.

Yet, despite the positive results, significant scaling gaps remain. Key questions arise on what can be done to turn the tide, scale, and encourage uptake. What institutional, policy and economic incentives would enable scaling? Could mechanization be the missing link? The Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA) project responds to these questions. With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA), and CIMMYT, the ACASA project goes beyond the narrow focus on promotion and technology delivery of past and ongoing interventions on CA in Southern Africa.

ACASA was designed to help stakeholders gain deeper understanding of the interactions between the socio-economic, biophysical, and institutional constraints and opportunities for adoption of CA practices. To do this, the project has undertaken extensive surveys aimed at understanding incentives, drivers, and barriers of CA adoption across Zambia, Malawi, and Zimbabwe.

Dialogues for change

Participants from across the region during the reflective meeting. (Photo: CIMMYT)

In December 2023, CIMMYT collaborated with IITA and the Ministry of Lands, Agriculture, Fisheries, Water and Rural Development of Zimbabwe to convene a highly engaging, reflective, and learning meeting, with the participation of government representatives, the private sector, and research institutes, among others. The primary objective was to share valuable insights accumulated over years of research and development on conservation agriculture in southern Africa. These insights are a result of collaborative efforts in social science, scaling, and mechanization work by CIMMYT, IITA, and extension and research partners in Malawi, Zambia, and Zimbabwe. Conversations centered on tracing the historical pathway of CA, leveraging mechanization, and identifying key enablers to transform smallholder agriculture.

Tracing the pathway of conservation agriculture

For decades, CIMMYT has been a leading force in promoting Conservation Agriculture. From the early stages in the 1990s, CIMMYT introduced CA principles and practices through on-farm and on-station field days, to undertaking robust research on biophysical impacts and developing adapted technologies in collaboration with national and global partners. As this research progressed and matured, efforts were made to integrate and focus on understanding the social and economic factors influencing CA adoption, while recognizing the significance of enabling environments. To date, linkages with mechanization and other innovations promoting CA-friendly equipment have been strengthened, ensuring inclusivity and empowerment. Questions remain around policy and institutional innovations to nudge and sustain adoption. In a nutshell, there is scope to borrow tools and methods from behavioral and experimental economics to better study and facilitate behavioral change among smallholder farmers. This snapshot highlights global efforts, grounded in scientific evidence, farmer centric approaches, and collaborative partnerships.

Insights from the field

Described as a data and evidence driven process, a notable highlight was the detailed gathering and analytical efforts using a large multi-country household survey involving 305 villages and 4,374 households across Malawi, Zambia, and Zimbabwe. The main thrust was not only to harvest data but listen to farmers and better understand their context while deciphering their decision-making processes concerning CA adoption, across the three countries. A compelling and hopeful story unfolds from the results. The adoption of CA practices such as crop residue retention, minimum tillage, crop rotation, and intercropping is much higher than previously thought, highlighting a crucial need for better targeted surveys. Key enablers to strengthen adoption include access to CA extension, hosting demonstrations, and access to credit. In addition, age, and extension in the case of Zambia were identified as important drivers of the speed and persistence of adoption. Demand for mechanization is rising, which is key to address drudgery associated with CA and to raise production efficiencies. Key recommendations centered on the need for investments in a dense network of farmer-centric learning centers that allow for experiential learning, facilitating equitable access to mechanization, promoting private sector participation, and developing integrated weed management options as weeds remain the Achilles Heel of CA adoption in the region. [1]

Emerging lessons

A deep dive on the findings reveals critical considerations for the widespread adoption of Conservation Agriculture (CA). Firstly, weed-related labor challenges pose a significant obstacle, with around 75% of farmers in three countries citing weeds as the most constraining issue during initial CA adoption. Addressing this weed management challenge is essential, emphasizing the need for environmentally safe, non-chemical solutions as a research priority. Secondly, there is a noticeable gap between scientific research on CA and farmer practices, primarily attributed to limited technical knowledge. Bridging this gap requires innovative approaches to translate scientific information into practical, farmer-centered products. Thirdly, incentivizing CA adoption through complementary input support programs, like payments for environmental services, may encourage farmers, especially when private returns are not immediate.

Fourthly, strengthening extension systems is crucial to facilitate farmer learning and bridge the awareness-to-know-how gap. Lastly, investing in improved machinery value chains can alleviate high labor costs and drudgery associated with CA practices, with economic estimates suggesting farmers’ willingness to pay for machinery hire services. These insights collectively highlight the multifaceted nature of challenges and opportunities for scaling up CA adoption.

Moving forward

ACASA’s research findings are not just numbers — they are seeds of hope. They point towards a future where CA adoption among smallholder farmers can transform the breadbasket of the three African countries, and beyond. CIMMYT and its partners remain committed to continuous learning, refining their approaches, and working hand-in-hand with farmers to nurture the CA revolution.

It will not be a pipe dream to transform agriculture in Southern Africa through CA by cultivating seeds of resilience, one at a time. This is because the experience from the region suggests that with the right political will, it is possible to mainstream CA as a critical adjunct to climate-smart agriculture strategies and resilience building. This broader institutional and political buy-in is important since CA programming cannot succeed without sector-wide approaches to removing systemic constraints to technology adoption.  A classic example is the Government-backed Pfumvudza program in Zimbabwe, which has seen adoption of planting basins conditioned on receipt of input subsidies soar to more than 90%.

[1] CIMMYT/IITA Scientists explore the weed issue in detail in a paper just accepted and forthcoming in Renewable Agriculture and Food Systems – Unanswered questions and unquestioned answers: The challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa.

Roots of resilience: my journey as a Conservation Agriculture champion

I am Grace Malaicha, a proud native of the Zidyana Extension Planning Areas in Central Malawi, where my journey with Conservation Agriculture (CA) began. In 2005, I observed neighboring farmers practicing CA techniques on their land. Intrigued and inspired, I decided to embark on this path myself, joining the CA program initiated by CIMMYT and Total LandCare in 2006. I started practicing it on my demonstration plot and observed that yields were getting higher from the second year onwards.

My dedication to CA has changed not only myself but also influenced other members of my farming community. As a mother trial host farmer under the CGIAR Initiative: Diversification for resilient agribusiness ecosystems in East and Southern Africa today, I have been implementing different treatments, which include maize doubled-up legume system and improved drought-tolerant maize varieties planted under CA on flat land and comparing it to the traditional ridge tillage system that involves substantial soil movement.

But what does CA mean to me? It is more than just a set of principles that I apply like minimum soil disturbance, mulching, and crop rotation. CA reduces drudgery, secures yields, and maintains productivity in times of climate change. CA has changed my approach to farming, transforming my once conventional maize monocrop into a diverse maize-legume system. By intercropping with two crops, I have spread the risk of unanticipated crop failure, while incorporating groundnut, cowpeas, and pigeon pea into the mix, which are more drought tolerant. I increased the land area under CA and tried it on many other crops including different legumes as rotation or intercrops, birds-eye chili, vegetables, and cassava.

Over the years, I have witnessed firsthand the harsh realities of a changing climate in central Malawi, from intense heat to prolonged droughts and erratic rainfall patterns. This year, 2024, has even been worse due to the prolonged dry spells between January and February, and the erratic rainfall during this time. Despite these challenges, our CA plots have continued to thrive, showcasing the resilience and adaptability of climate-smart farming practices.

Grace trains farmers on Conservation Agriculture. (Photo: Christian Thierfelder/CIMMYT)

Recognizing the power of knowledge sharing and from the encouragement by CIMMYT and Total LandCare, I started to train fellow farmers, both locally and across borders. At first, I worked with women groups around my homestead and trained about 100 female farmers on the principles of CA. I was fortunate to be given the opportunity to train other farmers in other districts of Malawi. Since 2008, I have also trained farmers in eastern Zambia and from Mozambique where all farmers speak my language Chichewa. Farmers believe other farmers more and are now realizing the benefits of implementing CA in their own fields.

I enrolled to be a local trainer in CA within my community in 2016. My passion for teaching and catalyzing change has led to the adoption of CA by numerous farmers. I embrace my commitment to ongoing learning through carefully implementing these CA trials and playing an active role during awareness meetings.

My life had changed so much. I was speaking on the radio and television. In 2012, the Minister of Agriculture visited my plot, and I was asked to speak in front of a Parliamentary Committee about my experiences as a smallholder woman farmer in Malawi. I spoke about what women can do in agriculture and what changes I made on my land. From representing my country at high level meetings, each step has shaped me into a resilient and empowered woman.

However, my journey has not been without obstacles, including hardships in my personal relationship. In 2012, I made the decision to join my husband in South Africa where I took up menial jobs to earn a living, abandoning my plot back home. But my true passion lay in farming, and I decided to make the bold decision to come back home, leaving my husband and continue with farming. Through perseverance and determination, I have overcome these challenges, and I am now much stronger.

Grace Malaicha stands in her field. (Photo: Christian Thierfelder/CIMMYT)

Today, I stand with pride in front of my CA plot, not only sustaining my family but also sending all my children to school. I now converted all my land to conservation agriculture, 3ha are under maize and 2ha under groundnuts. Beyond farming, I have investments in housing, claiming rentals in the nearby town of Salima to sustain my financial income and expand in farming.

I will continue on this path as I learned so much over the years and believe that CA may be the only climate-smart agriculture response in reach of smallholder farmers that everybody can apply, and I will continue to support others as a champion of CA.

Unanswered questions and unquestioned answers

Over the past few decades, Conservation Agriculture (CA) has moved from theory to practice for many farmers in southern Africa. CA is a system that involves minimum soil disturbance, crop residue retention, and crop diversification among other complimentary agricultural practices. One reason for its increasing popularity is its potential to mitigate threats from climate change while increasing yields.

However, there are limits to the adaptation of CA, especially for smallholder farmers. Challenges are both agronomic (e.g. lack of sufficient crop residues as mulch, weed control, pest and disease carryover through crop residues), socio-economic, and political (both locally and regionally).

A recent paper, Unanswered questions and unquestioned answers: the challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa, published in the journal Renewable Agriculture and Food Systems in February 2024, led by CIMMYT and CGIAR scientists examines two specific challenges to more widespread CA adaptation: how to deal with trade-offs in using crop residue and finding alternatives to herbicides for weed control.

For crop residue, the two most prevalent actions are using leftover crop residue for soil cover or feeding it to livestock. Currently, many farmers allow livestock to graze on crop residue in the field, leading to overgrazing and insufficient ground cover. This tradeoff is further challenged by other multiple household uses of residues such as fuel and building material. The most common way to control weeds is the application of herbicides. However, inefficient and injudicious herbicide use poses a threat to human health and the environment, so the research team set out to identify potential alternatives to chemical weed control as the sole practices in CA systems.

“The answer to the question ‘how should farmers control weeds?’ has always been herbicides,” said lead author Christian Thierfelder, CIMMYT principal cropping systems agronomist. “But herbicides have many negative side effects, so we wanted to question that answer and examine other potential weed control methods.”

What to do with crop residue

Previous research from the region found that ungrazed areas had long-term positive effects on soil fertility and crop yields. However, it is common practice for many farmers in Malawi, Zambia, and Zimbabwe to allow open grazing after the harvest in their communities. Livestock are free to graze wherever they wander, which results in overgrazing.

“Open grazing systems help keep costs down but are very inefficient in terms of use of resources. It leads to bare fields with poor soil,” said Thierfelder.

Maize on residues. (Photo: CIMMYT)

While it is easy to suggest that regulations should be enacted to limit open grazing, it is difficult to implement and enforce such rules in practice. The authors found that enforcement is lacking in smaller villages because community members are often related, which makes punishment difficult, and there is an inherent conflict of interest among those responsible for enforcement.

Controlling weeds

Weeding challenges in CA systems have been addressed worldwide by simply using herbicides. However, chemical weeding is often not affordable and, sometimes, inaccessible to the smallholder farmers and environmentally unfriendly.

Using herbicides, though effective when properly applied, also requires a degree of specialized knowledge, and without basic training, this may be an unviable option as they may pose a risk to the health of the farmers. Thus, alternatives need to be identified to overcome this challenge.

Some alternatives include mechanical methods, involving the use of handheld tools or more sophisticated tools pulled by animals or engines. While this can be effective, there is the possibility of high initial investments, and intercropping (a tenet of CA) forces farmers to maneuver carefully between rows to avoid unintended damage of the intercrop.

Increasing crop competition is another potential weed control system. By increasing plant density, reducing crop row spacing, and integrating other crops through intercropping, the crop competes more successfully with the weeds for resources such as light, moisture, and nutrients. When the crop seed rate is increased, the density of the crops increases, providing more cover to intercept light, and reducing the amount of light reaching the weeds thereby controlling their proliferation.

A holistic approach

“What we learned is that many of the crop residue and weed challenges are part of broader complications that cannot be resolved without understanding the interactions among the current scientific recommendations, private incentives, social norms, institutions, and government policy,” said Thierfelder.

Continuing research into CA should aim to examine the social and institutional innovations needed to mainstream CA as well as strengthen and expand the research on weed control alternatives and focus on the science of communal grazing land management to enhance their productivity.

Sustaining Conservation Agriculture initiatives: lessons from Malawi

Sub-Saharan Africa (SSA) has experienced the worst impacts of climate change on agriculture over the past decades and projections show such effects are going to intensify in the coming years. Diminished agricultural production has been the primary impact channel given the high reliance on rainfed agriculture in the region. Combined with a growing population, food security for millions of people is threatened.

Conservation Agriculture (CA) is a sustainable cropping system that can help reverse soil degradation, augment soil health, increase crop yields, and reduce labor requirements while helping smallholder farmers adapt to climate change. It is built on three core principles of minimum soil disturbance, crop residue retention, and crop diversification.

CA was introduced in southern Africa in the 1990s, but its adoption has been patchy and often associated with commercial farming. A group of researchers, led by Christian Thierfelder, principal cropping systems agronomist at CIMMYT, set out to understand the reasons why smallholder farmers adopt CA, or why they might not or indeed dis-adopt. Their results were published in Renewable Agriculture and Food Systems on March 12, 2024.

Conservation Agriculture plot. (Photo: CIMMYT)

“Conservation Agriculture can cushion farmers from the effects of climate change through its capacity to retain more soil water in response to high water infiltration and increased soil organic carbon. It is therefore a viable option to deal with increased heat and drought stress,” said Thierfelder. However, even with these benefits, adoption of CA has not been as widespread in countries like Malawi.

“There are regions within Malawi where CA has been promoted for a long time, also known as sentinel sites,” said Thierfelder. “In such places, adoption is rising, indicating that farmers are realizing the benefits of CA over time. Examining adoption dynamics in sentinel sites can provide valuable lessons on scaling CA and why some regions experience large rates of non- or dis-adoption.”

Thierfelder and his co-authors, Innocent Pangapanga-Phiri of the Center for Agricultural Research and Development (CARD) of the Lilongwe University of Agriculture and Natural Resources (LUANAR), and Hambulo Ngoma, scientist and agricultural economist at CIMMYT, examined the Nkhotakota district in central Malawi, one of the most promising examples of widespread CA adoption.

Total LandCare (TLC), a regional NGO working in Malawi has been consistently promoting CA in tandem with CIMMYT in the Nkhotakota district since 2005.

Results from both individual farmer interviews and focused group discussions revealed that farmers that implement CA saw higher yields per hectare than those who practiced conventional tillage practices. In addition, farmers using CA indicated greater resilience in times of drought, improved soil fertility, and reduced pest infestation.

Why adopt CA?

The primary factors enhancing CA adoption in the Nkhotakota district were the availability of training, extension and advisory services, and demonstration plots by the host farmers. Host farmers are farmers that have been trained by a TLC extension officer and have their own plot of land to demonstrate CA methods. In addition, host farmers train other farmers and share knowledge and skills through farmer field days and other local agricultural exhibitions.

“Social networks among the farmers serve a vital role in CA adoption,” said Ngoma. “Seeing tangible success carries significant weight for non-adopter farmers or temporal dis-adopters which can persuade them to adopt.”

Maize demonstration plot. (Photo: CIMMYT)

During focus group discussions facilitated by the authors, farmers indicated that demonstration plots also removed fear for the unknown and debunked some myths regarding CA systems, for example, that practitioners show ‘laziness’ if they do not conventionally till their land.

“This suggests that CA uptake could be enhanced with increased, targeted, and long-term promotion efforts that include demonstration plots,” said Ngoma.

Similarly, the longer duration of CA exposure positively influenced farmers’ decisions to adopt CA methods as longer exposure might allow farmers to better understand the benefits of CA practices.

Why not adopt CA?

Farmers reported socioeconomic, financial, and technical constraints to adopt CA. An example is that farmers might not have the labor and time available for weed control, a necessary step in the first few years after the transition to CA.

“Weed control is an important challenge during the early years of CA adoption and can be seen as the ‘Achilles heel’ of CA adoption,” said Thierfelder. CIMMYT scientists therefore focused a lot of research in recent years to find alternative weed control strategies based on integrated weed management (IWM) using chemical, biological, and mechanical control options.

Examining the stover in a maize plot. (Photo: CIMMYT)

In most cases, the benefits of CA adoption are seen only after 2 to 5 years. Having such a long-term view is not always possible for smallholder farmers, who often must make decisions based on current conditions and have immediate family obligations to meet.

As a contrast to adopters of CA, non-adopters reported a lack of knowledge about CA as a whole and a lack of specific technical knowledge needed to transition from more traditional methods to CA.

This scarcity of technical support is often due to the lack of strong agriculture extension support systems. Since CA adoption can be complex, capacity building of both farmers and extension agents can therefore foster adoption and implementation of CA. This reinforces that farmer-to-farmer approaches through host farmers could complement other sources of extension to foster adoption.

Next steps

The authors identified three policy recommendations to accelerate CA adoption. First, there is a need to continue promoting CA using farmer-centric approaches more consistently, e.g., the host farmer approach. Using a farmer-centered approach facilitates experiential learning and can serve as a motivation for peer-to-peer exchange and learning and can reduce misinformation. The host farmer approach can be augmented by mega-demonstrations to showcase CA implementation at scale. In addition, rapid and mass extension delivery can be enhanced by using digital technologies.

Second, CA promotion should allow farmers the time to experiment with different CA options before adoption. What remains unclear at the policy level is the types of incentives and support that can be given to farmers to encourage experimentation without creating economic dependence. NGOs and extension workers could help farmers deal with the weed pressure soon after converting from full to minimum tillage by providing herbicides and training.

Third, there is a need to build and strengthen farmer groups to facilitate easier access to training, to serve as conduits for incentive schemes such as payments for environmental services, and conditional input subsidies for CA farmers. Such market-smart incentives are key to induce initial adoption in the short term and to facilitate sustained adoption.

A marine engineer embarks on making life easier for farmers in his native village, by establishing a one-stop shop agri-business center

On the northern banks of the Ganges lies the city of Begusarai, in India’s Bihar State. Amid the expected structures of a city—temples and transit hubs—is a five-acre business hub dedicated to agriculture. This center, called the Bhusari Cold Storage Center, includes a 7,000-ton cold storage facility for vegetables, a dry grain storage area, outlets for farmer inputs and outputs, a farmer training center, a soil testing laboratory, and a farm implement bank. The brainchild of Navneet Ranjan, this facility works in collaboration with state partners, CIMMYT, and the Cereal System Initiative for South Asia (CSISA) project.

In the decade since its formation, the center has served nearly 100 villages in and around Begusarai, helping thousands of smallholder farmers access equipment, knowledge, and seeds they otherwise do not have access to.

“Since coming to the center I have not only benefited in using mechanized services at a small price but also learned about new schemes and incentives provided to smallholder farmers by the government,” said Ram Kumar Singh, a farmer from the village of Bikrampur. A similar story was related by Krishadev Rai from the village of Sakarpura, who said the laser land leveler machine at the center dramatically lowered costs associated with irrigation and other inputs, including information about different fertilizers and varietal seeds available at the market.

Farmers from the region have benefited immensely from the services of the center. According to Anurag Kumar, a CIMMYT senior research associate with CSISA, “The existence of the state-of-the-art center in the last decade has helped over 25,000 smallholder farmers avail themselves of services and information on farming and agriculture.” He said the center has also helped promote conservation agriculture technologies, implement climate-resilient farming practices, and build the capacity of smallholder farmers.

Ranjan, a native of the region, is a marine engineer by education but has diversified experiences from different sectors. A decade ago, Ranjan returned home after pursuing higher education and working in distant cities in India and abroad.

Ranjan met recently with CSISA representatives to share his motivation, hopes, and aspirations about the reach and impact of the Bhusari Center for farmers of Begusarai and beyond.

How did the Bhusari Agri-business center, popularly known as Bhusari Cold Storage, come into being?

In 2012, driven by a deep-rooted desire to bridge the significant societal gap between my professional advancements in the corporate world and the enduring struggles within my rural hometown in Bihar, I founded the Bhusari Agri-business Center. The name “Bhusari” was thoughtfully chosen, as it represents approximately 50 villages in the area, traditionally, and collectively known by this moniker, underscoring our commitment to the region’s agricultural heritage and community.

From the start, we knew we wanted our center, born from a combination of my family’s initial investment and funding secured through a State Bank of India loan alongside a significant subsidy from the Government of Bihar, to serve as a comprehensive agri-business solution. We designed this project not only as a business venture but as a social enterprise aimed at improving the livelihoods of local farmers by ensuring better returns for their produce, disrupting the traditional agricultural value chain that often left them exploited.

The establishment of Bhusari Cold Storage stands as a testament to the potential of marrying native understanding with professional management to foster socio-economic development in rural areas.

During an interactive session with progressive farmers, Ranjan listens to a farmer express his expectation from the Bhusari center. (Photo: CIMMYT)

What has been your biggest achievement with the establishment of Bhusari Cold Storage?

If I were to pinpoint our most significant achievement, it would be the creation of the farm implement bank. This initiative has helped revolutionize the agricultural landscape for the small-scale farmers in our area by providing them with access to modern farming equipment.

Before the inception of this bank, many farmers in our region faced challenges because of outdated farming techniques and the lack of access to modern machinery, which often resulted in inefficient farming practices and high operational costs. Introducing zero tillage, planters, harvesters, and especially the laser land leveler, has been a game-changer. This farm implement bank has also popularized the use of advanced agricultural technologies among the farming community. The positive effects of these modern farm implements have been many, including reduced labor costs, improved crop yields, and more sustainable farming practices.

How has a project like CSISA and other partners supported farmers and the efforts of agri-entrepreneurs like you in the region?

The support from CSISA and its partners has helped enhance the capabilities of farmers and bolster the efforts of agri-entrepreneurs in the region. CSISA’s contribution, particularly through its project scientists and field technicians, has been pivotal in training farmers. This collaboration has led to a significant increase in awareness and adoption of advanced agricultural implements and practices, including zero tillage and land levelers, among the farming community.

The center has conducted extensive training programs for many farmers, thanks to the resources, knowledge, and technology facilitated by CSISA, the State Department of Agriculture, and Krishi Vigyan Kendra (KVK). This partnership has enabled us to disseminate knowledge and tools to the farmers and drive the adoption of innovative farming techniques that lead to higher efficiency and reduced costs. The collaboration with CSISA and state partners has been a cornerstone in our mission to modernize agriculture in the region, making significant strides towards sustainable farming practices, and enhancing the livelihoods of the local farming community. Through these collective efforts, we have been able to empower farmers with the skills and technologies necessary to thrive in a competitive and evolving agricultural landscape.

Navneet Ranjan with Sarah Fernandes, CIMMYT global communications manager (2nd from left), during her visit to the Bhusari Cold Storage center with CSISA colleagues. (Photo: CIMMYT)

What do you hope for next for Bhusari or other endeavors in agri-business to support smallholder farmers?

Looking ahead, our vision for Bhusari and future agri-business endeavors deeply focuses on empowering smallholder farmers by enhancing their access to financial resources and tailored agricultural solutions. By addressing the financial barriers that often hinder farmers’ ability to invest in their operations, we aim to unlock new opportunities for growth and innovation in the agricultural sector. A key priority is to streamline the process so that these farmers can obtain credit lines and working capital more efficiently.

Additionally, recognizing farmers’ diverse needs and challenges in different regions, we are committed to making customized farm implements more readily available. These tailored tools are essential for increasing agricultural efficiency and productivity, as farming practices and conditions vary greatly across regions. To complement these efforts, we plan to expand our training programs and provide more customized knowledge to farmers.

Ultimately, the aim is to scale up this model and create several other replicable projects across Bihar and beyond. By demonstrating the success of these initiatives, we hope to inspire and facilitate similar transformations in other regions, fostering a more sustainable, efficient, and prosperous agricultural landscape for smallholder farmers.

Cover photo: Founder Navneet Ranjan (5th from right) and CIMMYT colleagues with beneficiary farmers at the Bhusari center in Begusarai, Bihar. (Photo: Nima Chodon/CIMMYT) 

Empowering communities through sustainable agriculture

Miriam Torres conducts field activities in eastern Honduras. (Photo: Mirian Torres)

In the eastern region of Honduras, Mirian Lizeth Torres, an agroindustrial engineer who graduated from the National Autonomous University of Honduras, is making a difference. Her commitment to agricultural sustainability and the empowerment of local communities through sustainable agriculture is evident in her work with the Eastern Regional Farmers Association (ARSAGRO, for its acronym in Spanish) and with her participation in the InnovaHub Oriente, set within the framework of the AgriLAC Resiliente initiative.

“In 2023, I volunteered at ARSAGRO, addressing crucial issues with producers, from events and extension to projects with CIAT that focused on the assessment of plots, water, soil, forest, pests and diseases, bean nutrition, grain quality, among others,” said Mirian, highlighting the breadth of her experience.

Her participation in the InnovaHub Oriente has been key to integrating theory and practice in the field. “I am a student of the conservation agriculture course, where I have explored agronomic practices that improve the sustainability of crops, creating more resilient systems,” she highlights. “These practices are shared with producers through innovation modules, which are plots where conservation agriculture innovations are implemented and compared, side by side, with conventional methods.”

Mirian knows the importance of communicating this knowledge to communities. “At events held on these plots, we shared practices and knowledge, reaching producers who were not familiar with these technologies,” she explains. “Thanks to AgriLAC, in 2023 we contributed significantly to the empowerment of producers and organized groups in eastern Honduras.”

Additionally, Mirian is proud of her role as an inspiration for the inclusion of youth and women in agriculture. “At every event we organize, we see increasing participation of young people and women,” she states. “The empowerment of women in agricultural activities has been notable, with many resuming activities in the field through the transfer of knowledge.”

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field; it is that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

In a world where sustainable agriculture is essential, Mirian Lizeth Torres has assumed solid leadership from the field, helping her community move towards a more sustainable and equitable agricultural future.

Looking to the future, Mirian hopes to further encourage youth participation. “My invitation to young people is not to abandon the field, but rather that they get involved in agricultural issues to contribute to the livelihood of their families and, at the same time, reduce migration,” she states with determination.

Advancing conservation agriculture

A practical demonstration at Jabalpur. (Photo: CIMMYT)

Agriculture feeds the world. Yet traditional cycles of ploughing, planting, and harvesting crop and biomass products is inefficient of labor and other scarce resources and depletes soil health while emitting greenhouse gases that contribute to climate change.

One effort to ameliorate the negative effects of farming is a set of practices referred to as conservation agriculture (CA), based on the principles of minimal mechanical soil disturbance, permanent soil cover with plant material, and crop diversification.

To deliver advanced, high-level instruction on current innovative science around important aspects of cropping and farming system management to scientists from India, Bangladesh, Egypt, and Morocco, the 12th Advanced Conservation Agriculture Course hosted by the Indian Council of Agricultural Research (ICAR), CIMMYT, and the Borlaug Institute for South Asia (BISA) took place in India from December 10 to 24, 2023.

SK Chaudhari, deputy director general for Natural Resource Management, ICAR; HS Jat, director of the Indian Council of Agricultural Research-Indian Institute of Maize Research (ICAR-IIMR); Arun Joshi, country representative for India and BISA managing director, CIMMYT-India; Mahesh K. Gathala, senior systems agronomist and science lead, CIMMYT-Bangladesh; and Alison Laing, agroecologist, CIMMYT-Bangladesh, all attended the opening ceremony at the National Agricultural Science Complex in New Delhi, India.

This CA course integrated scientific advancements and multidisciplinary techniques to sustainably develop agricultural systems, restore natural resources, and improve climate resilience in agriculture throughout Asia and North Africa. It was held at leading research centers throughout India.

SK Chaudhari welcomed delegates to the course and stressed its practical character and efficacy in promoting CA management innovations, as evidenced by the significant achievements and international reputations of many former attendees and resource personnel.

“As climatic variability and change increase, the need to manage agronomic risks grows, and CA is an effective tool for farmers and scientists in both irrigated and rainfed systems,” said Chaudhari.

Twenty rising scientists from such fields as agronomy, soil science, plant protection, agricultural engineering, plant breeding, and extension, took part in the workshop where they gained a better understanding of all aspects of conservation agricultural methods in rainfed and irrigated ecosystems, as well as exposure to wide networks with prominent international scientists. Organizers prioritized the inclusion of female scientists, who made up 40% of attendees.

The workshop empowered participants to act as conservation agriculture ambassadors and champions of modern, novel agronomic methods when they return to their home institutions.

Rajbir Singh, ICAR assistant director general for Natural Resource Management, and ML Jat, global research program director of Resilient Farm and Food Systems, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) provided keynote addresses at the closing ceremony, held at the ICAR-Central Soil Salinity Research Institute in Karnal, Haryana, India.

Lennin Musundire

Lennin Musundire is responsible for supporting the National Agriculture Research Systems (NARS) in Africa to develop breeding improvement plans to deliver higher genetic gains targeted at smallholder farmers. These improvement plans will focus on product profiles, breeding scheme optimization, use of genotyping, automation, mechanization, appropriate breeding software and links with seed producers. Provides support to national breeding teams in African countries, implements an all-inclusive internal breeding pipeline optimization plan supported by the Excellence in Breeding platform as well as supports national partners to integrate and build breeding networks with CGIAR institutes and regional, national partners.

 

Advanced training on conservation agriculture focuses on creating sustainable agronomic systems

CIMMYT-BISA-ICAR organized a two-week training program on conservation agriculture (CA) to demonstrate how CA can be a sustainable farming method and an effective tool for farmers and scientists in both irrigated and rainfed systems to manage agrifood system risks.

Participants engage in various activities during the two-week course. (Photo: Richa Sharma Puri/CIMMYT)

The training was jointly conducted by CIMMYT in collaboration with the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research – Central Soil Salinity Research Institute (ICAR-CSSRI). It was held at the BISA research facilities in Jabalpur and Ludhiana, India, and ICAR-CSSRI in Karnal, India, from 9 December to 24 December 2023.

Creating resilient agrifood systems

Conservation agriculture is an ecosystem approach to agricultural land management based on three interrelated principles: minimal soil disturbance, permanent soil cover, and crop diversification. It helps farmers boost yields, regenerate natural resources, reduce cultivation costs, and create resilient production systems. This helps protect the environment and enhance livelihoods of rural populations, especially in the Global South.

In this region, the rural population depends on natural resources – land, freshwater, and coastal fisheries – for survival. However, the depletion of soil fertility, scarcity of water resources, exacerbated by environmental pollution and climate change-induced stresses, prove challenging to irrigated and dryland agriculture production systems. This puts agrifood systems in South Asia and Africa under tremendous pressure.

Despite the benefits, farmers face significant barriers to adopting CA practices. Lack of knowledge and skills, limited access to appropriate seeds and equipment, lack of policy support, under-developed value chains, and non-acceptance of the fact that CA can yield better results and long-term benefits often prevents farmers from adopting CA practices. Hence, capacity development is vital for the adaptation and scaling of CA-based technologies among smallholder farmers.

To cater to these needs, an Advanced Course on Conservation Agriculture in Asia – a Gateway for Sustainable and Climate Resilient Agrifood Systems was launched in 2010. Later, it was expanded to North Africa. The course links scientific advances and multidisciplinary approaches for upgrading the skills of participants for sustainable intensification and diversification of production systems, enhancing resilience, and conserving natural resources. Since its inception, this training series has directly benefited about 220 researchers, development personnel, and policymakers from 20 countries.

The 12th edition of the training in India saw mid-career researchers and development officers from Morocco, Egypt, Bangladesh, and India participate. Approximately 40% of the attendees were women.

Highlights from the India training program 

The inaugural session commenced on 9 December 2023 at the NASC Complex in New Delhi, India. Present at the opening ceremony were chief guest S.K. Chaudhari, deputy director general – Natural Resource Management, ICAR; Arun Joshi, CIMMYT regional representative and managing director of BISA; and Mahesh K Gathala, course coordinator, and Alison Laing, agroecologist from CIMMYT in Bangladesh.

During the welcome address, Joshi informed that CIMMYT and BISA are committed to capacity development of national partners around the world. Chaudhari emphasized the effectiveness in facilitating innovations in CA management. “Under increasing climate variability and change, the need to manage agronomic risks is even more significant and CA is an effective tool for farmers and scientists in irrigated and rainfed systems,” he said.

Participants were introduced to the genesis, background, and objectives of the course by Gathala. Resource persons across diverse disciplines informed the participants about innovative and cutting-edge research in all aspects of CA in both irrigated and dryland cropping systems, including advanced agronomy; mechanization; farm, soil, and water interactions; plant protection, health and crop breeding; climate resilience; farming systems simulation and analysis; agribusiness management; women’s empowerment and gender equity; and agricultural extension and out-scaling. Participants also gained practical knowledge and skills at the BISA research stations where extensive trainings were conducted under the guidance of Ravi Gopal Singh, Raj Kumar, and Lalit Sharma, course coordinators. They organized a series of sessions, along with the hands-on training, at the CA experiment farm in the BISA research facilities. Participants also toured 500 acres of farms at each of the locations. They visited farm facilities such as wheat research trials, molecular laboratory, precision nitrogen nutrition facility, seed processing unit, and farm machinery section.

Workshop participants conduct activities with farmers in the field. (Photo: Richa Sharma Puri/CIMMYT)

The group also visited ICAR-CSSRI facilities in Karnal where R.K. Yadav, director, ICAR- CSSRI, welcomed the participants and highlighted the international and national collaboration activities at CSSRI and how long-term experiments on CA are managing and generating science-based evidence to inform policy and capacity building.

Special visits were organized to farm machinery manufacturers in the region to facilitate industry-participant interactions. Participants visited the Landforce factory at Amargarh, a leading manufacturer of all ranges of farm equipment – from seeding to harvesting and processing. This firm is equipped with the latest manufacturing facilities and techniques such as robotic welding, assembling and automated paint. Later, the group visited the National Agroindustry at Ludhiana, a top manufacturer of planters including bed planters, zero till drills, Happy Seeders, pneumatic and precise planters.

Finally, participants were taken to the farmer fields to interact with the farmers and observe the impact first-hand. They met with a progressive farmer group at Karnal who shared their experiences of practicing CA for the last few years. Post these visits and learning sessions, a closing ceremony was organized at CSSRI at Karnal which was chaired by R.K. Yadav and attended by special guests Rajbir Singh, ADG-ICAR and ML Jat, global director RFFS, ICRISAT. “The session on CA machinery was very helpful and carbon credit was an essential part of our learning. We also got an opportunity to exchange our ideas and experiences with researchers from Morocco, Egypt, and Bangladesh. We sincerely thank the organizers for making us confident and technically smart CA personnels,” said a participant from India.

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

George Michael Listman

With 30 years of experience as a CIMMYT science writer/editor and a background in journalism, science, and foreign languages, since his retirement in 2018 Mike continues to strongly support the CIMMYT Communications team and Center efforts to craft and share news about its science and impact to diverse audiences.

Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of southern Africa (ACASA)

Conservation agriculture (CA) has increasingly been promoted in southern Africa to address low agricultural productivity, food insecurity, and land degradation. Despite significant experimental evidence on the agronomic and economic benefits and the large scaling-up investments by donors and national governments, the adoption rates of CA practices among smallholder farmers are low and slow.

With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA) and CIMMYT, ACASA strives to understand “why previous efforts and investments to scale CA technologies and practices in southern Africa have not led to widespread adoption.” It is a three-year project implemented in Malawi, Zambia, and Zimbabwe, where CA is part of national policy.

Since 2021, the project has undertaken extensive surveys aimed to understand incentives, drivers, and barriers of CA adoption across the three countries (Malawi, Zambia, and Zimbabwe) typifying much of the southern Africa smallholder systems. The aim of the project is to consolidate the lessons learned so far and provide a pathway to scaling and foster the next generation of social, crop, agronomic and climate research; to mainstream CA enabled by fundamental paradigm shifts in farming practices, markets, and social institutions for sustainable intensification of smallholder farming systems of southern Africa.

Project objectives include –

  • Understanding the contexts of smallholder farmer in southern Africa to identify the drivers and barriers preventing adoption of CA practices, including biophysical, socio-economic, institutional and policy constraints
  • Identifying labor-efficient mechanization options for smallholder farmers
  • Identifying opportunities and tools for better targeting of appropriate CA practices and options across heterogenous agroecologies and farm types, and
  • Identifying approaches and strategies for inclusive scaling of CA practices (policy, institutional and value chain entry points and pathways to promote and scale CA)

 

Every drop of water matters: Leading global research institutes ally to aid farmers in dry and saline ecosystems

CIMMYT and ICBA sign a memorandum of understanding. (Photo: ICBA)

Dubai/Mexico City, 10 January 2024 – An award-winning not-for-profit agricultural research center recognized for its work on sustainable agriculture in the Middle East and North Africa is joining forces with the global organization whose breeding research has contributed to half the maize and wheat varieties grown in low- and middle-income countries.

The International Center for Biosaline Agriculture (ICBA) and CIMMYT have signed an agreement to jointly advance the ecological and sustainable intensification of cereal and legume cropping systems in semi-arid and dryland areas.

“Farmers in such settings confront enormous risks and variable conditions and often struggle to eke out a livelihood, but they still comprise a critical part of the global food system and their importance and challenges are mounting under climate change,” said Bram Govaerts, director general of CIMMYT. “ICBA brings enormously valuable expertise and partnerships to efforts that will help them.”

The specifics of the two centers’ joint work are yet to be defined but will cover soil health, salinity management approaches, crop productivity and breeding, gender-transformative capacity development, and finding markets for underutilized crops, among other vital topics.

Established in 1999 and headquartered in the United Arab Emirates (UAE), ICBA conducts research and development to increase agricultural productivity, improve food security and nutrition, and enhance the livelihoods of rural farming communities in marginal areas. The center has extensive experience in developing solutions to the problems of salinity, water scarcity and drought, and maintains one of the world’s largest collections of germplasm of drought-, heat- and salt-tolerant plant species.

“We are excited about the synergies our partnership with CIMMYT will create. It will focus on a range of areas, but the priority will be given to developing breeding and cropping system innovations to improve farmers’ food security and nutrition, while enhancing water security and environmental sustainability, and creating jobs and livelihoods in different parts of the world,” said Tarifa Alzaabi, director general of ICBA.

Based in Mexico but with projects in over 80 countries and offices throughout Africa, Asia and Latin America, CIMMYT operates a global seed distribution network that provides 80% of the world’s breeding lines for maize and wheat, including many that offer superior yields and resilience in dry conditions and in the presence of crop diseases and pests.

The center is also conducting breeding and seed system development for dryland crops such as sorghum, millet, groundnut, cowpea, and beans, known for their climate resilience and importance as foods and sources of income for smallholder farm households and their communities.

With global and local partners, CIMMYT is also refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

As part of the new agreement, the centers will also explore research collaborations with universities and research institutions in the UAE to develop and test maize varieties that are suitable for the UAE’s climate and soil conditions, as well as organizing training programs and workshops for farmers, extension workers, and other stakeholders in the UAE to build their capacity in maize production and management.

About ICBA

The International Center for Biosaline Agriculture (ICBA) is a unique applied agricultural research center in the world with a focus on marginal areas where an estimated 1.7 billion people live. It identifies, tests, and introduces resource-efficient, climate-smart crops and technologies that are best suited to different regions affected by salinity, water scarcity, and drought. Through its work, ICBA helps to improve food security and livelihoods for some of the poorest rural communities around the world.

www.biosaline.org

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

staging.cimmyt.org

For more information or interviews:

CIMMYT

Sarah Fernandes

Head of Communications

s.fernandes@cgiar.org

ICBA

Abdumutalib Begmuratov

Head of Knowledge Management and Communications

a.begmuratov@biosaline.org.ae