Skip to main content

Tag: conservation agriculture

Pulses, cobs and a healthy soil prove the success of a rural innovator

Mary Twaya is an exemplary farmer in Lemu, a rural drought-prone community in southern Malawi, near Lake Malombe. On her one-hectare farm she grows cotton, maize, and legumes like groundnut and cowpea, which she just picked from her fields. Since agriculture is Twaya’s sole livelihood, it is important for her to get good harvests, so she can support her three children and her elderly mother. She is the only breadwinner since her husband left to sell coffee in the city and never returned.

Agriculture is critically important to the economy and social fabric of Malawi, one of the poorest countries in the World. Up to 84% of Malawian households own or cultivate land. Yet, gender disparities mean that farmland managed by women are on average 25% less productive than men. Constraints include limited access to inputs and opportunities for capacity building in farming.

Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)
Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)

Climate change may worsen this gender gap. Research from the International Maize and Wheat Improvement Center (CIMMYT) shows that there are multidimensional benefits for women farmers to switch to climate-smart agriculture practices, such as planting drought-tolerant maize varieties and conservation agriculture with no tillage, soil cover and crop diversification.

Twaya was part of a CIMMYT project that brought climate-smart agriculture practices to smallholder farmers in Malawi, Zambia and Zimbabwe.

She was enthusiastic about adopting climate-smart agriculture practices and conservation agriculture strategies in her plot. “I have always considered myself an active farmer, and when my husband left, I continued in the project around 2007 as part of the six lead ‘mother farmers’ with about 30 more ‘baby farmers’ learning through our field trials,” Twaya explained.

“We worked in Lemu since 2007 with Patrick Stanford, a very active and dedicated extension officer who introduced conservation agriculture to the village,” said CIMMYT agronomist Christian Thierfelder. “Farmers highlighted declining yields. The Lemu community was keen to transform their farming system, from conventional ridge tillage to more sustainable and climate-adapted cropping systems.” This was an ideal breeding ground for new ideas and the development of climate-smart solutions, according to Thierfelder.

Mulching, spacing and legume diversification

Showing her demonstration plot, which covers a third of her farm, Twaya highlights some of the climate-smart practices she adopted.

“Mulching was an entirely new concept to me. I noticed that it helps with moisture retention allowing my crops to survive for longer during the periods of dry spells. Compared to the crops without mulching, one could easily tell the difference in the health of the crop.”

“Thanks to mulching and no tillage, a beneficial soil structure is developed over time that enables more sustained water infiltration into the soil’’, explained Thierfelder. “Another advantage of mulching is that it controls the presence of weeds because the mulch smothers weeds unlike in conventional systems where the soil is bare.”

Research shows that conservation agriculture practices like mulching, combined with direct seeding and improved weed control practices, can reduce an average of 25-45 labor days per hectare for women and children in manual farming systems in eastern Zambia and Malawi. This time could be used more productively at the market, at home or in other income-generating activities.

A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)
A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)

After 12 years of practicing conservation agriculture, Twaya confirms that she does not spend too much time in the field because she just uproots the weeds with no need for using a hoe. This makes the weeding task less laborious and allows her to spend her time on other chores such as fetching water, washing laundry or cleaning her homestead. “I have time to also go to the village banking and loan savings club to meet with others”.

Adopting optimum plant density, instead of throwing in three seeds in each planting hole was another transformational change. The “Sasakawa spacing” — where maize seeds are planted 25 centimeters apart in rows spaced every 75 centimeters — saves seed and boosts yields, as each plant receives adequate fertilizer, light and water without competing with the other seeds. This practice was introduced in Malawi in the year 2000 by Sasakawa Global.

Twaya pays more attention to the benefits of planting nitrogen-fixing crops alongside her maize, as she learned that “through crop rotation, legumes like pigeon pea improve the nutrition of my soil.” In the past she threw pigeon pea seeds loosely over her maize field and let it grow without any order, but now she practices a “double-up legume system,” where groundnut and pigeon pea are cropped at the same time. Pigeon peas develop slowly, so they can grow for three months without competition after groundnut is harvested. This system was introduced by the Africa RISING project, funded by USAID.

Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)
Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)

A mother farmer shows the way

Switching to climate-smart agriculture requires a long-term commitment and knowledge. Some farmers may resist to the changes because they initially find it new and tedious but, like Twaya observed, “it may be because they have not given themselves enough time to see the long-term benefits of some of these practices.”

With all these innovations — introduced in her farm over the years with the support of CIMMYT and the Ministry of Agriculture, Irrigation and Water Development of Malawi — Twaya reaped important economic and social benefits.

When Twaya rotates maize and pigeon pea, the maize stalks are healthy and the cobs are big, giving her higher yields. Passing-by neighbors will often exclaim ‘‘Is this your maize?’’ because they can tell it looks much more vigorous and healthier than what they see in other fields.

For the last season, Twaya harvested 15 bags of 50kg of maize from her demo plot, the equivalent of five tons per hectare. In addition to her pigeon pea and groundnut crops, she was able to feed her family well and earned enough to renovate her family home this year.

This new way of managing her fields has gained Twaya more respect and has improved her status in the community.

Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)
Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)

Climate-smart agriculture: A winning strategy for farming families in El Niño seasons

Approaching the homestead of Joseph Maravire and his wife, Reason, on a warm late August afternoon in Bvukururu, Zaka district, Zimbabwe, heaps of dry straw in their farmyard are prominent. ‘’This is for mulching for the forthcoming cropping season,’’ explains Reason. Maize stalk residues from last harvest are also stored to feed their livestock and to mix into the manure or for bedding the herd of cattle. These practices have become the norm for the Maravire family as they prepare for the next maize planting season in Zaka, one of the hottest areas of southern Zimbabwe.

“We never knew of mulching until we interacted with CIMMYT scientists in 2009. Now I cannot imagine working in my field without applying mulch,” says Reason. As one of five families selected in their village to participate in the scaling out of climate-smart agricultural technologies since 2009, the Maravire family demonstrates the evident transformative power of climate-smart agriculture.

Joseph and Reason by their heap of dry straw which is collected in preparation for mulching in the forthcoming 2019-20 season. In this drought-prone region, the Maravire learned the benefits of mulching to protect crops from recurrent dry spells. (Photo: Shiela Chikulo/CIMMYT)

Climate-smart agriculture involves farming practices that improve farm productivity and profitability, help farmers adapt to the negative effects of climate change and mitigate climate change effects, e.g. by soil carbon sequestration or reductions in greenhouse gas emissions. Climate-smart practices, such as the locally practiced conservation agriculture, aim at conserving soil moisture, retaining crop residues for soil fertility, disturbing the soil as minimally as possible and diversifying through rotation or intercropping.

As CIMMYT research shows, these practices can boost production and make farmers more food secure.  This is good news for Zimbabwean farmers such as the Maravires. During an episode of El Niño in the 2015-16 and 2018-19 cropping seasons, large parts of southern Africa experienced prolonged dry spells, erratic rainfall and high temperatures initially with floods towards the end of the cropping season. A recent humanitarian appeal indicated that at least 2.9 million people in Zimbabwe were severely food insecure due to poor or no harvests that year.

Under the “Out-scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe’’ project — funded by the German development agency GIZ and the Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), and implemented under the leadership of the Zambian Agriculture Research Institute (ZARI) with technical oversight by CIMMYT and other collaborating partners from Malawi and Zimbabwe —  farmers from 19 rural communities in the three target countries received training and guidance on climate-smart agriculture practices and technologies, such as mulching, rotation and the use of direct seeders and ripper tines to practice no tillage.

Mastering climate-smart techniques, season by season

On their 0.4-hectare plot dedicated to the project activities, Joseph and Reason practiced four different planting techniques: direct seeding (sowing directly into crop residue), ripline seeding (sowing in lines created by animal draft-powered rippers), basin planting (sowing manually into planting basins created by hand hoes), and the traditional ox drawn plowing and seeding. They then planted one traditional and three drought-tolerant maize varieties.

“It soon became clear to us that using a direct seeder or ripper tine, combined with mulching, was the best option, as these sections of the field retained more moisture and produced more maize than the conventional system,” explained Joseph Maravire. Beginning in 2013, the family also started rotating maize and cowpeas and observed a significant increase in their yields. They decided to apply climate-smart agriculture practices on the rest of their 2.5-hectare farm.

“We learned that cowpeas leave nitrogen in the soil and by the time of harvesting, the leaves from the cowpeas also fall to the ground as residue and add to the mulch for the soil. The shade of cowpea also reduces weed pressure and manual weeding,” said Maravire.

Yields and food security

With these practices, the family has harvested remarkably, even during the dry seasons. In 2015-16, the worst El Niño on record, they harvested 2 tons of maize, despite the severe drought, while other households barely got anything from their fields. In good years, like the last cropping season, the family harvests 3.5 to 4 tons of maize from their entire field, three times more than their annual family food needs of approximately 1.3 tons. The additional cowpea yields of both grain and leaves provide protein-rich complementary food, which improves the family’s nutrition. To share some of these benefits with their community, the Maravire family donates up to 10% of their produce to poor elderly households in their village.

Overcoming challenges and building resilience

However, the new farming practices did not come without challenges.

“In the early days of the project, the ripper tine was not simple to use because we could not get the right depth to put manure and the maize seeds,” said Joseph Maravire.

They found a solution by making rip lines around October or November, applying manure at the onset of the rains, ripping again and placing the seed to mix with the manure.

Fall armyworm was another devastating challenge for their plot, as was the case around Zimbabwe. Like other farmers in Zimbabwe, the Maravires had access to pesticides, but the caterpillar showed some resistance to one type of pesticide. Maravire expressed interest in learning biological control options to reduce the pest’s spread.

Scaling climate smart technologies beyond the Maravire homestead

After several years of consistently good harvests with climate-smart agriculture options, the Maravire family has become a model within their community. Working closely with their agricultural extension officer, they formed a CSA farmer support group of 20 families. Joseph Maravire provides services for direct seeding and ripping to the CSA group and ensures that all of their land is prepared using no-tillage planting techniques. The couple regularly demonstrates climate-smart practices to peers during field days, where an average of 300 villagers attend. They also share their knowledge about green manure cover crops — crops such as lablab, jackbean, sunhemp, and velvet bean which, retained on the soil surface, serve as organic fertilizer — a practice they learned from project activities.

For Reason and Joseph Maravire, the rewards for adopting climate-smart agriculture benefit the family beyond food security. The income earned from maize grain sales and cowpea marketing has helped them acquire assets and rebuild one of their homes that was destroyed by Cyclone Idai in March 2019.

Joseph is confident that his family will always produce well on the replenished soil and the technologies they have learned through the project will continue to define their farming practices.

The house of Maravire homestead was damaged by Cyclone Idai in March. Joseph is nearing completion of rebuilding the house using proceeds from recent cowpea sales. (Photo: Shiela Chikulo/CIMMYT)

More photos of the Maravire family can be seen here.

Cornell University appoints Bram Govaerts as Andrew D. White Professor-at-Large

CIMMYT researcher Bram Govaerts participates in the World Food Prize and Borlaug Dialogue.
CIMMYT researcher Bram Govaerts participates in the World Food Prize and Borlaug Dialogue.

Expertise, multiple achievements and a significant contribution to sustainable agri-food systems in Mexico and globally, have merited Bram Govaerts, director of the Integrated Development Program and regional representative for the Americas at the International Maize and Wheat Improvement Center (CIMMYT), Cornell University’s appointment as Andrew D. White Professor-at-Large. This is a distinction granted to individuals whose work in science, education, social sciences, literature and creative arts has had great impact and international visibility.

Cornell University launched the Professors-at-Large program to commemorate its centenary and to honor its first president, Andrew D. White. The program secures a connection between the university and its faculty with the world, global issues, great thinkers and outstanding intellectuals. Since then, personalities such as philosopher Jacques Derrida, writer and poet Octavio Paz, geneticist M. S. Swaminathan, and Nobel Peace Prize recipient Norman Borlaug have received this distinction.

“I was honored to learn about my nomination and glad to be interviewed, but I was happily surprised and humbled to learn that I had been chosen to join this group of distinguished thinkers and artists, which has welcomed such outstanding members as Norman Borlaug and Octavio Paz,” said Govaerts.

Professors-at-Large take the responsibility to participate, over a six-year period, in several activities that strengthen the international academic community and are, afterwards, considered distinguished and lifetime members of the university.

Govaerts takes inspiration from the “take it to the farmer” vision, and has been instrumental to the development of CIMMYT’s project portfolio, which integrates innovations in maize and wheat production systems by minimizing their environmental impact.

Govaerts shares this acknowledgement with his team and collaborators who have joined efforts to achieve the objectives set in Colombia, Ethiopia, Guatemala, Mexico and many other countries that have taken the decision to make a difference.

In 2014, Bram Govaerts received from the World Food Prize Foundation the Norman E. Borlaug Award for Field Research and Application, endowed by the Rockefeller Foundation, for leading the MasAgro project and finding innovative ways of applying science to improve the productivity and resilience of small and medium-sized maize and wheat farmers in Mexico.

Ensuring food security for a growing planet

Experimental harvest of provitamin A-enriched orange maize, Zambia. (Photo: CIMMYT)

In just over a decade there will be around 8.5 billion people on earth, and almost 10 billion by 2050, according to the United Nations World Population Prospects 2019: Highlights.

The report said the newcomers will be concentrated in regions already facing grave food insecurity, rising temperatures, scarce water and erratic rainfall, such as sub-Saharan Africa and South Asia.

Even now, hungry persons worldwide exceed 850 million and an estimated 2 billion suffer micronutrient malnutrition, with costly health and social impacts.

By mid-century 7 of every 10 people will live in cities, according to United Nations data. With more mouths to feed and fewer farmers, food systems will be hard-pressed to grow and supply enough nutritious fare at affordable prices, while mitigating environmental damage.

Facing the challenges

As the examples below show, applied science and partnerships can help address these complex issues.

Decades of research and application by scientists, extension workers, machinery specialists, and farmers are refining and spreading practices that conserve soil and water resources, improve yields under hotter and drier conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.

A farmer tends a long-term on-farm conservation agriculture trial for a rice-wheat-mungbean cropping system in Rajshahi district, Bangladesh. (Photo: CIMMYT)

More and more African farmers are growing drought tolerant maize that gives bountiful harvests with good rainfall and provides grain in drier years when other maize varieties wilt.

An approach known as biofortification, involving the creation of micronutrient-dense staple crops using breeding, can improve nutrition as part of an integrated, food systems strategy. CIMMYT, various institutions of CGIAR, and numerous national research organizations and scaling partners have developed and released more than 60 improved varieties of maize and wheat in 19 countries of Africa, Asia, and Latin America. Their grain features enhanced levels of the essential micronutrients zinc or ­pro-Vitamin­ A.

The sustained support of funders and policymakers will help ensure that CIMMYT staff and partners are able to continue improving the livelihoods and food security of smallholder farmers and resource-poor consumers, as world population density increases.

Md. Atikuzzamman

Md. Atikuzzamman is an agricultural development officer working with CIMMYT’s Sustainable Intensification Program in Bangladesh.

He carries out research and extension work within maize and wheat-based cropping systems with a focus on different innovative crop management practices and technologies such as agricultural mechanization, GIS and remote sensing techniques.

Prior to joining CIMMYT, Atikuzzamman worked as an assistant production manager at a seed company in Bangladesh.

 

Women and youth find profitable business pathways through small-scale mechanization

Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT

African farmers have ten times fewer mechanized tools per farm area than farmers in other developing regions, according to the Malabo Panel’s mechanization report. For the past six years, the Australian Centre for International Agricultural Research (ACIAR) funded Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project has explored ways to address poor access to appropriate mechanization solutions, which is costing smallholders a lot in lost productivity.

“One of the key outcomes of the FACASI initiative has been to present women and youth with pathways into diverse profitable income generating businesses using small mechanization,” says Alice Woodhead, professor in rural economies at the University of Southern Queensland in Australia. Woodhead shared her impressions following a field visit to Makonde, in northwestern Zimbabwe, as part of the FACASI Phase 2 final review meeting held in May. Almost 40 public and private sector project partners from Zimbabwe and Ethiopia attended the event in Harare as well as ACIAR representatives.

Farm machinery: women entrepreneurs thrive on two wheels

Agatha Dzvengwe and Marianne Jaji shared their business experience as two-wheel tractor (2WT) service providers in Makonde. The 2WT, which can be used for multiple purposes from transporting, planting, fertilizer application and shelling, allows them to plant efficiently and provides additional income through hiring out their tractors to neighboring farmers. For instance, during the 2018/19 season, Dzvengwe used the Fitarelli planter to plant ten hectares of maize, two hectares of sugar beans and five hectares of soybeans. Because of the planter’s efficiency, she had enough extra time to hire out planting services to neighboring farmers, earning $100 for one hectare of maize, and double for the planting of soybean or sugar beans.

Marianne Jaji provides 2WT based shelling services, which she says generates steady income for her household, enabling her to contribute to important household decisions. Despite the 2018/19 season being characterized by drought, Jaji was confident that she could still earn a decent income from neighboring farmers engaging the 2WT harvesting services. Other women service providers reported relief from labor drudgery and empowerment. “We have been freed from the burden of toiling in the field. Now that I own a 2WT, the society respects me more.”

“In a business dominated by men, women like Agatha and Marianne can become successful entrepreneurs, providing crucial farming services for the community such as shelling, planting and transport,” explains Bertha Tandayi, a FACASI research assistant at the University of Zimbabwe, where she studies the adoption of 2WT based technologies by women entrepreneurs in Makonde and Nyanga districts.

Small-scale mechanization has higher adoption rates in areas where the most profitable services are provided, such as shelling. The benefits for entrepreneurs and the community are visible and include the creation of employment, home renovations, asset accumulation, livestock rearing, borehole drilling and the purchasing of agricultural inputs.

Mechanization demonstration during a field visit to Makonde, Zimbabwe, as part of the FACASI Phase 2 final review meeting. Photo: Shiela Chikulo/CIMMYT

Sustainable shelling enterprise for Mwanga youth group

Since establishing their enterprise in 2016 following training under the FACASI project, the Mwanga youth group is still going strong in Makonde. During a live demonstration of the medium sized sheller, Masimba Mawire remarked that the shelling business has provided steady and reliable income for the group. Brothers Shepherd and Pinnot Karwizi added that the group has gained from further training in maintenance, facilitated through the FACASI project. “It is evident that the youths have found a way to work as a business team, giving them purpose and to realize aspirations of being a business owner and not just an employee,” said Woodhead.

Of the services provided through the 2WT technologies, shelling services are in greatest demand, as this simple technology significantly reduces the time spent on shelling maize cobs. A medium sized sheller, for example, produces between five and six tons of shelled maize grain per day, over ten times more than manual shelling.

The combined benefits of income, reduced drudgery and high efficiency of the 2WT based technologies have transformed the lives of the youths and women services providers. Confident in their future, they plan to expand their business portfolios, looking at value addition options such as post-harvest processing of other crops.

Sustainable tradition

The indigenous peoples who lived in central and southern Mexico thousands of years ago developed a resilient intercropping system to domesticate some of the basic grains and vegetables that contribute to a healthy diet.

Today, small farmers in roughly the same areas of Mexico continue to use this flexible system called “milpa” to grow chili, tomatoes, beans, squashes, seasonal fruits and maize, which are essential ingredients of most Mexican dishes.

An analysis of the Mexican diet done in the context of a recent report by the EAT – Lancet Commission found that Mexicans are eating too much animal fat but not enough fruits, vegetables, legumes and wholegrains. As a result, a serious public health issue is affecting Mexico due to the triple burden of malnutrition: obesity, micronutrient deficiency and/or low caloric intake. The study also urges Mexico to increase the availability of basic foodstuffs of higher nutritional value produced locally and sustainably.

Although changing food consumption habits may be hard to achieve, the traditional diet based on the milpa system is widely regarded as a healthy option in Mexico. Although nutritional diversity increases with the number of crops included in the milpa system, its nutritional impact in the consumers will also depend on their availability, number, uses, processing and consumption patterns.

Unfortunately, milpa farmers often practice slash-and-burn agriculture at the expense of soils and tropical rainforests. For that reason, it is also important to address some of the production-side obstacles on the way to a healthier diet, such as soil degradation and post-harvest losses, which have a negative effect on agricultural productivity and human health.

The International Maize and Wheat Improvement Center (CIMMYT) engages in participatory field research and local capacity-building activities with farmers, local partners and authorities to foster innovation and to co-create strategies and procedures that help farmers produce food sustainably.

Francisco Canul Poot in his land. (Photo: CIMMYT)
Francisco Canul Poot in his land. (Photo: CIMMYT)

These efforts led Francisco Canul Poot, a milpa farmer from the Yucatan Peninsula, to adopt conservation agriculture concepts in his milpa and to stop burning soil residues since 2016. As a result, his maize yield grew by 70%, from 430 to 730 kg per hectare, and his income increased by $300 dollars. 15 farmers sharing property rights over communal land have followed his example since.

These outstanding results are encouraging more farmers to adopt sustainable intensification practices across Mexico, an important change considering that falling levels of nitrogen and phosphorus content in Mexican soils may lead to a 70 percent increase in fertilizer use by 2050.

By implementing a sustainable intensification project called MasAgro, CIMMYT contributes, in turn, to expand the use of sustainable milpa practices in more intensive production systems. CIMMYT is also using this approach in the Milpa Sustentable PenĂ­nsula de YucatĂĄn project.

At present, more than 500 thousand farmers have adopted sustainable intensification practices — including crop diversification and low tillage — to grow maize, wheat and related crops on more than 1.2 million hectares across Mexico.

Fodder for thought

A recent study shows the slow adoption of conservation agriculture practices in sub-Saharan Africa, despite their multiple benefits for smallholder farmers. In Zimbabwe, it is estimated that no more than 2.5% of cropland is cultivated under conservation agriculture principles.

One of the constraints is the lack of appropriate machinery and tools that reduce drudgery. “Addressing a wide set of complementary practices, from nutrient and weed management and judicious choice of crop varieties to labor demand, is key to making conservation agriculture profitable and feasible for a greater number of farmers,” said Christian Thierfelder, Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Farmers in the district of Murehwa, in Zimbabwe’s Mashonaland East Province, have embraced sustainable farming systems. They are benefitting from higher yields and new sources of income, and they are improving soil fertility.

Netsai Garwe (left) and Cosmas Garwe in their maize field, Ward 4, Murewa district, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Netsai Garwe (left) and Cosmas Garwe in their maize field, Ward 4, Murewa district, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Cosmas and Netsai Garwe’s homestead copes well despite the erratic weather. They own a lush one-acre field of maize and well-fed livestock: 18 cows, 9 goats and 45 free-range chickens. Two years after a crop-livestock integration initiative funded by the Australian Centre for International Agricultural Research (ACIAR) ended, the family still benefits from the conservation agriculture practices they learnt.

“We were taught the value of minimum tillage using direct seeding, rotation, mulching and weeding to ensure that our maize crop thrived,” explained Cosmas Garwe. “Intercropping and crop rotation with legumes like soybean, pigeon pea and velvet beans really improved our soil,” said Netsai Garwe.

Like the Garwes, more than 2,000 farmers in Murehwa district are scaling the production of lablab and velvet beans, which implies almost complete adoption. Effective extension support, local innovation platforms, and access to profitable crop and livestock markets have been key drivers for widespread adoption.

Better soil and cash cows

Many of these smallholder farmers’ fields have been under cultivation for generations and the granitic sandy soils, predominant in the area, have become very poor in soil organic matter, a key component of soil fertility.

“Nitrogen-fixing green manure cover crops such as velvet beans, lablab and jack beans can provide an affordable way for smallholder farmers to bring back soil fertility, especially nitrogen, into the soil,” explained Thierfelder. “Once the soils become responsive to mineral fertilizer again, a combination of leguminous crop rotations, manure use and in-organic fertilizer will provide stable and sustained crop yields of maize, their main food crop, even under a changing climate.”

Starting the second year the Garwes tried conservation agriculture on a 0.4-hectare plot, their yields improved, realizing 1.2 tons. As an additional benefit, the cover crops could be used as new animal feed sources, so they could keep maize crop residues as soil cover and increase the amount of organic matter in the soils.

Adoption of green manure cover crops was not easy at first, but farmers from Murehwa quickly realized that lablab and velvet beans improved the fattening of cattle and poultry. Drying the cover crop, they were able to produce protein-rich hay bales, sought-after in winter when other fodder stocks usually run low.

Better-fed, healthier animals meant better sales, as the Garwes could now get around $1,200 for one cow. Neighboring farmers soon found this new crop-livestock system appealing and joined the initiative.

Cattle fattening pens at Cosmas and Netsai Garwe's homestead. (Photo: Shiela Chikulo/CIMMYT)
Cattle fattening pens at Cosmas and Netsai Garwe’s homestead. (Photo: Shiela Chikulo/CIMMYT)

Saving for a dry day

The economic opportunities for farmers in Murehwa go beyond cow sales. In 2013, the Klein Karoo (K2) seed company offered contracts to farmers for the production of lablab seed. Suddenly the crop became highly profitable, which trigged adoption by almost all the farmers in the area.

As explained by extension officer Ngairo, “there is lablab and velvet beans grown everywhere, at homestead plots, school gardens
 using ripline seeding techniques and showing the widespread adoption of conservation agriculture practices in the ward.”

Better incomes from livestock, fodder and lablab seeds had ripple effects for these Murehwa communities.

Lilian Chimbadzwa shows the house they were able to build in 2013 using proceeds from lablab sales. (Photo: Shiela Chikulo/CIMMYT)
Lilian Chimbadzwa shows the house they were able to build in 2013 using proceeds from lablab sales. (Photo: Shiela Chikulo/CIMMYT)

Since they adopted lablab and conservation agriculture practices in 2013, Kumbirai and Lilian Chimbadzwa transformed their asset base. They were able to complete their four-bedroom house, connect their homestead with the national electricity network and send their daughter to a nearby boarding school.

Despite prolonged dry spells during the last season and the threat of fall armyworm, these farmers have been coping much better than those practicing conventional tillage farming.

“Farmers taking up lablab and other leguminous cover crops have not only improved their incomes, but also the resilience of their farming systems,” explained Isaiah Nyagumbo, Cropping Systems Agronomist at CIMMYT. “Conservation agriculture practices such as mulching help retain soil moisture, while pests and diseases are less prominent in diversified fields planted with stress tolerant maize varieties and legume cover crops.”

Crop rotation of maize and velvet bean at Kumbirai and Lilian Chiambadzwa's plot has guaranteed high yields in an El Nino season. (Photo: Shiela Chikulo/CIMMYT)
Crop rotation of maize and velvet bean at Kumbirai and Lilian Chiambadzwa’s plot has guaranteed high yields in an El Nino season. (Photo: Shiela Chikulo/CIMMYT)

For CIMMYT and other institutions willing to scale sustainable intensification practices in Africa, there is plenty to learn from the farmers in Murehwa.

New research in the district has started to test how climate-adapted push-pull systems support smallholder farmers in overcoming the invasive fall armyworm using biological means. These systems involve conservation agriculture, green manure and legume intercropping, and planting high-productivity fodders surrounding the plots. This would also reduce the reliance on pesticides, which may be harmful for humans and the environment.

Conservation agriculture works for farmers and for sustainable intensification

The International Maize and Wheat Improvement Centre (CIMMYT) and the Association for Strengthening Agricultural Research in Eastern and Southern Africa (ASARECA) gathered agriculture leaders, experts,  ministers and permanent secretaries from 14 countries in the region May 2-4, 2019 in Kampala, Uganda. These experts reflected on the lessons learned from the eight year-long Sustainable Intensification of Maize and Legumes farming systems in Eastern and Southern Africa (SIMLESA) project, funded by the Australian Centre for International Agricultural Research (ACIAR).

During this regional SIMLESA policy forum, ministers of agriculture signed a joint communiqué calling for mainstreaming conservation agriculture practices and enabling sustainable intensification of African agriculture, in response to the ongoing agroecological crisis and fast-growing population.

The minister of agriculture, animal industry and fisheries of Uganda, Vincent Ssempijja, reminded that “Africa is paying a high price from widespread land degradation, and climate change is worsening the challenges smallholder farmers are facing.” Staple crop yields are lagging despite a wealth of climate-smart technologies like drought-tolerant maize varieties or conservation agriculture.

“It is time for business unusual,” urged guest speaker Kirunda Kivejinja, Uganda’s Second Deputy Prime Minister and Minister of East African Affairs.

Research conducted by CIMMYT and national partners in Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda under the SIMLESA project provided good evidence that sustainable intensification based on conservation agriculture works — it significantly increased food crop yields, up to 38%, as well as incomes, while sustainably preserving soil health.

In Malawi, where conservation agriculture adoption rose from 2% in 2011 to 35% in the 2017/18 season, research showed increases in water infiltration compared to the conventional ridge-and-furrow system of up to 90%, while soil organic carbon content increased by 30%. This means that soil moisture is better retained after rainfall, soil is more fertile, and plants grow well and cope much better during dry spells.

The SIMLESA project revealed that many farmers involved in CIMMYT research work, like Joseph Ntirivamunda in Rwanda, were interested in shifting towards more sustainable intensification practices. However, large-scale adoption still faces many hurdles.

“You cannot eat potential,” pointed out CIMMYT scientists and SIMLESA project leader Paswel Marenya. “The promise of conservation agriculture for sustainable intensification needs to be translated into more food and incomes, for farmers to adopt it widely.”

CIMMYT's director general Martin Kropff (left) greets Uganda's second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)
CIMMYT’s director general Martin Kropff (left) greets Uganda’s second deputy prime minister, Kirunda Kivejninja. (Photo: Jerome Bossuet)

The scale conundrum

Farmers’ linkages to markets and services are often weak, and a cautious analysis of trade-offs is necessary. For instance, more research is needed about the competing uses of crop residues for animal feed or soil cover.

Peter Horne, General Manager for ACIAR’s global country programs, explained that science has an important role in informing policy to drive this sustainable transformation. There are still important knowledge gaps to better understand what drives key sustainable farming practices. Horne advised to be more innovative than the traditional research-for-development and extension approaches, involving for instance the private sector.

Planting using a hoe requires 160 hours of labor per hectare. A two-wheel tractor equipped with a planter will do the same work in only 3 hours.

One driver of change that was stressed during the Kampala forum was the access to appropriate machinery, like the two-wheel tractor equipped with a direct planter. While hoe planting requires 160 hours of labor per hectare, the planter needs only 3 hours per hectare, enabling timely planting, a crucial factor to respond effectively to the increased vagaries of the weather and produce successful harvests. While some appropriate mechanization options are available at the pilot stage in several African countries like Ethiopia or Zimbabwe, finding the right business models for service provision for each country is key to improve access to appropriate tools and technologies for smallholder farmers. CIMMYT and ACIAR seek to provide some answers through the complementary investments in the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

CASI can be scaled but requires tailoring sustainable intensification agronomic advices adapted to local environment and farming systems. Agricultural innovation platforms like the Mwanga mechanization youth group in Zimbabwe are one way to co-create solutions and opportunities between specific value chain actors, addressing some of the constraints farmers may face while implementing conservation agriculture practices.

Providing market incentives for farmers has been one challenging aspect, which may be overcome through public-private partnerships. Kilimo Trust presented a new consortium model to drive sustainable intensification through a market pull, linking smallholder farmers with food processors or aggregators.

“SIMLESA, as a long-term ambitious research program, has delivered remarkable results in diverse farming contexts, and conservation agriculture for sustainable intensification now has a more compelling case,” said Eric Huttner, ACIAR research program manager. “We should not ignore the complexity of conservation agriculture adoption, as shifting to new farming practices brings practical changes and potential risks for farmers, alongside benefits,” he added. As an immediate step, Huttner suggested research to define who in the public and private sectors is investing and for what purpose — for example, access to seed or machinery. Governments will also need further technical support to determine exactly how to mainstream conservation agriculture in  future agricultural policy conversations, plans and budgets.

“Looking at SIMLESA’s evidence, we can say that conservation agriculture works for our farmers,” concluded Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union. During the next African Union Specialized Technical Committee in October 2019, she will propose a new initiative, scaling conservation agriculture for sustainable intensification across Africa “to protect our soils and feed our people sustainably.”

Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)
Josefa Leonel Correia Sacko, Commissioner for Rural Economy and Agriculture of the African Union, speaks at the SIMLESA regional forum. (Photo: Jerome Bossuet)

Jelle Van Loon

Jelle Van Loon is an agricultural engineer with a PhD in biosystems modelling, and over a decade of experience in agricultural research for development in Latin America. He currently serves as Associate Director for Latin America of CIMMYT’s Sustainable Agrifood System Program, leading research initiatives aimed at building pathways towards resilient food systems and long-term rural development. Leading the innovations for development team, he coordinates a transdisciplinary team, including aspects like farmers market linkages and responsible sourcing, capacity development, and community-based outreach and explores the multiple interfaces between adaption, adoption and scaling from a socio-technical viewpoint in research for agricultural development.

In addition, Jelle has ample expertise in scale-appropriate mechanization from smallholder farm solutions to precision agriculture applications, has actively progressed to work in innovation systems thinking, and in addition he serves CIMMYT as representative for Latin America in which he focusses this line of work to establish impactful partnerships and innovative business models.

 

 

 

 

 

 

 

New publications: Agro-ecological options for fall armyworm management

Fall armyworm, a voracious pest now present in both Africa and Asia, has been predicted to cause up to $13 billion per year in crop losses in sub-Saharan Africa, threatening the livelihoods of millions of farmers throughout the region.

“In their haste to limit the damage caused by the pest, governments in affected regions may promote indiscriminate use of chemical pesticides,” say the authors of a recent study on fall armyworm management. “Aside from human health and environmental risks,” they explain, “these could undermine smallholder pest management strategies that depend largely on natural enemies.”

Agro-ecological approaches offer culturally appropriate, low-cost pest control strategies that can be easily integrated into existing efforts to improve smallholder incomes and resilience through sustainable intensification. Researchers suggest these should be promoted as a core component of integrated pest management programs in combination with crop breeding for pest resistance, classical biological control and selective use of safe pesticides.

However, the suitability of agro-ecological measures for reducing fall armyworm densities and impact must be carefully assessed across varied environmental and socioeconomic conditions before they can be proposed for wide-scale implementation.

To support this process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) reviewed evidence for the efficacy of potential agro-ecological measures for controlling fall armyworm and other pests, consider the associated risks and draw attention to critical knowledge gaps. Findings from the Africa-wide study indicate that several measures can be adopted immediately, such as sustainable soil management, intercropping with appropriately selected companion plants and the diversification of farm environments through management of habitats at multiple spatial scales.

Read the full article “Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest” in the Journal of Environmental Management, Volume 243, 1 August 2019, pages 318-330.

Intercropping options for mitigating fall armyworm damage. (Photo: C. Thierfelder/CIMMYT)
Intercropping options for mitigating fall armyworm damage. (Photo: C. Thierfelder/CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. 2019. Rajiv Nandan, Vikram Singh, Sati Shankar Singh, Kumar, V., Kali Krishna Hazra, Chaitanya Prasad Nath, Poonia, S. P., Malik, R.K., Ranjan Bhattacharyya, McDonald, A. In: Geoderma v. 340, p. 104-114.
  2. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. 2019. Juliana, P., Montesinos-Lopez, O.A., Crossa, J., Mondal, S., Gonzalez-Perez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.A., Velu, G., Dreisigacker, S., Shrestha, S., Perez-Rodriguez, P., Pinto Espinosa, F., Singh, R.P. In: Theoretical and Applied Genetics v. 132, no. 1, p. 177-194.
  3. Modeling copy number variation in the genomic prediction of maize hybrids. 2019. Hottis Lyra, D., Galli, G., Couto Alves, F., Granato, I.S.C., Vidotti, M.S., Bandeira e Sousa, M., Morosini, J.S., Crossa, J., Fritsche-Neto, R. In: Theoretical and Applied Genetics v. 132, no. 1, p. 273-288.
  4. Soil dwelling beetle community response to tillage, fertilizer and weeding intensity in a sub-humid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Applied Soil Ecology v. 135, p. 120-128.
  5. Two main stripe rust resistance genes identified in synthetic-derived wheat line soru#1. 2019. Ruiqi Zhang, Singh, R.P., Lillemo, M., Xinyao He., Randhawa, M.S., Huerta-Espino, J., Singh, P.K., Zhikang Li, Caixia Lan. In: Phytopathology v. 109, no. 1, p. 120-126.

SRFSI: The West Bengal story

 

In India’s state of West Bengal, the success of men and women farmers and agri-entrepreneurs is paving the way for the out-scaling of climate-smart conservation agriculture practices for sustainable intensification across the region.

Through the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, the International Maize and Wheat Improvement Center (CIMMYT) is improving productivity, profitability and sustainability across the Eastern Gangetic Plains.

Md. Amirul Islam

Md. Amirul Islam works as an assistant research associate in the Sustainable Intensification Program, carrying out research and extension work within maize and wheat-based cropping systems in Bangladesh, with a focus on scaling-out innovative crop management practices and technologies to smallholder farmers.

Prior to joining CIMMYT, he worked as a research assistant at Bangladesh Agricultural University, where he conducted a number of research projects focusing on pollination biology, morphology and physiology relating to major cereal crops grown in Bangladesh.

Simon Fonteyne

Simon Fonteyne is a cropping systems agronomist tasked with the coordination of a network of research platforms in Latin America, through which local collaborators adopt sustainable intensification practices to local agro-ecological conditions and promote them to local farmers.