Skip to main content

Tag: climate-smart agriculture

Saving water and time

“I wonder why I never considered using drip irrigation for all these years,” says Michael Duri, a 35-year-old farmer from Ward 30, Nyanga, Zimbabwe, as he walks through his 0.5-hectare plot of onions and potatoes. “This is by far the best method to water my crops.”

Duri is one of 30 beneficiaries of garden drip-kits installed by the International Maize and Wheat Improvement Center (CIMMYT), an implementing partner under the Program for Growth and Resilience (PROGRESS) consortium, managed by the Zimbabwe Resilience Building Fund (ZRBF).

“In June 2020, I installed the drip kit across 0.07 hectares and quickly realized how much water I was saving through this technology and the reduced amount of physical effort I had to put in,” explains Duri. By September, he had invested in two water tanks and more drip lines to expand the area under drip irrigation to 0.5 hectares.

Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)
Michael Duri stands with his son and mother next to his potato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo)

Water woes

Zimbabwe’s eastern highland districts like Nyanga are renowned for their diverse and abundant fresh produce. Farming families grow a variety of crops — potatoes, sugar beans, onions, tomatoes, leafy vegetables and garlic — all year round for income generation and food security.

Long poly-pipes lining the district — some stretching for more than 10 kilometers — use gravity to transport water from the mountains down to the villages and gardens. However, in the last five-to-ten years, increasing climate-induced water shortages, prolonged dry spells and high temperatures have depleted water reserves.

To manage the limited resources, farmers access water based on a rationing schedule to ensure availability across all areas. Often during the lean season, water volumes are insufficient for effectively irrigating the vegetable plots in good time, which leads to moisture stress, inconsistent irrigation and poor crop performance. Reports of cutting off or diverting water supply among farmers are high despite the local council’s efforts to schedule water distribution and access across all areas. “When water availability is low, it’s not uncommon to find internal conflicts in the village as households battle to access water resources,” explains Grace Mhande, an avid potato producer in Ward 22.

Climate-proofing gardens

Traditionally, flood, drag hose, bucket and sprinkler systems have been used as the main irrigation methods. However, according to Raymond Nazare, an engineer from the University of Zimbabwe, these traditional irrigation designs “waste water, are laborious, require the services of young able-bodied workers and use up a lot of time on the part of the farmers.”

Prudence Nyanguru, who grows tomatoes, potatoes, cabbages and sugar beans in Ward 30, says the limited number of sprinklers available for her garden meant she previously had to irrigate every other day, alternating the sprinkler and hose pipe while spending more than five hours to complete an average 0.05-hectare plot.

“Whereas before I would spend six hours shifting the sprinklers or moving the hose, I now just switch on the drip and return in about two or three hours to turn off the lines,” says Nyanguru.

The drip technology is also helping farmers in Nyanga adapt to climate change by providing efficient water use, accurate control over water application, minimizing water wastage and making every drop count.

“With the sprinkler and flood systems, we noticed how easily the much-needed fertile top soil washed away along with any fertilizer applied,” laments Vaida Matenhei, another farmer from Ward 30. Matenhei now enjoys the simple operation and steady precision irrigation from her drip-kit installation as she monitors her second crop of sugar beans.

Frédéric Baudron, a systems agronomist at CIMMYT, observes that Zimbabwe has a long history of irrigation, but this has mostly tended to be large-scale. “This means either expensive pivots owned by large-scale commercial farmers — a minority of the farming population in Zimbabwe as in much of sub-Saharan Africa — or capital-intensive irrigation schemes shared by a multitude of small-scale farmers, often poorly managed because of conflicts amongst users,” he says. A similar pattern can be seen with mechanization interventions, where Zimbabwe continues to rely on large tractors when smaller, and more affordable, machines would be more adapted to most farmers in the country.

“Very little is done to promote small-scale irrigation,” explains Baudron. “However, an installation with drip kits and a small petrol pump costs just over $1 per square meter.”

Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Prudence Nyanguru tends to her thriving tomato field in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A disability-inclusive technology

The design of the drip-kit intervention also focused on addressing the needs of people with disabilities. At least five beneficiaries have experienced the limitations to full participation in farming activities as a result of physical barriers, access challenges and strenuous irrigation methods in the past.

For 37-year-old Simon Makanza from Ward 22, for example, his physical handicap made accessing and carrying water for his home garden extremely difficult. The installation of the drip-kit at Makanza’s homestead garden has created a barrier-free environment where he no longer grapples with uneven pathways to fetch water, or wells and pumps that are heavy to operate.

“I used to walk to that well about 500 meters away to fetch water using a bucket,” he explains. “This was painstaking given my condition and by the time I finished, I would be exhausted and unable to do any other work.”

The fixed drip installation in his plot has transformed how he works, and it is now easier for Makanza to operate the pump and switches for the drip lines with minimal effort.

Families living with people with disabilities are also realizing the advantages of time-saving and ease of operation of the drip systems. “I don’t spend all day in the field like I used to,” says George Nyamakanga, whose brother Barnabas who has a psychosocial disability. “Now, I have enough time to assist and care for my brother while producing enough to feed our eight-member household.”

By extension, the ease of operation and efficiency of the drip-kits also enables elderly farmers and the sick to engage in garden activities, with direct benefits for the nutrition and incomes of these vulnerable groups.

Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Irene Chikata, 69, operates her lightweight drip-kit on her plot in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Scaling for sustained productivity

Since the introduction of the drip-kits in Nyanga, more farmers like Duri are migrating from flood and sprinkler irrigation and investing in drip irrigation technology. From the 30 farmers who had drip-kits installed, three have now scaled up after witnessing the cost-effective, labor-saving and water conservation advantages of drip irrigation.

Dorcas Matangi, an assistant research associate at CIMMYT, explains that use of drip irrigation ensures precise irrigation, reduces disease incidence, and maximal utilization of pesticides compared to sprinklers thereby increasing profitability of the farmer. “Although we are still to evaluate quantitatively, profit margin indicators on the ground are already promising,” she says.

Thomas Chikwiramadara and Christopher Chinhimbiti are producing cabbages on their shared plot, pumping water out of a nearby river. One of the advantages for them is the labor-saving component, particularly with weed management. Because water is applied efficiently near the crop, less water is available for the weeds in-between crop plants and plots with drip irrigation are thus far less infested with weeds than plots irrigated with buckets or with flood irrigation.

“This drip system works well especially with weed management,” explains Chinhimbiti. “Now we don’t have to employ any casual labor to help on our plot because the weeds can be managed easily.”

Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Thomas Chikwiramadara and Christopher Chinhimbiti walk through their shared cabbage crop in Nyanga, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Reflections on resilience

Approaching Ward 6 in Mwenezi, southern Zimbabwe, tracts of empty fields around homesteads on either side of the road signal the end of harvesting for the 2019/20 farming season. Farmers have stored away maize fodder on tree branches or inside the family compounds.

At one of the homesteads in the village of Chikwalakwala A, ten farmers are gathered while agricultural extension officers weigh grain and legume samples. They are participating in mother trials from the International Maize and Wheat Improvement Center (CIMMYT), using improved farming practices and drought-resilient seed varieties. This is one of the eight villages in Ward 6 where CIMMYT has established demonstration sites, as part of the Zambuko Livelihoods Initiative, supported by the United States Agency for International Development (USAID).

“Most of us here were born and raised in this ward, helping our parents with farming activities and continuing with farming when we finally had our own families,” farmer Tevera Romichi explains. However, the dry spells, high temperatures and erratic rainfall have become increasingly disturbing for him in recent years. “It became difficult to determine when we would receive enough rain to plant our crops without risking long dry spells,” he says.

The onset of rains in Mwenezi has shifted over the years, from late September to the end of October or early November. With most families in the district depending on agriculture for their livelihoods, the adverse change in climatic conditions has compromised food security. These farmers grow crops such as millet, sorghum and groundnut.

Clemence Hlungwane, another farmer participating in mother trials, further explains how traditional practices of repeated tillage with ox-drawn ploughs weakened the soil structure, exposing it to soil erosion and loss of fertility. “These soils have been overused without any thought of how to replenish all the nutrients that were found in the soil in past years,” he says. The result for families like Hlungwane’s were poor germination, susceptibility to pests and diseases and poor yields.

Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock.
Lablab fixes nitrogen into the soil and provides residue for mulching and feed for livestock. (Photo: Christian Thierfelder/CIMMYT)

Being smart in the field

The introduction of climate-smart technologies by CIMMYT provided a channel through which mother-trial farmers in Ward 6 could explore alternative farming practices in a sustainable way while adapting to climate-induced risks. The principles of conservation agriculture, which encourage the preservation of soil moisture and nutrients, underpinned the technologies introduced by CIMMYT.

Initially, mother trial farmers expressed mixed feelings when the CIMMYT team and the Agricultural Extension and Technical Services (AGRITEX) officials took them through the process of establishing the demonstration plots. “It seemed like a lot of work,” Charleton Midzi recalls. “There was a lot of measuring, pegging and marking the demonstration plots but we soon realized that this would be important when planting the small grains and legumes.”

“At the same time, I was curious to see how ploughing with a ripper would help the soil and crops along with the practice of mulching,” Midzi says. “Where mulch was applied, the moisture was well preserved, and the crops looked much healthier and vibrant than in portions without mulch.” Another important lesson was understanding the importance of record keeping for planting dates, harvesting dates and rainfall records to inform the next season. In addition, good agronomy practices such as spacing, correct application of nutrients and use of pesticides contributed to the successful production at the demonstration plots.

“We no longer waste inputs,” says Caleb Matandare, a farmer in the village of Chikwalakwala C. “Being smart in the field means applying the correct amount of fertilizer using the measuring cups provided and keeping a record of the suitable amount for the crop.”

By the end of the season, the mother farmers observed the evident difference in the higher quality of the millet and sorghum planted on the conservation agriculture plots, compared to the conventional plots. From the yields of sorghum, millet and cowpeas, Matandare’s family of 13 are guaranteed enough diverse and nutritious food, particularly in the “lean season,” the period between harvests.

Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot.
Margaret Mapuranga, a mother-trial farmer in Ward 6, Mwenezi district, shows a sample of velvet bean from the demonstration plot. (Photo: Shiela Chikulo/CIMMYT)

Baby-trial farmers eager to learn

Since the establishment of the mother trials in Ward 6, several farmers witnessing the advantages of producing under conservation agriculture and using drought-resilient varieties are keen to adopt the improved technologies.

Margaret Mapuranga shares how her neighbor inquired about the legume crops. “I explained to her how lablab, velvet bean and cowpeas fix nitrogen in the soil, which will be useful for the grain crops in the next season. She would like to try out the same in her own field in the coming season.” Mapuranga is confident that she can promote these sustainable practices with farmers selected for the baby trials in her village.

The coming 2020/21 season looks promising as more farmers in Ward 6 adopt the improved technologies. Mother-trial farmers are eager to expand conservation agriculture practices to other portions of their land as a safeguard against climate risks. For them, the ability to share the climate-smart technologies promoted by CIMMYT is an empowering process that will transform agriculture in the ward and beyond.

Building a better future

The ongoing COVID-19 pandemic has wreaked havoc on institutions, systems, communities and individuals while, at the same time, laying bare structural inequalities — including gender disparities.  

Common gender norms mean that women are on the frontline collecting water, fuel, fodder and provide care work, both in the home and through formal employment, where 70% of global healthcare workers are women. Additionally, the sectors that women often rely on for income and food security are stressed by border closures, restricted transportation and social distancing guidelines. 

Women are also instrumental in the fight against shocks, including the facilitation of better COVID-19 adaptation strategies. In India women’s self-help groups are helping to feed people, provide health information and create face masks. Initiatives in Senegal and the Democratic Republic of Congo place women at the center of efforts to combat the virus. At the national level, initial research suggests that women leaders have managed the pandemic better, recording fewer infections and a lower death rate. 

This dichotomy, one where women are essential for combatting system shocks while simultaneously underrepresented in decision-making spaces, illustrates why gender research, especially research that aims to understand women’s roles as active agents of change, is essential. Gender research supports more equitable outcomes during and post-crisis, while helping to build more resilient systems.  

The International Day of Rural Women is an opportunity to celebrate the importance of women for the future of rural communities, while also examining how gender research, like that undertaken by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), plays an instrumental role in supporting them.  

Gender and the climate crisis

Gender research is also important in combatting another crisis we are facing — the climate crisis. For example, climate-smart agriculture (CSA) has the potential to reduce agriculture’s gender gap. To close the gap, women must be included in the design of CSA interventions, with special attention on how CSA technologies can reduce or add to the agriculture workloads that women face. Research on dairy intensification from Kenya points to the complicated role gender plays in household decisions about feeding livestock concentrate or whether milk is sold in formal or informal markets. 

The Scaling-Out Climate-Smart Village Program in the Vulnerable Areas of Indo-Gangetic Plains of India includes a gender integration for inclusive adaptation to climate riskscomponent. Implemented in the Indian states of Bihar, Madhya Pradesh and Uttar Pradesh, it promotes technologies that reduce women’s agriculture-related labor while helping women develop their leadership and entrepreneurial skills. 

Farmers can also benefit from climate information services, which allows them to plan and prepare for changing weather. Once again, access to technology and gender norms play a role in how climate information is accessed, what type of information is needed, and how it is used. For example, when COVID-19 prevented farmers in Somotillo, Nicaragua from holding in-person meetings, they  turned to online tools. By connecting with women’s groups and considering women’s climate information needs, researchers can help create services that benefit both men and women.  

At the policy level, gender mainstreaming allows governments to effectively — and inclusively — combat climate change. However, developing and implementing these policies requires gender analysis, the creation of gender tools, data collection, analysis, the development of gender indicators, and gender budgeting as research from Uganda and Tanzania illustrates. 

These examples are just a few avenues through which gender research influences the uptake of technology, policy and information access. System shocks are inevitable and their frequency and severity are likely to increase due to climate change. Given this reality, men’s and women’s needs and perspectives must be considered in research activities so that climate solutions are inclusive, equitable and effective.  

FURTHER READING: 

This article was originally published on the CCAFS website.

Cover photo: Gender research contributes to equitable and inclusive outcomes during times of crisis. (Photo: F. Fiondella /IRI/CCAFS).

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Out of the classroom and into the field

When farmers in rural Kasungu, Malawi, are asked to list some of the challenges they face, much of what they say is to be expected. Crop pests, climate change, low soil fertility, and lack of improved seed and purchasing power — these are faced by smallholders across districts and the country as a whole.

But there is one surprising response. “Sometimes it’s difficult to get feedback from research centers on what does and doesn’t work,” says Maxwell Phiri.

Capacity building and knowledge transfer are key elements of agricultural development work, but there is often a gap between research, outreach and extension to farmers. New techniques and crop varieties tested at experimental stations can take a while to reach rural communities, who want solutions to the challenges they are facing in real time.

“But now it’s easier for us because the research is being done here.” Phiri points to the farmer field school in Msambafumu, a few hectares of communal land where 23 smallholders from the surrounding area meet regularly to learn about new technologies and farming techniques.

At the school they have been able to learn first-hand about improved and new agricultural practices and technologies. Following an introduction to climate-smart agriculture practices, they have moved on to agroforestry, learning about the benefits of intercropping drought-tolerant maize with pigeon peas and fruit trees. “We’ve even started practicing climate-smart agriculture in our own fields and planting agroforestry trees,” says Ntendeleza Mwale, a member of the field school in Msambafumu and chair of a network of 17 schools in the district. “Now everybody is growing fruit trees at home.”

“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)
“We didn’t know that potatoes, millet and sorghum could grow here, because we thought the soil wasn’t suitable, but the school has showed us what is possible,” explains Maxwell Phiri (first from left). “You learn a lot of things in a group that you might not learn on your own.” (Photo: Emma Orchardson/CIMMYT)

Back to school

A farmer field school is a group of 25-30 farmers, led by a master trainer, who come together to solve common challenges faced in their local area, such as soil degradation or poor water availability. Since 2014, the Government of Malawi has been using this innovative approach to help farmers learn about and improve their production systems through the KULIMA project. With support from a CGIAR consortium led by the International Potato Center (CIP), 15 schools have been established across the districts of Kasungu, Mulanje and Mzuzu, including master training hubs and outreach centers run by NGOs.

The overall objective is to increase agricultural productivity and diversification by upscaling climate-smart technologies,” explains Mathinda Sopo, a monitoring and evaluation specialist and project manager at the International Maize and Wheat Improvement Center (CIMMYT). “Master trainer candidates are selected in each district and then invited to sit down with researchers and identify their core production challenges. The plans are then developed collaboratively and based on agroecological zone.”

In February 2020, a new cohort of trainees arrived at the Lisasadizi Regional Training Center in Kasungu, where the Ministry of Agriculture coordinates trainings on four key topics — soil health, climate change, pests and diseases and nutrition — in collaboration with the UN Food and Agriculture Organization (FAO) and the CGIAR consortium, supported by the German development agency GIZ.

The 13-week residential course is mostly practical but does include some classroom-based study and a community outreach component. Guided by a facilitator — usually a researcher or extension worker — participants are encouraged to learn from their experiences as they conduct experiments in their own fields, make observations and evaluate results throughout the cropping season. Outside of the core curriculum, they are free to investigate additional topics of their own choice.

After completing the course, master trainers move back to their respective areas to help train facilitators, who are ultimately responsible for running the field schools with support from NGO extension staff.

“The CGIAR centers bring in technologies they want to promote like improved crop varieties, but there are ongoing evaluations throughout the process to respond to newly emerging challenges such as fall armyworm,” says Sopo. “There’s also a review at the end of each season to discuss lessons learned and knowledge gaps.”

CIMMYT, for example, is focusing on promoting drought-tolerant, quality protein maize (QPM), and provitamin A maize, as well as climate-smart agriculture practices. At Msambafumu, the group have been comparing five improved maize varieties with local ones. “So far we’ve seen that the new varieties have bigger yields and cob sizes,” says Mwale. “Varieties like Chitedze 2 QPM and MH43A are also early maturing and are more nutritious.”

Farmers at the field schools in Msambafumu and Tiyese, in Malawi, have been surprised to find that banana trees can be grown in their area. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)
At the field school in Tiyese, Malawi, farmers are using two adjacent maize plots to compare the effects of leaving crop residue on their field. (Photo: Emma Orchardson/CIMMYT)

Learning by doing

A few kilometers down the road, in Galika village, members of the Tiyese field school have been learning how to control a variety of pests and diseases. So far, they have been taught about different pesticides and the benefits of using inoculant on soya beans and ground nuts to improve soil fertility, and how to identify and mitigate disease in susceptible potato varieties. They have also been learning how to apply Aflasafe while crops are still in the field to reduce aflatoxins in maize and groundnuts.

But the most pressing challenge is fall armyworm, says Matolino Zimba, a member of the Tiyese field school. “We’ve been trying new methods for controlling it,” he explains. “Last year we planted mucuna beans in our banana orchard as a cover crop. Later we soaked mucuna leaves in water and poured the solution on the infested maize and noticed that the worms were dying.”

Zimba is satisfied with the learning methods at the field school. “This approach is better for us because we get to see the process, rather than just receiving an explanation.”

Emily Kaponda agrees. She first joined the group after noticing that participating farmers were getting higher yields by using new planting methods. “The school has a smaller plot of land than I do, but their bundles of maize were much larger,” she explains.

Since joining the field school, she has learned how to increase her yields, how to conserve moisture in the soil using zero-tillage farming and the importance of diversifying her family’s diets. “We’re learning how we can use cassava or sweet potato as a starch, instead of only using maize.”

Zimba and Kaponda are both excited to be trying out QPM and provitamin A maize varieties, as well as new varieties of cassava, orange-fleshed sweet potato, improved groundnuts, biofortified beans and bananas. Much like their peers at Msambafumu, they had not known that many of these could be grown in the area, and the group has already started planning to multiply planting materials to use in their own fields next year.

“These groups are really inspirational,” says Sopo. “Most members are already practicing things they’ve learned at their school and are getting positive results.”

Sopo is already seeing success stories from schools established one year ago, but collaboration will need to be sustained to ensure lasting progress. A new research initiative, Development-Smart Innovations through Research in Agriculture (DeSIRA), will help to maintain the positive feedback loop by investigating emerging issues raised during on-farm experiments. “We can take farmer observations from the study plots to DeSIRA for further research, and the outputs from that will complement KULIMA.”

Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Farmers at the field school in Msambafumu, Malawi, begin preparing the soil for their next set of experiments. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)
Matolino Zimba checks on the emerging maize crop, which has been covered in crop residue to conserve moisture, at the field school in Tiyese, Malawi. (Photo: Emma Orchardson/CIMMYT)

Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA)

Heterogeneity in soils, hydrology, climate, and rapid changes in rural economies including fluctuating prices, aging and declining labor forces, agricultural feminization, and uneven market access are among the many factors that constrain climate-smart agriculture (CSA) in South Asia’s cereal-based farming systems.

Most previous research on CSA has employed manipulative experiments analyzing agronomic variables, or survey data from project-driven initiatives. However, this can obscure the identification of relevant factors limiting CSA, leading to inappropriate extension, policy, and inadequate institutional alignments to address and overcome limitations. Alternative big data approaches utilizing heterogeneous datasets remain insufficiently explored, though they can represent a powerful alternative source of technology and management practice performance information.

In partnership with national research systems and the private sector in Bangladesh, India and Nepal, Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA) is developing digital data collection systems to crowdsource, data-mine and interpret a wide variety of primary agronomic management and socioeconomic data from tens of thousands of smallholder rice and wheat farmers.

The project team analyzes these data by stacking them with spatially-explicit secondary environmental, climatic and remotely sensed data products, after which data mining and machine learning techniques are used to identify key factors contributing to patterns in yield, profitability, greenhouse gas emissions intensity and resilience.

These approaches however must be practical in order for them to be useful in agricultural development and policy. As such, the project’s analytical results will be represented through interactive web-based dashboards, with gender-appropriate crop management advisories deployed through interactive voice recognition technologies to farmers in Bangladesh, India and Nepal at a large-scale. Big Data2 CSA is supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Flagship 2 on Climate-Smart Technologies and Practices.

Objectives

  • Develop ICT tools enabling digital collection of crop management data and a cloud-based database that can be managed by next-users
  • Support advanced degree-level students to engage in field and data science research
  • Create a digital data collection platform enabling crowd sourcing of crop management information to evaluate contributions to CSA
  • Create interactive and customizable web-based dashboards presenting post-season research results and providing CSA management recommendations
  • Organize CSA and big data policy briefings on mainstreaming processes and policy workshops

Climate- and market-smart mung bean advisories (CAMASMA)

Focusing on highly profitable but weather-risk prone mung bean production in coastal Bangladesh, the Climate and market-smart mung bean advisories (CAMASMA) project develops farmer friendly and demand-driven climate- and market-smart mung bean advisory dissemination systems.

Heavy rainfall events can cause significant damage to mung bean production, causing large yield and income losses for farmers in coastal Bangladesh. By integrating and disseminating weather-forecast information, climate-smart advisories for when and how to harvest mung bean help farmers to mitigate some of the climate risks associated with crop production.

Both mung bean farmers and traders can also benefit from real-time market price data. In addition to market intelligence on where large blocks of farmers have quality mung bean for sale, CAMASMA improves information flow to lower trading firms’ transactions costs while speeding farm-gate purchase and income generation from farmers.

CAMASMA is a pilot project that demonstrates the power of climate services, agricultural advisories, and use of social network analysis and ICTs to speed information delivery and increase farmers’ resilience to extreme climatic events.

Objectives

  • Customize heavy and extreme rainfall event forecasts for coastal Bangladesh
  • Analyze social networks to assist extension agents in rapid deployment of crop management advice in remote and hard to reach areas
  • Set up interpretive algorithms and interactive voice response (IVR) mobile call systems for weather, mung bean management and market advisories appropriate to men and women smallholder farmers
  • Release and promote a smartphone app providing customized weather forecasts, mung bean agronomic advice, early warnings for potential crop damaging extreme weather events, and market information
  • Establish business models and strategies for sustaining the use of IVR and smartphone apps after project closure

A less risky business

A maize farmer in southern Ethiopia. (Photo: <a href="https://flic.kr/p/2hp5uoS">S. Samuel/CCAFS</a>)
A maize farmer in southern Ethiopia. (Photo: S. Samuel/CCAFS)

Because of unpredictable climate conditions, agricultural production in Ethiopia faces uncertainties during both the growing and harvesting seasons. The risk and uncertainty are bigger for smallholder farmers, as they can’t protect themselves from climate-related asset losses. Access to insurance schemes, climate information and other tools could help to minimize climate risks for smallholder farmers.

A new collaborative project launched in Ethiopia aims to reduce agricultural investment risk. The Capacitating African Stakeholders with Climate Advisories and Insurance Development (CASCAID-II) project builds on learnings from the CASCAID-I project in West Africa. It will target Ethiopia, Ghana and Senegal, focusing not only on smallholder farmers but on the food value chain as a whole. In a context of increasing integration of farmers into urban markets, the project will improve agricultural productivity, food security and profitability of agricultural enterprises.

The International Maize and Wheat Improvement Center (CIMMYT) will partner with the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the University of Florida, with the support of the CGIAR research program on Climate Change, Agriculture and Food Security (CCAFS).

Kindie Tesfaye, CIMMYT, presents an overview of climate services in Ethiopia. (Photo: Simret Yasabu /CIMMYT)
Kindie Tesfaye, CIMMYT, presents an overview of climate services in Ethiopia. (Photo: Simret Yasabu /CIMMYT)

Physical and digital tools across the value chain

In October 2019, thirty partners gathered for the CASCAID-II project launch and meeting in Addis Ababa, Ethiopia. They agreed on the project goals, a set of priority research questions and a schedule of activities for the next two years.

Partners also reviewed the tools that could be used to deliver climate advisories and agricultural insurance products, ensuring that all the actors in the value chain are engaged from the start. Team members aim to embed services in existing physical and digital (“phygital”) data infrastructures and to collect user feedback, so performance can be improved. Users will be segmented according to advanced socioeconomic and agro-ecological factors, so they can be targeted more efficiently with appropriate services and climate-smart agriculture options. The project will draw on real-time and multi-scale yield forecasting for better preparedness and decision-making.

Project partners agreed to start with the CCAFS Regional Agricultural Forecasting Tool (CRAFT) for sub-national yield forecasting in Ethiopia and to develop climate advisories and insurance services in line with the needs of the Ministry of Agriculture.

Participants of the launch of the digital agro-climate advisory platform gather for a group photo. (Photo: Semu Yemane/EIAR)
Participants of the launch of the digital agro-climate advisory platform gather for a group photo. (Photo: Semu Yemane/EIAR)

Precise data from scientists to farmers

In a related development, Ethiopia recently launched a digital agro-climate advisory platform, which offers great potential to improve farmers’ management of climate-induced risks, facilitate technology adoption and improve livelihoods.

Speaking at the platform’s launch ceremony, Eyasu Abraha, advisor to the Minister of Agriculture, thanked development partners for supporting the establishment of the platform in the timely move towards digitalization and use of precise data.

The platform incorporates location-specific climate information, as well as soil- and crop-specific best-bet agronomic management recommendations for farmers, development agents and extension officers. It automates crop-climate modeling and uses technologies such as text messaging, interactive voice response (IVRS) and smartphone apps for dissemination.

Equal and climate-smart

Sixteen years of consistent learning and practice of climate-smart agriculture, led by the International Maize and Wheat Improvement Center (CIMMYT), are paying off for Luganu Mwangonde. Together with her husband Kenson, she has established herself as a successful smallholder farmer in Malawi’s Balaka district. She enjoys the multiple benefits of high yields from diverse crops, surplus to sell at the markets and improved soil quality.

“I started practicing the farming that does not demand too much labor back in 2004,” she explains at her 2.5-acre farm. “Over the years the process has become easier, because I have a full understanding of the benefits of techniques introduced through the project.”

In Malawi’s family farms, women often carry the burden of land preparation and weeding  in the fields while juggling household responsibilities, contributing to widen gender differences already prevalent in the community.

Mwangonde observes that learning climate-smart techniques — such as minimum tillage, mulching and planting on flat land surfaces — has given her an advantage over other farmers practicing conventional agriculture.

Better off

At the beginning, like other farmers in the area, Mwangonde thought conservation agriculture and climate-smart techniques required a lot of work, or even hiring extra labor. As she tried this new approach, however, weed pressure in her plot decreased gradually, with the help of mulching and other techniques, and the labor required to maintain the fields reduced significantly. This allowed her to have extra time to add value to her products and sell them on the markets — and to rest.

The best gain for her is knowing that her family always has enough to eat. “I have enough grain to last until the next harvest,” she says. “My husband and I can provide for our seven children and four grandchildren.” During the 2018/19 season, Mwangonde’s family harvested six bags of maize, two bags of pigeon pea and four bags of groundnuts. The surplus from the harvest is reserved for later, when prices are more competitive.

“I am an equal partner in the farming activities. That means I can make decisions about how we work on our plot, distribute crops and apply everything that I have learnt about conservation agriculture,” Mwangonde explains. She has participated in CIMMYT activities where she could share her experiences on climate-smart agriculture with other women. As a lead farmer, she notes, she can confidently inspire the next generation of smallholders because of the empowering knowledge she has acquired.

Out of the 3,538 smallholder farmers from Balaka, Machinga and Zomba districts, up to 2,218 are women smallholder farmers who have successfully adopted climate-smart technologies.

Mwangonde is one of the beneficiaries of the Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project. She also benefitted from the support of the German Development Agency (GIZ), the International Fund for Agricultural Development (IFAD), Total Land Care (TLC) and the United States Agency for International Development (USAID).

Explore our coverage of International Women’s Day 2020.
Explore our coverage of International Women’s Day 2020.

Nurture soil as our food and climate insurance

Kassim Massi and Joyce Makawa have learned how conservation agriculture nurtures the soil of their 2.5-acres farm in Lemu, Malawi, and helps them to better cope with regular dry spells and storm rains. With four children and two grandchildren, their livelihoods depend on rainfed crop farming, in particular maize, the main staple in Malawi, and a few goats and free-range poultry. The International Maize and Wheat Improvement Center (CIMMYT) introduced them to conservation agriculture, along with five other families in their community.

“I have learnt a lot from this experiment. I can see that with crop rotation, mulching and intercropping I get bigger and healthier maize cobs. The right maize spacing, one seed at the time planted in a row, creates a good canopy which preserves the soil moisture in addition to the mulch effect,” Massi explains. “The mulch also helps to limit water runoff when there are heavy rains. I don’t see the streams of mud flowing out of this plot like for my other field where I only planted maize as usual on ridges,” he adds.

Massi and Makawa started small, on a quarter acre, testing maize and maize-pigeon pea intercropping under conservation agriculture. Later they diversified to a maize-groundnut rotation with pigeon pea alleys, while introducing different drought-tolerant maize varieties on their plot. Pigeon pea and groundnut are legume crops that enrich the soil in nitrogen via nodules that host specific bacteria called rhizobia in their root systems. Massi and Makawa also put layers of maize stalks and groundnut haulms on the ground after harvest, creating a mulch that not only enriches the soil in organic matter but retains soil moisture and improves soil structure.

While they got only two bags of 50kg maize grain from their conventionally tilled maize field, they harvested almost three times more maize grain plus three bags of groundnuts, and two and half bags of pigeonpea from the 0.1 hectares grown under conservation agriculture. “This plot has become our food insurance and we plan to expand it.”

Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)
Family farmers Kassim Massi and Joyce Makawa in Lemu, Malawi. (Photo: Shiela Chikulo/CIMMYT)

Good for the soil and good for the farmer

“Building healthy soils over the years is one of the great impacts of conservation agriculture,” explains Christian Thierfelder, an agronomist with CIMMYT in Zimbabwe. “With no tillage, legume rotation or intercropping and crop residue management, a beneficial soil pore structure is developed over time. This enables water to infiltrate into the soil where it is available for plant growth in times of drought or during in-season dry spells.”

Under the GIZ-funded Out scaling climate-smart technologies to smallholder farmers in Malawi, Zambia & Zimbabwe initiative, the different ecosystem services that soils bring have been measured against the typical ploughed maize monocropping system. Fifteen year-long experiments show that 48.5mm more water infiltrates per hour under no-till as compared with the conventional method. Soil erosion is reduced by 64% for ripline-seeded maize with legume intercropping. At the Henderson Research station in Zimbabwe where soil erosion loss has been quantified, it means 90 metric tons per hectare of topsoil saved over twelve years.

“Conservation agriculture is good for the soil, and it is good for the farmer. The maize-legume intercropping under conservation agriculture provides very good financial return to labor and investment in most rural communities we worked with,” Thierfelder notes.

Climate mitigation or resilience?

There is growing recognition of the importance of soils in our quest for sustainability.

Soils play for instance an important role in climate regulation. Plants fix carbon dioxide (CO2) through photosynthesis and when those plants die and decompose, the living organisms of the soil, such as bacteria, fungi or earthworms, transform them into organic matter. That way, soils capture huge quantities of the carbon emissions that fuel climate change. This soil organic carbon is also essential for our food security because it retains water, and soil nutrients, essential for growing crops.

The quantity of carbon soils capture depends on the way farmers grow their crops. Conservation agriculture improves soil biodiversity and carbon sequestration by retaining crop residues as mulch, compared to conventional practices.

“Research shows that practices such as conservation agriculture can restore soil organic carbon at the level of four per thousand when farmers apply all principles of conservation agriculture: no-till, soil cover and crop diversification,” explains Marc Corbeels, agronomist seconded to CIMMYT from Cirad. Increasing soil organic content stocks globally by 0.4% per year is the objective of the “4 per 1000” initiative as a way to mitigate climate change and improve food security. At global level, sequestrating 0.4% more soil organic carbon annually combined with stopping deforestation would counteract the annual rise in atmospheric CO2.

The overall soil organic carbon sequestration potential of conservation agriculture should however not be overestimated,” Corbeels warns. “Carbon sequestration is complex and context-specific. It depends for instance on the type of soils and the initial soil organic status, and the crop and biomass productivity as enough crop residues should be produced.”

“Now farmers in Malawi, Zambia and Zimbabwe are facing prolonged drought and, in some parts, farming communities got hit by flash floods. With degraded and barren soils in this tropical environment, it is a disaster. In my experience, more than mitigation, improved climate resilience is a bigger benefit of conservation agriculture for the farmers”, Corbeels says.

“Science is important to build up solid evidence of the benefits of a healthy soil and push forward much-needed policy interventions to incentivize soil conservation,” Thierfelder states.

Scaling out conservation agriculture practices is what has driven him over the past decade in southern Africa.

“One big lesson I learnt from my years of research with farmers is that if you treat well your soil, your soil will treat you well. Conservation agriculture adopters like Kassim Massi and his family are more resilient to these successive shocks. We need more farmers like them to achieve greater food security and climate resilience in the region,” he concludes.

December 5, we are celebrating World Soil Day under the theme “Stop Soil Erosion, Save our Future!” As CIMMYT’s research shows, farmers cannot deliver sustainable food security without healthy soils, as the farming land producing our staple crops provide important environmental services as well. CIMMYT calls for soil-smart agriculture and food systems.

Agricultural solutions to tackle humanity’s climate crisis

More than 11,000 scientists signed on to a recent report showing that planet Earth is facing a climate emergency and the United Nations warned that the world is on course for a 3.2 degree spike by 2100, even if 2015 Paris Agreement commitments are met.

Agriculture, forestry, and land-use change are implicated in roughly a quarter of global greenhouse gas emissions.

Agriculture also offers opportunities to mitigate climate change and to help farmers — particularly smallholders in developing and emerging economies who have been hardest hit by hot weather and reduced, more erratic rainfall.

Most of CIMMYT’s work relates to climate change, helping farmers adapt to shocks while meeting the rising demand for food and, where possible, reducing emissions.

Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Family farmer Geofrey Kurgat (center) with his mother Elice Tole (left) and his nephew Ronny Kiprotich in their 1-acre field of Korongo wheat near Belbur, Nukuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Climate-resilient crops and farming practices

53 million people are benefiting from drought-tolerant maize. Drought-tolerant maize varieties developed using conventional breeding provide at least 25% more grain than other varieties in dry conditions in sub-Saharan Africa — this represents as much as 1 ton per hectare more grain on average. These varieties are now grown on nearly 2.5 million hectares, benefiting an estimated 6 million households or 53 million people in the continent. One study shows that drought-tolerant maize can provide farming families in Zimbabwe an extra 9 months of food at no additional cost. The greatest productivity results when these varieties are used with reduced or zero tillage and keeping crop residues on the soil, as was demonstrated in southern Africa during the 2015-16 El Niño drought. Finally, tolerance in maize to high temperatures in combination with drought tolerance has a benefit at least twice that of either trait alone.

Wheat yields rise in difficult environments. Nearly two decades of data from 740 locations in more than 60 countries shows that CIMMYT breeding is pushing up wheat yields by almost 2% each year — that’s some 38 kilograms per hectare more annually over almost 20 years — under dry or otherwise challenging conditions. This is partly through use of drought-tolerant lines and crosses with wild grasses that boost wheat’s resilience. An international consortium is applying cutting-edge science to develop climate-resilient wheat. Three widely-adopted heat and drought-tolerant wheat lines from this work are helping farmers in Pakistan, a wheat powerhouse facing rising temperatures and drier conditions; the most popular was grown on an estimated 40,000 hectares in 2018.

Climate-smart soil and fertilizer management. Rice-wheat rotations are the predominant farming system on more than 13 million hectares in the Indo-Gangetic Plains of South Asia, providing food and livelihoods for hundreds of millions. If farmers in India alone fine-tuned crop fertilizer dosages using available technologies such as cellphones and photosynthesis sensors, each year they could produce nearly 14 million tons more grain, save 1.4 million tons of fertilizer, and cut CO2-equivalent greenhouse gas emissions by 5.3 million tons. Scientists have been studying and widely promoting such practices, as well as the use of direct seeding without tillage and keeping crop residues on the soil, farming methods that help capture and hold carbon and can save up to a ton of CO2 emissions per hectare, each crop cycle. Informed by CIMMYT researchers, India state officials seeking to reduce seasonal pollution in New Delhi and other cities have implemented policy measures to curb the burning of rice straw in northern India through widespread use of zero tillage.

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

Measuring climate change impacts and savings

In a landmark study involving CIMMYT wheat physiologists and underlining nutritional impacts of climate change, it was found that increased atmospheric CO2 reduces wheat grain protein content. Given wheat’s role as a key source of protein in the diets of millions of the poor, the results show the need for breeding and other measures to address this effect.

CIMMYT scientists are devising approaches to gauge organic carbon stocks in soils. The stored carbon improves soil resilience and fertility and reduces its emissions of greenhouse gases. Their research also provides the basis for a new global soil information system and to assess the effectiveness of resource-conserving crop management practices.

CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT's experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT scientist Francisco Pinto operates a drone over wheat plots at CIMMYT’s experimental station in Ciudad Obregon, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Managing pests and diseases

Rising temperatures and shifting precipitation are causing the emergence and spread of deadly new crop diseases and insect pests. Research partners worldwide are helping farmers to gain an upper hand by monitoring and sharing information about pathogen and pest movements, by spreading control measures and fostering timely access to fungicides and pesticides, and by developing maize and wheat varieties that feature genetic resistance to these organisms.

Viruses and moth larvae assail maize. Rapid and coordinated action among public and private institutions across sub-Saharan Africa has averted a food security disaster by containing the spread of maize lethal necrosis, a viral disease which appeared in Kenya in 2011 and quickly moved to maize fields regionwide. Measures have included capacity development with seed companies, extension workers, and farmers the development of new disease-resilient maize hybrids.

The insect known as fall armyworm hit Africa in 2016, quickly ranged across nearly all the continent’s maize lands and is now spreading in Asia. Regional and international consortia are combating the pest with guidance on integrated pest management, organized trainings and videos to support smallholder farmers, and breeding maize varieties that can at least partly resist fall armyworm.

New fungal diseases threaten world wheat harvests. The Ug99 race of wheat stem rust emerged in eastern Africa in the late 1990s and spawned 13 new strains that eventually appeared in 13 countries of Africa and beyond. Adding to wheat’s adversity, a devastating malady from the Americas known as “wheat blast” suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area and threatening to move quickly throughout South Asia’s vast wheat lands.

In both cases, quick international responses such as the Borlaug Global Rust Initiative, have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)
A community volunteer of an agricultural cooperative (left) uses the Plantix smartphone app to help a farmer diagnose pests in his maize field in Bardiya district, Nepal. (Photo: Bandana Pradhan/CIMMYT)

Partners and funders of CIMMYT’s climate research

A global leader in publicly-funded maize and wheat research and related farming systems, CIMMYT is a member of CGIAR and leads the South Asia Regional Program of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

CIMMYT receives support for research relating to climate change from national governments, foundations, development banks and other public and private agencies. Top funders include CGIAR Research Programs and Platforms, the Bill & Melinda Gates Foundation, Mexico’s Secretary of Agriculture and Rural Development (SADER), the United States Agency for International Development (USAID), the UK Department for International Development (DFID), the Australian Centre for International Agricultural Research (ACIAR), Cornell University, the German aid agency GIZ, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and CGIAR Trust Fund Contributors to Window 1 &2.

Scaling out climate-smart agriculture in southern Africa

The United Nations Framework Convention on Climate Change estimates that temperatures in Africa are set to rise significantly in coming years, with devastating results for farmers. Some regions could experience two droughts every five years, and see drastic reductions in maize yields over the next three decades.

Research demonstrates that climate-smart agriculture (CSA) is good method of mitigating the effects of climate change, for both farmers and the planet. Associated practices, which increase soil moisture levels and soil biodiversity have been shown to decrease soil erosion by up to 64%. They also have the potential to increase maize yields by 136% and incomes in dry environments by more than twice as much.

However, adoption rates remain low in some of the countries which stand to benefit the most, such as Malawi, Zambia and Zimbabwe, where the adoption of complete conservation agriculture systems is currently at 2.5%.

A new series of infographics describes some of the farming constraints will have to be addressed in order to scale climate-smart agricultural practices successfully in the region, taking into account both benefits and challenges for farmers.

Download the infographics:

Can we scale out Climate-Smart Agriculture? An overview.

Feasibility study of Climate-Smart Agriculture for rural communities in southern Africa: the approach.

Identifying the two best-bet CSA options to test.

A perfect storm: climate change jeopardizes food security in Malawi, Zambia and Zimbabwe.

Benefits and challenges of climate-smart agriculture for farmers in southern Africa.

Gender-sensitive climate-smart agriculture in southern Africa.

There is a strong business case for scaling out CSA in Malawi, Zambia and Zimbabwe.

Pulses, cobs and a healthy soil prove the success of a rural innovator

Mary Twaya is an exemplary farmer in Lemu, a rural drought-prone community in southern Malawi, near Lake Malombe. On her one-hectare farm she grows cotton, maize, and legumes like groundnut and cowpea, which she just picked from her fields. Since agriculture is Twaya’s sole livelihood, it is important for her to get good harvests, so she can support her three children and her elderly mother. She is the only breadwinner since her husband left to sell coffee in the city and never returned.

Agriculture is critically important to the economy and social fabric of Malawi, one of the poorest countries in the World. Up to 84% of Malawian households own or cultivate land. Yet, gender disparities mean that farmland managed by women are on average 25% less productive than men. Constraints include limited access to inputs and opportunities for capacity building in farming.

Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)
Mary Twaya stands by her field during the 2018/19 season. (Photo: Christian Thierfelder/CIMMYT)

Climate change may worsen this gender gap. Research from the International Maize and Wheat Improvement Center (CIMMYT) shows that there are multidimensional benefits for women farmers to switch to climate-smart agriculture practices, such as planting drought-tolerant maize varieties and conservation agriculture with no tillage, soil cover and crop diversification.

Twaya was part of a CIMMYT project that brought climate-smart agriculture practices to smallholder farmers in Malawi, Zambia and Zimbabwe.

She was enthusiastic about adopting climate-smart agriculture practices and conservation agriculture strategies in her plot. “I have always considered myself an active farmer, and when my husband left, I continued in the project around 2007 as part of the six lead ‘mother farmers’ with about 30 more ‘baby farmers’ learning through our field trials,” Twaya explained.

“We worked in Lemu since 2007 with Patrick Stanford, a very active and dedicated extension officer who introduced conservation agriculture to the village,” said CIMMYT agronomist Christian Thierfelder. “Farmers highlighted declining yields. The Lemu community was keen to transform their farming system, from conventional ridge tillage to more sustainable and climate-adapted cropping systems.” This was an ideal breeding ground for new ideas and the development of climate-smart solutions, according to Thierfelder.

Mulching, spacing and legume diversification

Showing her demonstration plot, which covers a third of her farm, Twaya highlights some of the climate-smart practices she adopted.

“Mulching was an entirely new concept to me. I noticed that it helps with moisture retention allowing my crops to survive for longer during the periods of dry spells. Compared to the crops without mulching, one could easily tell the difference in the health of the crop.”

“Thanks to mulching and no tillage, a beneficial soil structure is developed over time that enables more sustained water infiltration into the soil’’, explained Thierfelder. “Another advantage of mulching is that it controls the presence of weeds because the mulch smothers weeds unlike in conventional systems where the soil is bare.”

Research shows that conservation agriculture practices like mulching, combined with direct seeding and improved weed control practices, can reduce an average of 25-45 labor days per hectare for women and children in manual farming systems in eastern Zambia and Malawi. This time could be used more productively at the market, at home or in other income-generating activities.

A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)
A plate full of pigeon peas harvested from Mary’s plot in Lemu, Malawi. Pigeon pea grain has a high protein content of 21-25%, making it a valuable food for many families who cannot afford dairy and meat. (Photo: Shiela Chikulo/CIMMYT)

After 12 years of practicing conservation agriculture, Twaya confirms that she does not spend too much time in the field because she just uproots the weeds with no need for using a hoe. This makes the weeding task less laborious and allows her to spend her time on other chores such as fetching water, washing laundry or cleaning her homestead. “I have time to also go to the village banking and loan savings club to meet with others”.

Adopting optimum plant density, instead of throwing in three seeds in each planting hole was another transformational change. The “Sasakawa spacing” — where maize seeds are planted 25 centimeters apart in rows spaced every 75 centimeters — saves seed and boosts yields, as each plant receives adequate fertilizer, light and water without competing with the other seeds. This practice was introduced in Malawi in the year 2000 by Sasakawa Global.

Twaya pays more attention to the benefits of planting nitrogen-fixing crops alongside her maize, as she learned that “through crop rotation, legumes like pigeon pea improve the nutrition of my soil.” In the past she threw pigeon pea seeds loosely over her maize field and let it grow without any order, but now she practices a “double-up legume system,” where groundnut and pigeon pea are cropped at the same time. Pigeon peas develop slowly, so they can grow for three months without competition after groundnut is harvested. This system was introduced by the Africa RISING project, funded by USAID.

Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)
Groundnuts and pigeon peas grow under the double-up legume system in Mary Twaya’s conservation agriculture plot. (Photo: Christian Thierfelder/CIMMYT)

A mother farmer shows the way

Switching to climate-smart agriculture requires a long-term commitment and knowledge. Some farmers may resist to the changes because they initially find it new and tedious but, like Twaya observed, “it may be because they have not given themselves enough time to see the long-term benefits of some of these practices.”

With all these innovations — introduced in her farm over the years with the support of CIMMYT and the Ministry of Agriculture, Irrigation and Water Development of Malawi — Twaya reaped important economic and social benefits.

When Twaya rotates maize and pigeon pea, the maize stalks are healthy and the cobs are big, giving her higher yields. Passing-by neighbors will often exclaim ‘‘Is this your maize?’’ because they can tell it looks much more vigorous and healthier than what they see in other fields.

For the last season, Twaya harvested 15 bags of 50kg of maize from her demo plot, the equivalent of five tons per hectare. In addition to her pigeon pea and groundnut crops, she was able to feed her family well and earned enough to renovate her family home this year.

This new way of managing her fields has gained Twaya more respect and has improved her status in the community.

Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)
Through surplus sales of maize grain, pigeon pea and groundnuts over the past 12 years, Mary has generated enough income to build a new home. Nearing completion, she has purchased iron sheets for roofing this house by the end of 2019. (Photo: Shiela Chikulo/CIMMYT)

Microsatellite data can help double impact of agricultural interventions

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)
A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)

Data from microsatellites can be used to detect and double the impact of sustainable interventions in agriculture at large scales, according to a new study led by the University of Michigan (U-M).

By being able to detect the impact and target interventions to locations where they will lead to the greatest increase of yield gains, satellite data can help increase food production in a low-cost and sustainable way.

According to the team of researchers from U-M, the International Maize and Wheat Improvement Center (CIMMYT), and Stanford and Cornell universities, finding low-cost ways to increase food production is critical, given that feeding a growing population and increasing the yields of crops in a changing climate are some of the greatest challenges of the coming decades.

“Being able to use microsatellite data, to precisely target an intervention to the fields that would benefit the most at large scales will help us increase the efficacy of agricultural interventions,” said lead author Meha Jain, assistant professor at the U-M School for Environment and Sustainability.

Microsatellites are small, inexpensive, low-orbiting satellites that typically weigh 100 kilograms or less.

“About 60-70% of total world food production comes from smallholders, and they have the largest field-level yield gaps,” said Balwinder Singh, senior researcher at the International Maize and Wheat Improvement Center (CIMMYT).

To show that the low-cost microsatellite imagery can quantify and enhance yield gains, the researchers conducted their study in smallholder wheat fields in the Eastern Indo-Gangetic Plains in India.

They ran an experiment on 127 farms using a split-plot design over multiple years. In one half of the field, the farmers applied nitrogen fertilizer using hand broadcasting, the typical fertilizer spreading method in this region. In the other half of the field, the farmers applied fertilizer using a new and low-cost fertilizer spreader.

To measure the impact of the intervention, the researchers then collected the crop-cut measures of yield, where the crop is harvested and weighed in field, often considered the gold standard for measuring crop yields. They also mapped field and regional yields using microsatellite and Landsat satellite data.

They found that without any increase in input, the spreader resulted in 4.5% yield gain across all fields, sites and years, closing about one-third of the existing yield gap. They also found that if they used microsatellite data to target the lowest yielding fields, they were able to double yield gains for the same intervention cost and effort.

“Being able to bring solutions to the farmers that will benefit most from them can greatly increase uptake and impact,” said David Lobell, professor of earth system science at Stanford University. “Too often, we’ve relied on blanket recommendations that only make sense for a small fraction of farmers. Hopefully, this study will generate more interest and investment in matching farmers to technologies that best suit their needs.”

The study also shows that the average profit from the gains was more than the amount of the spreader and 100% of the farmers were willing to pay for the technology again.

Jain said that many researchers are working on finding ways to close yield gaps and increase the production of low-yielding regions.

“A tool like satellite data that is scalable and low-cost and can be applied across regions to map and increase yields of crops at large scale,” she said.

Read the full study:
The impact of agricultural interventions can be doubled by using satellite data

The study is published in the October issue of Nature Sustainability. Other researchers include Amit Srivastava and Shishpal Poonia of the International Maize and Wheat Improvement Center in New Delhi; Preeti Rao and Jennifer Blesh of the U-M School of Environment and Sustainability; Andrew McDonald of Cornell; and George Azzari and David Lobell of Stanford. 


For more information, or to arrange interviews, please contact CIMMYT’s media team.