Skip to main content

Tag: climate resilient

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

Cream of the crop: Developing the next generation of wheat scientists is key to sustaining wheat production in Pakistan

On July 17-18, 2023, 87 wheat scientists gathered to learn about new approaches and methods for wheat improvement in Faisalabad, Pakistan. CIMMYT and the Wheat Research Institute, Faisalabad (WRI-FSD) jointly organized a two-day training. The course covered two topics: high throughput genotyping technologies and high throughput phenotyping platforms. The trainees, who were able to attend in person or remotely and 27% of whom were women, hailed from 17 NARES partners across Pakistan.

Trainees at Faisalabad, Pakistan. (Photo: CIMMYT)

After being welcomed by the Director General of Ayub Agricultural Research Institute (AARI), Akhtar Ali, and CIMMYT’s Country Representative, TP Tiwari, participants received an update on the status of wheat in Pakistan from Muhammad Sohail, national wheat coordinator for the Pakistan Agricultural Research Council (PARC). Subsequently, WRI-FSD Director, Javed Ahmed, discussed wheat research in Punjab, where over 70% wheat is grown in Pakistan. Kevin Pixley, interim director of CIMMYT’s Global Wheat Program, joined the proceedings remotely for a conversation about CIMMYT’s and CGIAR’s collaboration with NARES. Participants discussed the model’s successes, bottlenecks, the role of NARES, and the potential for capacity development. The conversation generated broad interest and suggestions for enhancing the partnership’s effectiveness. Akhtar Ali, Muhammad Sohail, and Javed Ahmed all spoke very highly about CIMMYT’s support in Pakistan.

This event was organized as part of a collaborative project entitled “Rapid development of climate resilient wheat varieties for South Asia using genomic selection” that is jointly managed by Kansas State University and CIMMYT with funding from the USAID Feed the Future program.

“Training emphasized the need for an output-oriented researcher that covered the development of climate-resilient wheat varieties, given the environmental challenges we are experiencing like, drought and heat, and highlighted the importance of innovative methodologies and advanced tools for high throughput phenotyping and genotyping for sustainable and resilient wheat production in Pakistan” said Muhammad Ishaq, a senior research officer and one of the training participants from Kohat Research Station, Khyber Pakhtunkhwa.

At the conclusion of the training, Javed, direct of WRI Faisalabad, commended CIMMYT’s support and suggested continuing the pace of training. Dr. Tiwari stressed the importance of such efforts will help Pakistan’s scientists develop and deploy climate resilient, impactful wheat varieties to boost wheat production and reduce wheat imports in the country.

‘Farmers now more aware about climate resilient agri’

A workshop in New Delhi on the Climate Resilient Agriculture (CRA) programme explored solar harvesting, carbon credit, crop residue management, climate resilient cultivars, millets and pulses in cropping systems, and maize drying and processing.

Arun Kumar Joshi from the Borlaug Institute for South Asia (BISA) highlighted the potential of the programme if more farmers embrace CRA technology.

New technologies and innovations are essential in helping farmers adapt to changing climate conditions and reduce reliance on greenhouse gases (GHG).

Read the original article: ‘Farmers now more aware about climate resilient agri’

Elite maize seeds handed over to seed sector stakeholders in Nepal

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development hands-over diverse maize seed inbred lines acquired by CIMMYT to the National Agricultural Research Council. (Photo: Bandana Pradhan/CIMMYT)

Maize is Nepal’s second most important crop for food security. Although the country’s diverse ecology can support maize production throughout the year, maize seeds and other grains, are largely imported each year.

Access to quality maize seed is one of the issues. Almost 85% of Nepalese farmers are unable to access quality certified maize seeds leaving them vulnerable to lower productivity. Traditional seeds, for example, are often unable to withstand extreme weather conditions induced by climate change. Nepal also has low seed replacement rates — around 20% for major cereals, which means that over 80% of farmers are either recycling seeds or use substandard quality seeds for each cropping season.

Over the past four years, researchers from the International Maize and Wheat Improvement Center (CIMMYT), through Nepal Seed and Fertilizer (NSAF) project supported by the United States Agency for International Development (USAID), have been assisting the National Agricultural Research Council (NARC) and private seed company partners to test market ready and multiple stress tolerant hybrid and synthetic maize varieties at various locations across Nepal and evaluate their suitability for cultivation. These maize varieties have come from CIMMYT’s maize breeding hubs in Mexico, Zimbabwe, Colombia and India as well as the International Institute of Tropical Agriculture (IITA).

After over two years of testing and identifying the best performing varieties, Secretary of the Ministry of Agriculture and Livestock Development, Govinda Prasad Sharma handed over the seeds of selected maize varieties to NARC and seven partner seed companies for further testing, variety registration and seed scale up in Nepal. The handover ceremony took place on August 18, 2022 at the Quality Hybrid Seed Production and Seed Business Management International Training Workshop, which gathered together a diverse range of maize stakeholders from Nepal and South Asia.

These new high-performing, climate-resilient varieties will help Nepal increase their national maize yield, enhancing food security and livelihoods.

Govinda Prasad Sharma, Secretary of Nepal’s Ministry of Agriculture and Livestock Development hands over diverse maize seed inbred lines acquired by CIMMYT to one of the private seed company partners of the NSAF project. (Photo: Bandana Pradhan/CIMMYT)

Nutritious and climate resilient

The maize seeds include varieties enriched with provitamin A and zinc, aflatoxin tolerant synthetics, white and yellow kernel hybrids, and sweet and popcorn maize varieties. As well as being good for nutrition, the seeds are high yielding. Synthetic varieties have the potential to yield 6-7 metric tons (t) per hectare, while the hybrid varieties may yield over 10t — a significant increase from 3-5t of local seeds.

Climate change resilience is a vital trait for modern crops. Climate change is posing a threat to crops, with traditional varieties often unable to withstand extreme weather conditions. Included in the handover were climate resilient, early maturing seeds which take less than 100 days to mature in the summer season, reducing their exposure to drought. Among the handed over seeds were varieties tolerant to fall armyworm — a devastating pest threatening maize production in Nepal.

Stress tolerant and high yielding varieties suitable for such extreme conditions are needed now more than ever to increase on-farm yield levels. Nepal also needs a vibrant last mile seed delivery system and mechanisms to support and serve under-reached populations, including women and smallholder farmers. Sharma acknowledged CIMMYT’s support in sharing these elite and diverse maize seeds, which will contribute towards the government’s efforts of self-sufficiency in major cereals including maize.

“USAID is pleased to be collaborating with both the Government of Nepal and private sector partners through the NSAF project to enhance maize production and productivity at the farmer level,” said Jason Seuc, director of the Economic Growth Office at USAID.

“Once the range of maize seeds become widely available in the market, these varieties will play a major role in enhancing the food and nutrition security to millions of farmers who use maize directly or indirectly in the food chain, especially for those living in the hills.”

The exclusive allocation of the new products to partners complements the project team’s efforts to support private seed companies who have recently acquired research and development licenses and can subsequently register varieties under their own brands.

“We are handing over not only seeds and technologies to our partners but also responsibility, so that these varieties can make it to the farmers’ field in the shortest time possible,” said AbduRahman Beshir, NSAF’s seed systems lead at CIMMYT.

This crucial initiation also supports Nepal’s efforts to compete with imports and promote self-sufficiency through the private sector-led hybrid seed industry. Ultimately, farmers will have better access to quality maize seeds and increase crop productivity and income.