Skip to main content

Tag: climate change

Breaking barriers in agriculture

Nepal’s traditional farming system faces labor shortages, and climate-induced risks to crop production, infrastructure, investment, and agro-advisory tools. This calls for urgently redesigning agriculture practices and addressing the challenges and a noticeable shift in farmers’ interests in farming practices.

The International Water Management Institute and CIMMYT, in collaboration with local governments in Gurbakot Municipality of Surkhet and Haleshi Tuwachung Municipality of Khotang, conducted research on Sustainable Intensification of Mixed Farming System (SI-MFS), the research found a noticeable shift in farmers’ interests in farming practices.

Read the full story.

The world’s future wheat will need to withstand the climate crisis

As hotter temperatures and drought become the norm in places used to growing wheat, yields will be reduced, climate change will have some effect on most of the world’s wheat. CIMMYT is working to strengthen seed systems as demand for staple crops like wheat is only expected to increase as the climate crisis makes the world’s food system more vulnerable.

Read the full story.

Championing Global Cooperation to Crack Global Challenges

Thomas A. Lumpkin, talks to China Today about his views on global coordination and cooperation, and reiterates his belief that China and the U.S. should play a leading role by working together. Lumpkin also discusses his interest in China’s traditional farming techniques and calls for stronger bilateral cooperation to address common global challenges.

Read the full story.

The world must act to avert a climate-induced food shortage, cautions Cary Fowler. CIMMYT has a strategy to strengthen agrifood systems.

Erratic climate patterns, global and regional conflicts, biodiversity degradation, and insufficient funding for agricultural research pose a serious risk to meeting global food production goals by mid-century, according to Cary Fowler, the U.S. special envoy for food security. 

The world must produce 50-60% more food by 2050 to nourish a growing population. Yet global crop yields are projected to drop between 3-12% over the same period. Wheat yields in Africa and South Asia, two regions with the fastest growing and youngest populations, are expected to decline by 15% due to global warming. Food systems have also been disrupted by the Russia-Ukraine conflict and the COVID-19 pandemic, raising food and fertilizer prices, and exacerbating regional instability.   

Maize vendor at village market in Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Fowler cites inadequate government funding for plant breeding programs as a contributor to an ineffective response to introducing improved climate-adaptable staple crops. “With the state of current affairs, we are on our way to failing to feed the world by century’s end,” said Fowler.  

Science and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

Global peace and development efforts will demand a cross-sector and coordinated response. Through its 2030 Strategy, CIMMYT has laid out a robust series of investments in crop systems innovation, partnership, and sustainable development, to advance more resilient food systems. The 2030 Strategy consolidates CIMMYT’s target areas through three pillars: Discovery, SystemDev, and Inc. These pillars focus on research and innovation, systems approach, and strong partnerships and advocacy efforts with the private and government sectors to address an emerging food crisis. 

“Our 2030 Strategy places research, innovation and partnership at the center of facing the challenges of the 21st century to solve tomorrow’s problems today—for greater food security and the prosperity of smallholder farmers. As we implement work plans, CIMMYT is proud of the achievements it has seen through projects in sub-Saharan Africa, our contribution to influential policy reports, and continued praise for our agri-development initiatives in Latin America. All these feats will help us deliver on and expand our efforts to reach our 2030 vision,” said Bram Govaerts, CIMMYT director general.  

CIMMYT remains prominent in developing sustainable solutions for farmers and policy actors  

CIMMYT has achieved important progress in Eastern and Southern Africa. Projects such as the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub have brought together regional seed partners, government agencies, and CGIAR Research Centers, to reduce fertilizer prices, boost resilience to drought and pests, and facilitate market access for smallholders.  

In the recent SPG Coalition report, CIMMYT featured prominently as a leading organization in climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management. This report informs researchers, non-governmental organizations and private sector partners in agrifood and climate policy development.  

A CIMMYT staff member gives a farmer training session in Boiragee, Bangladesh. (Photo: S. Mojumder Drik/CIMMYT)

MasAgro, a research-for-development initiative, has received praise by international organizations and governments as an exemplary program for sustainable development in Latin America. Over 500,000 farmers in Mexico have adopted hardy maize or wheat varieties and resource-conserving agricultural practices. To maximize on the experience of MasAgro, CIMMYT has partnered with a CGIAR initiative: AgriLAC Resiliente. This initiative aims to bolster the competitiveness and sustainability of agrifood systems to respond to forced migrations in Central and South America which are worsened by regional food insecurity and conflict.  

Science and innovation powered by partnership can deliver a food secure world  

Climate change undoubtedly threatens global peace and agrifood systems. With over 130 countries depending on food imports, today’s hyper-connected world demands collaborative partnership across all sectors to build up shockproof food systems. Through a grassroots approach to research and innovation, the CIMMYT 2030 Strategy is built upon decades of applied science which has impacted communities around the world, to continue influencing policy, pioneering innovations, and advocating for the development of a food secure future.  

Climate Adaptation Atlas will support evidence-based solutions in Sri Lanka

We are all aware the immense challenges countries face due to climate change, particularly its impacts on vital sectors like agriculture, forestry and livestock. The agriculture industry is profoundly affected by unpredictable weather patterns and frequent incidences of extreme events such as floods, droughts and landslides. Consequently, finding effective solutions to address these issues becomes of paramount importance. Climate-resilient agriculture necessitates the adoption of sustainable crop and land management technologies.

(Photo: Karen Conniff/IWMI)

In the context of South Asia, Sri Lanka stands out as one of the most severely affected countries by the impacts of climate change. The nation contends with a multitude of hazards, ranging from floods and landslides in the western and southwestern regions, drought and pest outbreaks in the northern region and coastal erosion along the coastal belts. These examples underscore the growing complexity and challenges associated with managing climate risks and patterns, especially when multiple hazards occur simultaneously.

In response, Sri Lanka has implemented climate-smart agricultural interventions, including the development and introduction of stress-tolerant crop varieties, rainwater harvesting, the introduction of energy-efficient irrigation systems, implementation of soil and water conservation programs and crop diversification. However, the agricultural sector still faces formidable challenges. There is a lack of up-to-date information on climate change and its impacts, a fragmented institutional setup, overlapping mandates and limited capacity for information sharing. To address these issues, we require zone-based planning and institutional collaboration. Integrating spatial considerations into rehabilitation and development interventions is the main consensus among stakeholders. All ongoing and planned programs need vulnerability information, and there is a consensus among stakeholders on the need to integrate spatial considerations into rehabilitation and development interventions.

This is where the Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project becomes an invaluable asset in expediting Sri Lanka’s journey towards climate-smart agriculture. Recent evidence highlights the need for a comprehensive assessment of location-specific climate actions to bridge knowledge gaps within the country. Through the Atlas, we will quantify localized climatic risks today and, in the future, assess their likely impacts on agriculture and identify key adaptation options to mitigate these risks. This knowledge will strengthen Sri Lanka’s food security and reduce its vulnerability to climate-related hazards. By complementing traditional methods of risk characterization with novel approaches like intensity and frequency analysis of hazards and historical crop yields, our efforts will gain added efficacy.

ACASA, therefore, offers us a unique opportunity to foster collaboration, share knowledge and develop evidence-based innovative solutions to confront the challenges posed by climate change in Sri Lanka. It serves as a platform to connect hazards, practices, tools and adaptation options. By intertwining various aspects of climate change and gaining a deeper understanding of its spatial and temporal dimensions through the Atlas, Sri Lanka is steadfast in its commitment to building resilience and creating a sustainable future for generations to come.

Piece by P. Malathy, DG-Agriculture, Sri Lanka

A new Climate Adaptation Atlas to safeguard South Asian agriculture

(Photo: Vinaynath Reddy/CCAFS)

Climate change is no longer a distant threat but a reality that profoundly affects our lives. Among the most vulnerable regions to climate change, South Asia stands out because it is home to over 100 million farmers and produces over 285 million metric tons of milled rice and 128 million metric tons of wheat (FAO 2020-21). Among 193 countries worldwide, South Asian countries rank in the top quarter for climate risk and are experiencing rising meteorological and climate-related disasters. These pose significant challenges to farmers and the 216 million people in South Asia living in extreme poverty (World Bank, 2018), further jeopardizing their food security and livelihoods.

Considering this, with support from the Bill & Melinda Gates Foundation, the Borlaug Institute for South Asia (BISA) is working with national agriculture research systems in South Asia to develop the Atlas of Climate Adaptation in South Asian Agriculture (ACASA).

The Atlas brings together spatially explicit South Asian data on the nature and evolving patterns of climate hazards. It will assess climate risks using gridded, village-scale analyses and through historical crop yield data and satellite signatures. The Atlas will consider the exposure of smallholder populations, farms and crop and livestock enterprises. It will assess the vulnerability or adaptive capacity of those populations and impacts on the region’s critical commodities. Importantly, the Atlas will provide a unique set of on-line tools and a portfolio of adaptation options to underpin better decisions regarding investments in agricultural technologies, climate information services, and policies. The project will also focus on building the capacity of concerned stakeholders such as multi-lateral agencies, government bodies, NGOs, and the private sector in the use of Atlas assets, through training materials, tutorials, and periodic workshops. This will enable informed investments and policy decisions to benefit 100 million farmers in South Asian region. For wider use, the Atlas will be embedded online as an open-source, web-enabled and interactive and dynamic tool for easy access by all concerned stakeholders.

Drawing on the expertise and experience of South Asian nations such as Bangladesh, India, Nepal, and Sri Lanka, which have suffered from extreme heat, prolonged droughts, and severe flooding in key crop-producing areas, ACASA represents an example of collaboration and knowledge exchange to reduce farmers’ risks and offer them ways to adapt.

BISA and CIMMYT are pleased to anchor this remarkable collaboration that leverages multi-disciplinary expertise and perspectives to address the complex challenges posed by climate change, linking the detailed characterization of climatic risks with mitigation technologies and policies to meet the needs of diverse stakeholders. The proposed work will contribute actively to the CIMMYT2030 Strategy where one of the 5 impact areas is centered around Climate adaptation and Mitigation. The entire strategy designs a path toward a Food and Nutrition Secure world through science and innovation in the midst of a global climate crisis.

Established in 2011 by CIMMYT and the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) is a non-profit international organization that applies advanced technologies to improve food systems and food security, nutrition, livelihoods, and the environment in South Asia, home to more than 300 million undernourished people.

El Niño event declared: Impacts on the Limpopo river basin in Southern Africa expected

The International Water Management Institute (IWMI) and CIMMYT call on policymakers and research-for-development organizations to stay informed about the evolving El Niño event and its potential implications in the Limpopo Basin. El Niño is considered the biggest climate oscillation on Earth. IWMI and CIMMYT have utilized various methodologies and climate models to project and assess the potential impacts of the El Niño event.

What are the crucial practices, especially under the changing climatic conditions about the evolving El Niño event?

Read the full story.

Regional Integrated Food Security Intiatives Respond to El Niño

It is official: the World Meteorological Organization (WMO) announced the beginning of the global climate heating event El Niño on July 4, which means that extreme weather events will affect the lives and livelihoods of millions of people on all continents from now until midyear 2024. El Niño is considered the biggest climate oscillation on Earth. It occurs when winds and water temperatures change periodically in the Pacific Ocean. The last occurrence was in 2016, which according to the WMO remains the hottest year on record.

What can we do to mitigate El Niño’s effects in the food systems that sustain livelihoods in the Global South?

Read the full story.

Hot, dry, windy events on the rise in Kansas wheat fields

Kansas is experiencing a record-breaking year for hot, dry, windy (HDW) — the nation’s largest winter wheat producer — hit worse than any other state. CIMMYT researchers act to avert food insecurity as temperatures climb, atmospheric pressure increases — generating faster and longer gusts of wind and unpredictable weather conditions.

Click here to read the full story.

 

Climate change to reduce Africa, South Asia wheat output

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. DSSAT wheat models showcase the impact of temperature, heat stress, water balance and drought stress in large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

Read the full story here

 

 

 

Wheat output in Africa and South Asia will suffer severely from climate change by 2050, modelling study shows

Leading crop simulation models used by a global team of agricultural scientists to simulate wheat production up to 2050 showed large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

The model predicted average declines in wheat yields of 15% in African countries and 16% in South Asian countries by mid-century, as described in the 2021 paper “Climate impact and adaptation to heat and drought stress of regional and global wheat production,” published in the science journal Environmental Research Letters. Climate change will lower global wheat production by 1.9% by mid-century, with the most negative impacts occurring in Africa and South Asia, according to the research.

“Studies have already shown that wheat yields fell by 5.5% during 1980-2010, due to rising global temperatures,” said Diego N.L. Pequeno, wheat crop modeler at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the paper. “We chose several models to simulate climate change impacts and also simulated wheat varieties that featured increased heat tolerance, early vigor against late season drought, and late flowering to ensure normal biomass accumulation. Finally, we simulated use of additional nitrogen fertilizer to maximize the expression of these adaptive traits.”

Wheat fields in Ankara, Turkey, where data was used for crop model simulation (Photo: Marta Lopes/CIMMYT)

The wheat simulation models employed — CROPSIM-CERES, CROPSIM, and Nwheat within the Decision Support System for Agrotechnology Transfer, DSSAT v.4.6 — have been widely used to study diverse cropping systems around the world, according to Pequeno.

“The DSSAT models simulated the elevated CO2 stimulus on wheat growth, when N is not limiting,” he said. “Our study is the first to include combined genetic traits for early vigor, heat tolerance, and late flowering in the wheat simulation.”

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. The DSSAT wheat models simulate the impact of temperature, including heat stress, water balance, drought stress, or nitrogen leaching from heavy rainfall.

“Generally, small and low-volume wheat producers suffered large negative impacts due to future climate changes, indicating that less developed countries may be the most affected,” Pequeno added.

Climate change at high latitudes (France, Germany, and northern China, all large wheat-producing countries/region) positively impacted wheat grain yield, as warming temperatures benefit wheat growth through an extended early spring growing season. But warmer temperatures and insufficient rainfall by mid-century, as projected at the same latitude in Russia and the northwestern United States, will reduce rainfed wheat yields — a finding that contradicts outcomes of some previous studies.

At lower latitudes that are close to the tropics, already warm, and experiencing insufficient rainfall for food crops and therefore depending on irrigation (North India, Pakistan, Bangladesh), rising heat will damage wheat crops and seriously reduce yields. China, the largest wheat producer in the world, is projected to have mixed impacts from climate change but, at a nation-wide scale, the study showed a 1.2% increase in wheat yields.

“Our results showed that the adaptive traits could help alleviate climate change impacts on wheat, but responses would vary widely, depending on the growing environment and management practices used,” according to Pequeno. This implies that wheat breeding for traits associated with climate resilience is a promising climate change adaptation option, but its effect will vary among regions. Its positive impact could be limited by agronomical aspects, particularly under rainfed and low soil N conditions, where water and nitrogen stress limit the benefits from improved cultivars.

Extreme weather events could also become more frequent. Those were possibly underestimated in this study, as projections of heat damage effects considered only changes in daily absolute temperatures but not possible changes in the frequency of occurrence. Another limitation is that most crop models lack functions for simulating excess water (e.g., flooding), an important cause of global wheat yield variability.

This study was supported by the CGIAR Research Program on Wheat agri-food systems (CRP WHEAT; 2012-2021), the CGIAR Platform for Big Data in Agriculture, the International Wheat Yield Partnership (IWYP115 Project), the Bill & Melinda Gates Foundation, the World Bank, the Mexican government through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and the International Treaty of Plant Genetic Resources for Food and Agriculture and its Benefit-sharing Fund for co-funding the project, with financial support from the European Union.

Crop Trust leadership visits CIMMYT

Maize under conservation agriculture (CA) in Malawi (Photo: T. Samson/CIMMYT)

With many stresses facing agricultural food systems, including climate change, disease epidemics, growing populations, there is not one solution that will answer all the challenges. However, a foundational part of any attempt to strengthen food systems is the effort to conserve crop diversity. Maintaining a robust set of plant varieties serves as a building block for developing favorable traits, like increased yield, increased disease resistance, and drought tolerance, among others.

Dedicated to conserving crop diversity, the Crop Trust is a non-profit international organization with the mission of making that diversity available for use globally, forever, for the benefit of everyone.

On April 3, 2023, Crop Trust’s Executive Director, Stefan Schmitz, and Director of Programs, Sarada Krishnan, visited the International Maize and Wheat Improvement Center (CIMMYT) for the first time to examine CIMMYT’s maize and wheat genebanks, with the goal of establishing a set of standards for genebanks around the world. The parties also discussed future collaborations between the two institutions that will be best amplify each organization’s strengths.

A key part of the Crop Trust’s mission is support for collections of unique and valuable plant genetic resources for food and agriculture held in genebanks.

“CIMMYT is — and has been — one of the key partners in making sure crop diversity is safe and available for all of humanity,” said Schmitz. “Their maize and wheat genebanks serve a crucial role in assuring crop diversity, especially in Latin America.”

Maize seed samples, CIMMYT germplasm bank (Photo: Xochiquetzal Fonseca/CIMMYT)

CIMMYT manages the most diverse maize and wheat collections. CIMMYT’s germplasm bank, also known as a seed bank, is at the center of CIMMYT’s crop-breeding research. This remarkable, living catalog of genetic diversity comprises over 28,000 unique seed collections of maize and 123,000 of wheat.

“CIMMYT is honored to host the Crop Trust as any global solution requires global collaboration,” said CIMMYT Director General, Bram Govaerts.

Advances in genebank management

Representatives of the Crop Trust were eager to learn more about CIMMYT’s efforts in Digital sequence information (DSI). CIMMYT is using DSI to analyze structure, redundancies, and gaps within its own genebank and is now working to bring DSI tools to national genebanks in Latin America.

This visit builds on ongoing work, such as the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA) held in November 2022.

Among CIMMYT led initiatives, the Mining Useful Alleles for Climate Change Adaptation from the CGIAR Genebanks project, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

The doomsday vault

In 2020, CIMMYT was the largest contributor to the Svalbard Global Seed Vault, providing 173,779 maize and wheat accessions from 131 countries.

The Seed Vault, managed by the Crop Trust, is a repository collection holding duplicates of seeds from over 1,700 genebanks around the world.

CIMMYT’s most recent donation to the Seed Vault was in October 2022.

Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)

“All CIMMYT staff we met were passionate about their work and welcomed us kindly, generously sharing their knowledge and time with us. We look forward to continuing our collaboration, to strengthen it, and make sure that the crop collections held at the CIMMYT genebank are safe and available, forever,” said Schmitz.

CIMMYT at AIM for Climate Summit

AIM4C Call to Action (Photo: SterlingComs)

With the harmful effects of climate change, including drought and extreme temperatures moving from the abstract into the practical, the development and deployment of sustainable investments and support for climate action in agricultural and food systems must be accelerated.  

A hotter and drier world will significantly affect the average yields of key staple crops. Researchers at the International Center for Maize and Wheat Improvement (CIMMYT) estimate that, without adaptation of climate-smart solutions, each Celsius degree increase in global mean temperatures will cut average maize yields by 7.4 percent and wheat yields by 6.0 percent. 

“Those would be catastrophic losses, affecting every part of the global food system,” said CIMMYT Director General Bram Govaerts “Already we see havoc being caused in food insecure regions like southern Africa. With that in mind, it’s time not only to keep developing climate smart solutions, but we need to speed up the distribution of innovations.”  

CIMMYT is a partner in the Agriculture Innovation Mission for Climate (AIM4C) initiative, which aims to raise global ambition and drive more rapid and transformative climate action in all countries by bringing together policymakers, industry leaders, producers, civil society groups, and scientists and researchers. 

The AIM for Climate Summit, May 8-10, in Washington DC, brought together a global coalition of climate partners, including CIMMYT, all working towards the mission of rapid dissemination of climate-smart innovations.  

Bram Govaerts delivered closing remarks at IFPRI (Photo: CIMMYT)

As part of its participation in the Climate Summit, CIMMYT is reshaping its strategy for contributing to the 2030 Agenda for Sustainable Development.  

The new strategy places CIMMYT research within three main pillars: (1) discovery, (2) systems development, and (3) inclusivity, all within the framework of climate adaptation and mitigation.  

“Our new approach ensures that CIMMYT will be a partner of choice and a contributor to science and technology development. All while keeping the focus on smallholder farmers and establishing guidelines to ensure advances are sustainable and fair, as we engage previously underrepresented stakeholders,” said Govaerts.  

Establishing frameworks for rapid innovation 

At the Summit, CIMMYT updated partners on the progress of two Innovation Sprints, which are key components of the AIM and intended to achieve innovations for climate smart agri-food systems in an expedited time frame.  

CIMMYT is leading two sprints: Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America and Fast Tracking Climate Solutions from CGIAR Genebank Collections. 

The Right Fertilizer at the Right Time 

The Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America Innovation Sprint provides targeted interventions for fertilizer application and overall soil health to smallholder farmers.  

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others. 

“We need innovations that promote local adaptation and agency by smallholder farmers. By tailoring fertility management practices to specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieglinde Snapp, Innovation Sprint Leader and Program Director of CIMMYT’s Sustainable Agricultural Systems.  

Sieg Snapp participated in a breakout session (Photo: SterlingComs)

Withdrawals from genebanks 

CIMMYT’s germplasm bank, also known as a genebank, is at the center of CIMMYT’s crop-breeding research. This living catalog of genetic diversity conserves over 28,000 unique seed collections of maize and 150,000 of wheat. Many other CGIAR institutions hold similar genebanks for other key crops. The Genebank Sprint unlocks potential climate smart solutions lurking in varieties held in genebanks. 

Sarah Hearne spoke on the potential of utilizing CGIAR genebanks (Photo: CIMMYT)

Research has developed integrated approaches for six major crops (cassava, maize, sorghum, cowpea, common bean and rice), providing a scalable model for the rapid and cost-effective discovery of climate-adaptive alleles. 

“Genetic diversity is a key part of our responses to climate change,” said Sarah Hearne, CIMMYT Principal Scientist. “By utilizing the vast diversity catalogue in our CGIAR genebanks, we can disseminate climate resilient varieties to smallholder farmers around the world.” 

Working towards speeding up deployment  

In addition, CIMMYT’s Accelerated Innovation Delivery Initiative (AID-I), a partnership with the United States Agency for International Development (USAID) and based on the MasAgro model in Mexico, works toward improving legume seed and maize varieties. So far, 35 local partners are employing solutions in Zambia, Tanzania, and Malawi, and there have been 125 mega demonstrations, a majority managed by women, for farmers of improved seeds.  

In conjunction with the Summit’s focus on rapid implementation, CIMMYT is ready to deploy a similar project immediately in Central America, a historically under-funded region, which would improve livelihoods throughout the area.  

“CIMMYT is dedicated to accelerating food systems transformation by using the power of collective action for research and innovation to foster productive, inclusive, and resilient agrifood systems that ensure global food and nutrition security,” said Govaerts.