Skip to main content

Tag: burning

Could coronavirus drive farmers to adopt sustainable practices in India’s breadbasket?

June marks the start of the rice growing season in India’s breadbasket but on the quiet fields of Haryana and Punjab you wouldn’t know it.

Usually the northwestern Indian states are teeming with migrant laborers working to transplant rice paddies. However, the government’s swift COVID-19 lockdown measures in late March triggered reverse migration, with an estimated 1 million laborers returning to their home states.

The lack of migrant workers has raised alarms for the labor-dependent rice-wheat farms that feed the nation. Healthy harvests are driven by timely transplanting of rice and, consequently, by the timely sowing of the succeeding wheat crop in rotation.

Without political support for alternative farming practices, crop losses from COVID-19 labor disruptions could reach $1.5 billion and significantly diminish the country’s grain reserves, researchers from the International Maize and Wheat Improvement Center (CIMMYT) warned.

Researchers also fear delayed rice transplanting could encourage unsustainable residue burning as farmers rush to clear land in the short window between rice harvest and wheat sowing. Increased burning in the fall will exacerbate the COVID-19 health risk by contributing to the blanket of thick air pollution that covers much of northwest India, including the densely populated capital region of New Delhi.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Both farmers and politicians are showing increased interest in farm mechanization and crop diversification as they respond to COVID-19 disruptions, said M.L. Jat, a CIMMYT scientist who coordinates sustainable intensification programs in northwestern India.

“Farmers know the time of planting wheat is extremely important for productivity. To avoid production losses and smog-inducing residue burning, alternative farm practices and technologies must be scaled up now,” Jat said.

The time it takes to manually transplant rice paddies is a particular worry. Manual transplanting accounts for 95% of rice grown in the northwestern regions. Rice seedlings grown in a nursery are pulled and transplanted into puddled and leveled fields — a process that takes up to 30 person-days per hectare, making it highly dependent on the availability of migrant laborers.

Even before COVID-19, a lack of labor was costing rice-wheat productivity and encouraging burning practices that contribute to India’s air pollution crisis, said CIMMYT scientist Balwinder Singh.

“Mechanized sowing and harvesting has been growing in recent years. The COVID-19 labor shortage presents a unique opportunity for policymakers to prioritize productive and environmentally-friendly farming practices as long term solutions,” Singh said.

Sustainable practices to cope with labor bottlenecks

CIMMYT researchers are working with national and state governments to get information and technologies to farmers, however, there are significant challenges to bringing solutions to scale in the very near term, Singh explained.

There is no silver bullet in the short term. However, researchers have outlined immediate and mid-term strategies to ensure crop productivity while avoiding residue burning:

Delayed or staggered nursery sowing of rice:  By delaying nursery sowing to match delays in transplanting, yield potential can be conserved for rice. Any delay in transplanting rice due to labor shortage can reduce the productivity of seedlings. Seedling age at transplanting is an important factor for optimum growth and yield.

“Matching nursery sowing to meet delayed transplanting dates is an immediate action that farmers can take to ensure crop productivity in the short term. However, it’s important policymakers prioritize technologies, such as direct seeders, that contribute to long term solutions,” Singh said.

Direct drilling of wheat using the Happy Seeder: Direct seeding of wheat into rice residues using the Happy Seeder, a mechanized harvesting combine, can reduce the turnaround time between rice harvest and wheat sowing, potentially eliminating the temptation to burn residues.

“Identifying the areas with delayed transplanting well in advance should be a priority for effectively targeting the direct drilling of wheat using Happy Seeders,” said Jat. The average farmer who uses the Happy Seeder can generate up to 20% more profits than those who burn their fields, he explained. “Incentivizing farmers through a direct benefit transfer payment to adopt ‘no burn’ practices may help accelerate transitions.”

Directly sown rice: Timely planting of rice can also be achieved by adopting dry direct seeding of rice using mechanized seed-cum-fertilizer planters. In addition to reducing the labor requirement for crop establishment, dry direct seeding allows earlier rice planting due to its lower water requirement for establishment. Direct-seeded rice also matures earlier than puddled transplanted rice. Thus, earlier harvesting improves the chance to sow wheat on time.

“CIMMYT researchers are working with the local mechanical engineers on rolling out simple tweaks to enable the Happy Seeder to be used for direct rice seeding. The existing availability of Happy Seeders in the region will improve the speed direct rice sowing can be adopted,” Jat said.

Crop diversification with maize: Replacing rice with maize in the monsoon season is another option to alleviate the potential shortage of agricultural labor due to COVID-19, as the practice of establishing maize by machine is already common.

“Research evidence generated over the past decade demonstrates that maize along with modern agronomic management practices can provide a profitable and sustainable alternative to rice,” Jat explained. “The diversification of rice with maize can potentially contribute to sustainability that includes conserving groundwater, improving soil health and reducing air pollution through eliminating residue burning.”

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Getting innovations into farmers’ fields

Rapid policy decisions by national and state governments on facilitating more mechanized operations in labor-intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability, said ICAR’s deputy director general for agricultural extension, AK Singh.

The government is providing advisories to farmers through multiple levels of communications, including extension services, messaging services and farmer collectives to raise awareness and encourage adoption.

Moving toward mechanization and crop diversity should not be viewed as a quick fix to COVID-19 related labor shortages, but as the foundation for long-term policies that help India in achieving the UN Sustainable Development Goals, said ICAR’s deputy director general for Natural Research Management, SK Chaudhari.

“Policies encouraging farming practices that save resources and protect the environment will improve long term productivity of the nation,” he said.

Northwestern India is home to millions of smallholder farmers making it a breadbasket for grain staples. Since giving birth to the Green Revolution, the region has continued to increase its food production through rice and wheat farming providing bulk of food to the country.

This high production has not come without shortfalls, different problems like a lowering water table, scarcity of labor during peak periods, deteriorating soil health, and air pollution from crop residue burning demands some alternative methods to sustain productivity as well as natural resources.

Cover photo: A farmer uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Systems thinking at work in South Asia’s food production

A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)

In 2009, state governments in Northwest India implemented a policy designed to reduce groundwater extraction by prohibiting the usual practice of planting rice in May and moving it to June, nearer the start of monsoon rains.

Although the policy did succeed in alleviating pressure on groundwater, it also had the unexpected effect of worsening already severe air pollution. The reason for this, according to a recent study published in Nature Sustainability, is that the delay in rice planting narrowed the window between rice harvest and sowing of the subsequent crop — mainly wheat — leaving farmers little time to remove rice straw from the field and compelling them to burn it instead.

Even though burning crop residues is prohibited in India, uncertainty about the implementation of government policy and a perceived lack of alternatives have perpetuated the practice in Haryana and Punjab states, near the nation’s capital, New Delhi, where air pollution poses a major health threat.

Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress - Dreamstime.com; Image 11205929)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress – Dreamstime.com; Image 11205929)

Decades of research for development have enabled researchers at the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR) and other partners to identify potential solutions to this problem.

One particularly viable option focuses on the practice of zero tillage, in which wheat seed is sown immediately after rice harvest through the rice straw directly into untilled soil with a single tractor pass.

In a new blog published as part of the Chicago Council on Global Affairs’ Field Notes series, CIMMYT scientists Hans Braun and Bruno Gerard discuss the combination of agronomic and breeding conditions required to make zero tillage work, and propose a fundamental shift away from current incentives to maximize the region´s cereal production.

Read the full article:
Field Notes – Systems thinking at work in South Asia’s food production

Happy Seeder can reduce air pollution and greenhouse gas emissions while making profits for farmers

Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)
Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)

A research paper published in the world’s leading scientific journal, Science Magazine, indicates that using the Happy Seeder agriculture technology to manage rice residue has the potential of generating 6,000-11,500 Indian rupees (about US$85-160) more profits per hectare for the average farmer. The Happy Seeder is a tractor-mounted machine that cuts and lifts rice straw, sows wheat into the soil, and deposits the straw over the sown area as mulch.

The paper “Fields on fire: Alternatives to crop residue burning in India” evaluates the public and private costs and benefits of ten alternate farming practices to manage rice residue, including burn and non-burn options. Happy Seeder-based systems emerge as the most profitable and scalable residue management practice as they are, on average, 10%–20% more profitable than burning. This option also has the largest potential to reduce the environmental footprint of on-farm activities, as it would eliminate air pollution and would reduce greenhouse gas emissions per hectare by more than 78%, relative to all burning options.

This research aims to make the business case for why farmers should adopt no-burn alternative farming practices, discusses barriers to their uptake and solutions to increase their widespread adoption. This work was jointly undertaken by 29 Indian and international researchers from The Nature Conservancy, the International Maize and Wheat Improvement Centre (CIMMYT), the University of Minnesota, the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) and other organizations.

Every year, some 23 million tonnes of rice residue is burnt in the states of Haryana, Punjab and Western Uttar Pradesh, contributing significantly to air pollution and short-lived climate pollutants. In Delhi NCR, about half the air pollution on some winter days can be attributed to agricultural fires, when air quality level is 20 times higher than the safe threshold defined by WHO. Residue burning has enormous impacts on human health, soil health, the economy and climate change.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

“Despite its drawbacks, a key reason why burning continues in northwest India is the perception that profitable alternatives do not exist. Our analysis demonstrates that the Happy Seeder is a profitable solution that could be scaled up for adoption among the 2.5 million farmers involved in the rice-wheat cropping cycle in northwest India, thereby completely eliminating the need to burn. It can also lower agriculture’s contribution to India’s greenhouse gas emissions, while adding to the goal of doubling farmers income,” says Priya Shyamsundar, Lead Economist at The Nature Conservancy and one of the lead authors of the paper.

“Better practices can help farmers adapt to warmer winters and extreme, erratic weather events such as droughts and floods, which are having a terrible impact on agriculture and livelihoods. In addition, India’s efforts to transition to more sustainable, less polluting farming practices can provide lessons for other countries facing similar risks and challenges,” explains M.L. Jat, CIMMYT cropping systems specialist and a co-author of the study.

CIMMYT principal scientist M. L. Jat shows a model of a no-till planter that facilitates no-burn farming. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
CIMMYT principal scientist M. L. Jat shows a model of a no-till planter that facilitates no-burn farming. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

“Within one year of our dedicated action using about US$75 million under the Central Sector Scheme on ‘Promotion of agriculture mechanization for in-situ management of crop residue in the states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi,’ we could reach 0.8 million hectares of adoption of Happy Seeder/zero tillage technology in the northwestern states of India,” said Trilochan Mohapatra, director general of the Indian Council of Agricultural Research (ICAR). “Considering the findings of the Science article as well as reports from thousands of participatory validation trials, our efforts have resulted in an additional direct farmer benefit of US$131 million, compared to a burning option,” explained Mohapatra, who is also secretary of India’s Department of Agricultural Research and Education.

The Government of India subsidy in 2018 for onsite rice residue management has partly addressed a major financial barrier for farmers, which has resulted in an increase in Happy Seeder use. However, other barriers still exist, such as lack of knowledge of profitable no-burn solutions and impacts of burning, uncertainty about new technologies and burning ban implementation, and constraints in the supply-chain and rental markets. The paper states that NGOs, research organizations and universities can support the government in addressing these barriers through farmer communication campaigns, social nudging through trusted networks and demonstration and training. The private sector also has a critical role to play in increasing manufacturing and machinery rentals.

Read the full study

This research was supported by the Susan and Craig McCaw Foundation, the Institute on the Environment at the University of Minnesota, the CGIAR Research Program on Wheat (WHEAT), and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The Happy Seeder was originally developed through a project from the Australian Centre for International Agricultural Research (ACIAR).


For more information, or to arrange interviews with the researchers, please contact:

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167

Sonali Nandrajog, Communications Consultant, The Nature Conservancy – India
sonalinandrajog@gmail.com, +98 9871948044

Spokespersons:

M.L. Jat, Cropping Systems Agronomist, CIMMYT, India
M.Jat@cgiar.org

Priya Shyamsundar, Lead Economist, The Nature Conservancy
priya.shyamsundar@tnc.org

Seema Paul, Managing Director, The Nature Conservancy – India
seema.paul@tnc.org


About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.

About The Nature Conservancy – India

We are a science-led global conservation organisation that works to protect ecologically important lands and water for nature and people. We have been working in India since 2015 to support India’s efforts to “develop without destruction”. We work closely with the Indian government, research institutions, NGOs, private sector organisations and local communities to develop science-based, on-the-ground, scalable solutions for some of the country’s most pressing environmental challenges. Our projects are aligned with India’s national priorities of conserving rivers and wetlands, address air pollution from crop residue burning, sustainable advancing renewable energy and reforestation goals, and building health, sustainable and smart cities.

Alternatives to burning can increase Indian farmers’ profits and cut pollution, new study shows

India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)

A new economic study in the journal Science shows that thousands of farmers in northern India could increase their profits if they stop burning their rice straw and adopt no-till practices to grow wheat. Alternative farming practices could also cut farmers’ greenhouse gas emissions from on-farm activities by as much as 78% and help lower air pollution in cities like New Delhi.

The new study compares the costs and benefits of 10 distinct land preparation and sowing practices for northern India’s rice-wheat cropping rotations, which are spread across more than 4 million hectares. The direct seeding of wheat into unplowed soil and shredded rice residues was the best option — it raises farmers’ profits through higher yields and savings in labor, fuel, and machinery costs.

The study, conducted by a global team of eminent agriculture and environmental scientists, was led by researchers from The Nature Conservancy, the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) and the University of Minnesota.

A burning issue

To quickly and cheaply clear their fields to sow wheat each year, farmers in northern India burn an estimated 23 million tons of straw from their rice harvests. That enormous mass of straw, if packed into 20-kilogram 38-centimeter-high bales and piled on top of each other, would reach a height of over 430,000 kilometers — about 1.1 times the distance to the moon.

Regulations are in place in India to reduce agricultural fires but burning continues because of implementation challenges and lack of clarity about the profitability of alternate, no-burn farming.

Farmers have alternatives, the study shows. To sow wheat directly without plowing or burning rice straw, farmers need to purchase or rent a tractor-mounted implement known as the “Happy Seeder,” as well as attach straw shedders to their rice harvesters. Leaving straw on the soil as a mulch helps capture and retain moisture and also improves soil quality, according to M.L. Jat, CIMMYT Principal Scientist, cropping systems specialist and a co-author of the study.

A combine harvester (left) equipped with the Super Straw Management System, or Super SMS, works alongside a tractor fitted with a Happy Seeder. (Photo: Sonalika Tractors)
A combine harvester (left) equipped with the Super Straw Management System, or Super SMS, works alongside a tractor fitted with a Happy Seeder. (Photo: Sonalika Tractors)

Win-win

The Science study demonstrates that it is possible to reduce air pollution and greenhouse gas emissions in a way that is profitable to farmers and scalable.

The paper shows that Happy Seeder-based systems are on average 10%–20% more profitable than straw burning options.

“Our study dovetails with 2018 policies put in place by the government of India to stop farmers from burning, which includes a US$166 million subsidy to promote mechanization to manage crop residues within fields,” said Priya Shyamsundar, Lead Economist, Global Science, of The Nature Conservancy and first author of the study.

Shyamsundar noted that relatively few Indian farmers currently sow their wheat using the Happy Seeder but manufacturing of the Seeder had increased in recent years. “Less than a quarter of the total subsidy would pay for widespread adoption of the Happy Seeder, if aided by government and NGO support to build farmer awareness and impede burning.”

“With a rising population of 1.6 billion people, South Asia hosts 40% of the world’s poor and malnourished on just 2.4% of its land,” said Jat, who recently received India’s prestigious Rafi Ahmed Kidwai Award for outstanding and impact-oriented research contributions in natural resource management and agricultural engineering. “Better practices can help farmers adapt to warmer winters and extreme, erratic weather events such as droughts and floods, which are having a terrible impact on agriculture and livelihoods. In addition, India’s efforts to transition to more sustainable, less polluting farming practices can provide lessons for other countries facing similar risks and challenges.”

In November 2017, more than 4,000 schools closed in Delhi due to seasonal smog. This smog increases during October and November when fields are burned. It causes major transportation disruptions and poses health risks across northern India, including Delhi, a city of more than 18 million people.

Some of these problems can be resolved by the use of direct sowing technologies in northwestern India.

“Within one year of our dedicated action using about US$75 million under the Central Sector Scheme on ‘Promotion of agriculture mechanization for in-situ management of crop residue in the states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi,’ we could reach 0.8 million hectares of adoption of Happy Seeder/zero tillage technology in the northwestern states of India,” said Trilochan Mohapatra, director general of the Indian Council of Agricultural Research (ICAR). “Considering the findings of the Science article as well as reports from thousands of participatory validation trials, our efforts have resulted in an additional direct farmer benefit of US$131 million, compared to a burning option,” explained Mohapatra, who is also secretary of India’s Department of Agricultural Research and Education.

Read the full study in Science

This research was supported by the Susan and Craig McCaw Foundation, the Institute on the Environment at the University of Minnesota, the CGIAR Research Program on Wheat (WHEAT), and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The Happy Seeder was originally developed through a project from the Australian Centre for International Agricultural Research (ACIAR).

For more information, or to arrange interviews with the researchers, please contact:

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 5558042004 ext. 1167

Reconciling food security, resource depletion and environmental quality trade-offs in India

Northwestern India is home to millions of smallholder farmers making it a breadbasket for grain staples. Since giving birth to the Green Revolution it has continued to increase its food production through rice and wheat farming providing food security to the region.

This high production has not come without shortfalls; groundwater tables are falling from excessive irrigation and climate change has brought erratic rainfall. In response, the state governments of Haryana and Punjab introduced separate legislation forcing farmers to delay rice planting to coincide with the arrival of the monsoonal rains in late June.

With rice sowing pushed back to tackle a looming water crisis, the time available between harvesting rice and planting wheat has been reduced. Consequently, the majority of farmers opt to burn the post-harvest rice straw to quickly prepare their fields for wheat. The majority of the 34 tons of rice residues the region produces is burned in a short window of time, throwing a lot of toxic smoke into the air.

New research, by the International Maize and Wheat Improvement Center (CIMMYT), delved into linkages between groundwater and agricultural burning policies. The study uncovered that groundwater conservation policies in Haryana and Punjab are exacerbating the nation’s air pollution crisis by concentrating crop residue burning in the late fall.

“Despite being illegal, the burning of post-harvest rice residues continues to be the most common practice of crop residue management, and while groundwater policies are helping arrest water depletion, they also appear to be exacerbating one of the most acute public health problems confronting India – air pollution,” said CIMMYT scientist and author of the study, Balwinder Singh.

Millions of farmers burn the straw that remains after the rice harvest to prepare their fields for a wheat crop. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Getting to the guts of air pollution’s chokehold on India

Air pollution in India has increased significantly since 2000. Each fall, from late October to November, a toxic fog containing a mixture of dust, carbon and particles covers northwestern India. For the 18.6 million who live in New Delhi the smog not only brings daily life to a standstill but slices years off life expectancy. It kills an estimated 1.5 million people every year, with nearly half of these deaths occurring in the Indo-Gangetic Plains, the northernmost part of the country that includes New Delhi.

The analysis suggests that temporal changes in burning are a prime contributor to the air quality crisis. The limited amount of time to prepare fields for wheat planting has caused fire intensity to increase by 39 percent, peaking in November with a maximum of 681 fires per day. This increase occurs when temperatures in New Delhi are lower and winds are weak. The still conditions trap pollution and limit the amount that can escape.

Recognizing policy tradeoffs is important for sustainable agricultural intensification

Agriculture for development researchers with CIMMYT investigate how best to sustainably intensify food production. This seeks to produce more food, improve nutrition and livelihoods, and boost rural incomes without an increase in inputs – such as land and water – while reducing environmental impacts. Policies can help to shape efforts towards sustainable intensification by encouraging farming practices that save resources and protect the environment. However, it is important that governments strike the right balance between food security, resource depletion and environmental quality.

The research results shed light on the sustainability challenges confronting many highly productive agricultural systems, where addressing one problem can exacerbate others, said Andrew McDonald, a professor at Cornell University and co-author of the study.

“Identifying and managing tradeoffs and capitalizing on synergies between crop productivity, resource conservation, and environmental quality is essential,” he said.

Policies to promote sustainable intensification can also burst India’s pollution bubble

Surface crop residue retention and incorporation are the promising on-farm management options to address the issue of burning as well as maintaining soil health and long-term sustainability, said M.L. Jat, a scientist with CIMMYT who coordinates sustainable intensification programs in northwestern India.

Apart from pumping toxic smoke into the air, ash left on fields after residue burning can negatively affect soil health in the long term. However, if residue is mulched into the soil, nutrient levels improve and carbon sequestration capacity increases, lowering the release of greenhouse gases. Additionally, residue retention reduces evaporation and increases soil moisture by as much as 10 percent during the wheat-growing season.

“A sensible approach for overcoming tradeoffs will embrace agronomic technologies such as the Happy Seeder, a seed drill that plants seeds without impacting crop residue, providing farmers the technical means to avoid residue burning,” he explained.

“When rice is ready to be reaped, a tractor or a harvester collects the grain, a spreader distributes the straw that remains on the ground and the Happy Seeder drills into the land to seed wheat,” Jat said. “Farmers no longer need to till the land to plant their wheat, instead they practice a form of conservation agriculture.”

M. L. Jat, CIMMYT Cropping Systems Agronomist with a no-till planter that facilitates no-burn farming. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Researchers at CIMMYT and Punjab Agricultural University have undertaken extensive trials in farmer fields and the new technology has proven itself as a step forward for developing viable solution to rice crop residue burning.

The Indian government launched a $157 million initiative to discourage burning through agricultural machinery innovations. However, the Happy Seeder is yet to be adopted widely. It is estimated that to cover 50 percent, 5 million ha, of the total acreage under rice-wheat cropping systems in India, about 60,000 Happy Seeders are needed. At present, there are only about 10,000 available.

A recent policy brief suggests rapid adoption needs a major government push to publicize and popularize the technology. The brief suggests delivery of machinery hire services through Primary Agriculture Cooperative Societies and private entrepreneurs with ongoing government support is a viable tool to equitably reach farmers.

Access the journal article on Nature Sustainability:
Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India

Policy Brief:
Innovative Viable Solutions to Rice Residue Burning in Rice-Wheat Cropping System through Concurrent Use of Super Straw Management System-fitted Combine and Turbo Happy Seeder

Video demonstration:
The concurrent use of super SMS-fitted combines and Turbo Happy Seeder

Groundwater conservation policies help fuel air pollution crisis in northwestern India, new study finds

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas of India. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Groundwater conservation policies are contributing to the air pollution crisis in northwestern India by concentrating agricultural fires into a narrower window when weather conditions favor poor air quality, according to a new study by the International Maize and Wheat Improvement Center (CIMMYT) published on Nature Sustainability.

Facing severe groundwater depletion from intensive crop cultivation, the state governments of Haryana and Punjab introduced separate legislation in 2009 to prohibit early rice establishment in order to reduce water consumption. The study revealed that later rice planting results in later rice harvest, leading to a delayed and condensed period when residues are burned prior to wheat establishment. Consequently, more farmers are setting fire to crop residues at the same time, increasing peak fire intensity by 39%, contributing significantly to atmospheric pollution.

“Despite being illegal, the burning of post-harvest rice residues continues to be the most common practice of crop residue management in northwestern India, and while groundwater policies are helping arrest water depletion, they also appear to be exacerbating one of the most acute public health problems confronting India,” said CIMMYT scientist Balwinder Singh.

“Burning agricultural waste dominantly releases PM2.5 aerosols, a type of fine particulate matter that is particularly harmful to human health,” he explained.

Air pollution in India kills an estimated 1.5 million people every year, with nearly half of these deaths occurring in the Indo-Gangetic Plains, the northernmost part of the country that includes New Delhi.

A holistic view of policies to support sustainable development

Farmers work on rice paddies. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Farmers work on rice paddies. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The research results shed light on the sustainability challenges confronting many highly productive agricultural systems, where addressing one problem can exacerbate others, said Andrew McDonald, a professor at Cornell University and co-author of the study.

“Identifying and managing tradeoffs and capitalizing on synergies between crop productivity, resource conservation, and environmental quality is essential,” McDonald said.

“To devise more effective agricultural development programs and policies, integrative assessments are required that meld groundwater, air quality, economic, and technology scaling considerations in common frameworks,” he explained.

The current policy environment in India encourages productivity maximization of cereals and very high levels of residue production especially in the western Indo-Gangetic Plains, according to Bruno Gerard, another author of the study and head of CIMMYT’s Sustainable Intensification Program.

“If these policies are changed, companion efforts must facilitate sustainable intensification in areas such as the Eastern Gangetic Plains, where water resources are relatively abundant and closer coupling of crop-livestock systems provides a diverse set of end-uses for crops residues,” Gerard said.

The way forward

Northwestern India is home to millions of smallholder farmers and a global breadbasket for grain staples, accounting for 85% of the wheat procured by the Indian government. Thus, what happens here has regional and global ramifications for food security.

“A sensible approach for overcoming tradeoffs will embrace agronomic technologies such as the Happy Seeder, a seed drill that plants seeds without impacting crop residue, providing farmers the technical means to avoid residue burning,” said ML Jat, a scientist with CIMMYT who coordinates sustainable intensification programs in northwestern India.

“Through continued efforts on the technical refinement and business model development for the Happy Seeder technology, uptake has accelerated,” he added. “Financial incentives in the form of payments for ecosystem services may provide an additional boost to adoption.”

“Additional agronomic management measure such as cultivation of shorter-duration rice varieties may help arrest groundwater decline while reducing the damaging concentration of agricultural burning,” Jat explained.

The researchers suggested that long-term solutions will likely require crop diversification away from rice towards crops that demand less water, like maize, as recently started by the government in the state of Haryana.

Access the journal article on Nature Sustainability:
Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India

Read Balwinder Singh’s op-ed in The Telegraph:
Groundwater, the unexpected villain in India’s air pollution crisis


For more information or interview requests, please contact:

Genevieve Renard, Head of Communications, CIMMYT. g.renard@cgiar.org +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org +52 (55) 5804 2004 ext. 1167.

ABOUT CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

A burning issue

Pollution has become a part of our daily life: particulate matter in the air we breathe, organic pollutants and heavy metals in our food supply and drinking water. All of these pollutants affect the quality of human life and create enormous human costs.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

India is home to 15 of the world’s cities with the highest air pollution, making it a matter of national concern. The country is the world’s third largest greenhouse gas emitter, where agriculture is responsible for 18% of total national emissions.

For decades, CIMMYT has engaged in the development and promotion of technologies to reduce our environmental footprint and conserve natural resources to help improve farmer’s productivity.

Zero tillage reverses the loss of soil organic matter that happens in conventional tillage. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Zero tillage reverses the loss of soil organic matter that happens in conventional tillage. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Efficient use of nitrogen fertilizers, better management of water, zero-tillage farming, and better residue management strategies offer viable solutions to beat air pollution originating from the agriculture sector. Mitigation measures have been developed, field tested, and widely adopted by farmers across Bangladesh, India, Nepal and Pakistan.

India’s farmers feed billions of people, while fighting pest and weather related uncertainties. Is it too much to ask them to change their behavior and help support air quality with the food they grow? (Photo: Dakshinamurthy Vedachalam/CIMMYT)
India’s farmers feed billions of people, while fighting pest and weather related uncertainties. Is it too much to ask them to change their behavior and help support air quality with the food they grow? (Photo: Dakshinamurthy Vedachalam/CIMMYT)

“Multi-lateral impacts of air pollution link directly it to various sustainability issues,” explained Balwinder Singh, Cropping Systems Simulation Modeler at CIMMYT. “The major sustainability issues regarding air quality revolve around the common question: How good is good enough to be sustainable? We need to decide how to balance the sustainable agriculture productivity and hazardous pollution levels. We need to have policies on the regulation of crop burning and in addition to policies surrounding methods to help reach appropriate air quality levels.”

Read the whole story

Rooting for a green comeback

For decades, rice stubble has been burned in India to clear fields and prepare for wheat sowing. The easiest way of getting rid of rice crop residue is to burn it in bulk, but this poses a serious threat to the entire biosystem, from soil nutrition to human health. Deteriorating soil health results in lower crop yields, increased dependence on fertilizers, and increased water volume requirements for irrigation, all of which have negative impacts on farmer incomes.

“Earlier when rice harvesting was manual, crop residues were taken out from fields and farmers benefited from selling them,” explains M.L. Jat, principal scientist and systems agronomist at CIMMYT. “Later, when agriculture included more mechanical operations for harvesting with the increase in the production to the tune of millions of tons, crop residue became a hazard in terms of disposal that would involve huge money, labor, and logistics.”

Read more about how Sonalika India and CIMMYT are partnering to find solutions to these challenges in National Geographic Traveller India. 

(Photo: Sonalika Tractors)
(Photo: Sonalika Tractors)