Skip to main content

Tag: breeding

New publications: Breeders can benefit much more from phenotyping tools

In crop research fields, it is now a common sight to see drones or other high-tech sensing tools collecting high-resolution data on a wide range of traits — from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous, but according to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously.

In a new article in the journal Plant Science, CIMMYT researchers outline the different ways in which phenotyping can assist breeding — from large-scale screening to detailed physiological characterization of key traits — and why this methodology is crucial for crop improvement.

“While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models,” explain the authors.

Their review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translations research to deliver other new breeding resources, and how these different categories of phenotyping apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.

The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates. However, wide scale adoption of sophisticated phenotyping methods will only occur if new techniques add efficiency and effectiveness.

In this sense, “breeder-friendly” phenotyping should complement existing breeding approaches by cost-effectively increasing throughput during segregant selection and adding new sources of validated complex traits to crossing blocks. With this in mind, stringent criteria need to be applied before new traits or phenotyping protocols are incorporated into mainstream breeding pipelines.

Read the full article in Plant Science:
Breeder friendly phenotyping.

A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad ObregĂłn, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)
A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad ObregĂłn, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. 2019. Chaikam, V., Gowda, M., Nair, S.K., Melchinger, A.E., Prasanna, B.M. In: Euphytica v. 215, no. 8, art. 138.
  2. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: management, breeding options and land use change. 2019. Hernandez-Ochoa, I.M., Pequeno, D.N.L., Reynolds, M.P., Md Ali Babar, Sonder, K., Molero, A., Hoogenboom, G., Robertson, R., Gerber, S., Rowland, D.L., Fraisse, C.W., Asseng, S. In: European Journal of Agronomy.
  3. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. 2019. Gardiner, L.J., Brabbs, T., Akhunova, A., Jordan, K., Budak, H., Richmond, T., Sukhwinder-Singh, Catchpole, L., Akhunov, E., Hall, A.J.W. In: GigaScience v. 8, no. 4, art. giz018.
  4. Rethinking technological change in smallholder agriculture. 2019. Glover, D., Sumberg, J., Ton, G., Andersson, J.A., Badstue, L.B. In: Outlook on Agriculture v. 48, no. 3, p. 169-180.
  5. Food security and agriculture in the Western Highlands of Guatemala. 2019. Lopez-Ridaura, S., Barba‐Escoto, L., Reyna, C., Hellin, J. J., Gerard, B., Wijk, M.T. van. In: Food Security v. 11, no. 4, p. 817-833.
  6. Agronomic, economic, and environmental performance of nitrogen rates and source in Bangladesh’s coastal rice agroecosystems. 2019. Shah-Al Emran, Krupnik, T.J., Kumar, V., Ali, M.Y., Pittelkow, C. M. In: Field Crops Research v. 241, art. 107567.
  7. Highlights of special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Zhendong Zhao, Cheng Shun-He In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 207-209.
  8. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. 2019. Bhavani, S., Hodson, D.P., Huerta-Espino, J., Randhawa, M.S., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 210-224.
  9. China-CIMMYT collaboration enhances wheat improvement in China. 2019. He Zhonghu, Xianchun Xia, Yong Zhang, Zhang Yan, Yonggui Xiao, Xinmin Chen, Li Simin, Yuanfeng Hao, Rasheed, A, Zhiyong Xin, Zhuang Qiaosheng, Ennian Yang, Zheru Fan, Yan Jun, Singh, R.P., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6. No. 3, p. 233-239.
  10. International Winter Wheat Improvement Program: history, activities, impact and future. 2019. Morgounov, A.I., Ozdemir, F., Keser, M., Akin, B., Payne, T.S., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 240-250.
  11. Genetic improvement of wheat grain quality at CIMMYT. 2019. Guzman, C., Ammar, K., Velu, G., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 265-272.
  12. Comments on special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Liu Xu In: Frontiers of Agricultural Science and Engineering, v. 6. No. 3, p. 309.
  13. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations. 2019. Caiyun Liu, Pinto Espinosa, F., Cossani, C.M., Sukumaran, S., Reynolds, M.P. In: Frontiers of Agricultural Science and Engineering, v. 6, no. 3, p. 296-308.
  14. Beetle and maize yield response to plant residue application and manual weeding under two tillage systems in northern Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Applied Soil Ecology v. 144, p. 139-146.
  15. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. 2019. Rivera Amado, A.C., Trujillo, E., Molero, G., Reynolds, M.P., Sylvester Bradley, R., Foulkes, M.J. In: Field Crops Research v. 240, p. 154-167.
  16. Small businesses, potentially large impacts: the role of fertilizer traders as agricultural extension agents in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Journal of Agribusiness in Developing and Emerging Economies v. 9, no. 2, p. 109-124.
  17. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. 2019. Simtowe, F.P., Marenya, P. P., Amondo, E., Regasa, M.W., Rahut, D.B., Erenstein, O. In: Agricultural and Food Economics v. 7. No. 1, art. 15.
  18. Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. 2019. Krause, M., Gonzalez-Perez, L., Crossa, J., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Singh, R.P., Dreisigacker, S., Poland, J.A., Rutkoski, J., Sorrells, M.E., Gore, M.A., Mondal, S. In: G3: Genes, Genomes, Genetics v.9, no. 4, p. 1231-1247.
  19. Unravelling the complex genetics of karnal bunt (Tilletia indica) resistance in common wheat (Triticum aestivum) by genetic linkage and genome-wide association analyses. 2019. Emebiri, L.C., Sukhwinder-Singh, Tan, M.K., Singh, P.K., Fuentes DĂĄvila, G., Ogbonnaya, F.C. In: G3: Genes, Genomes, Genetics v. 9, no. 5, p. 1437-1447.
  20. Healthy foods as proxy for functional foods: consumers’ awareness, perception, and demand for natural functional foods in Pakistan. 2019. Ali, A., Rahut, D.B. In: International Journal of Food Science v. 2019, art. 6390650.
  21. Northern Himalayan region of Pakistan with cold and wet climate favors a high prevalence of wheat powdery mildew. 2019. Khan, M.R., Imtiaz, M., Farhatullah, Ahmad, S., Sajid Ali.In: Sarhad Journal of Agriculture v. 35, no. 1, p. 187-193.
  22. Resistance to insect pests in wheat—rye and Aegilops speltoides Tausch translocation and substitution lines. 2019. Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., Moustapha El Bouhssini In: Euphytica v. 215, no. 7, art.123.
  23. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. 2019. Amondo, E., Simtowe, F.P., Rahut, D.B., Erenstein, O. In: International Journal of Climate Change Strategies and Management v. 11, no. 4, p. 570-591.
  24. Review: new sensors and data-driven approaches—A path to next generation phenomics. 2019. Roitsch, T., Cabrera-Bosquet, L., Fournier, A., Ghamkhar, K., JimĂ©nez-Berni, J., Pinto Espinosa, F., Ober, E.S. In: Plant Science v. 282 p. 2-10.
  25. Accountability mechanisms in international climate change financing. 2019. Basak, R., van der Werf, E. In: International Environmental Agreements: Politics, Law and Economics v. 19, no. 3, p. 297-313.
  26. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. 2019. Cobb, J.N., Juma, R.U., Biswas, P.S., Arbelaez, J.D., Rutkoski, J., Atlin, G.N., Hagen, T., Quinn, M., Eng Hwa Ng. In: Theoretical and Applied Genetics v. 132, no. 3, p. 627-645.

One-minute science: Suchismita Mondal on breeding resilient wheat

Reduced water availability for irrigation and increasing temperatures are of great concern. These two factors can considerably affect wheat production and reduce grain yields.

Watch CIMMYT Wheat Breeder Suchismita Mondal explain — in just one minute — how breeders are developing wheat varieties that have stable grain yield under low water availability and high temperatures.

Breeder friendly phenotyping

In crop research fields, drones and other high-tech sensing tools are now a common sight. They collect high-resolution data on a wide range of traits — from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous. According to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously.

Examples of different classes and applications of breeder friendly phenotyping. (Image: M. Reynolds et al.)
Examples of different classes and applications of breeder friendly phenotyping. (Image: M. Reynolds et al.)

In a new article in the journal Plant Science, CIMMYT Wheat Physiologist Matthew Reynolds and colleagues explain the different ways that phenotyping can assist breeding — from simple to use, “handy” approaches for large scale screening, to detailed physiological characterization of key traits to identify new parental sources — and why this methodology is crucial for crop improvement. The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates.

Read the full article: 
Breeder friendly phenotyping.

This article was originally published on WHEAT.

Cover photo: Remote sensing specialist Francisco Pinto operates a UAV at CIMMYT’s research station in Ciudad ObregĂłn, in Mexico’s Sonora state.

Development of the Enterprise Breeding System well underway

Members of the Enterprise Breeding System advisory committee listen to a presentation from Tom Hagen. (Photo: Alfonso Cortés/CIMMYT)
Members of the Enterprise Breeding System advisory committee listen to a presentation from Tom Hagen. (Photo: Alfonso Cortés/CIMMYT)

Members of the Enterprise Breeding System (EBS) advisory committee met on January 17-18, 2019, to review progress on the development of a full-spectrum breeding data management software.

CGIAR plant breeders currently rely on a suite of different software projects to make use of the data that is crucial to developing better varieties. Developed under the CGIAR Excellence in Breeding Platform (EiB), the EBS aims to provide a single solution that links data across new and existing applications so that the entire breeding data workflow — from experiment creation to analytics — can be accessed from a single user-friendly dashboard.

Development of the system is well underway, with the goal of providing a “minimum viable implementation” to pilot users at the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) in 2020. More advanced functions, institutions and crops will be added to the EBS over the next three years.

Working between breeders and developers to ensure needs are translated into software functions, the EBS team has trained CIMMYT staff and consultants as requirements analysts, five of whom presented to members of the EBS advisory committee the meeting on progress in the five “domains” of breeding software functions.

Sharing bits and bytes

Rosemary Shresthra introduced experiment creation, where users can quickly select the type of experiment they wish to run and automatically set up all the steps needed to complete it in the EBS.

Kate Dreher took the attendees through field implementation, where it is possible to map fields in the system and connect them to a range of plot data collection tools developed by external projects.

Ricardo LeĂłn outlined the germplasm management component of the system, where the seed inventory is kept, and new entries made after trials are harvested to go on to the next stage.

Pedro Medeiros explained how an analytics request manager will allow EBS users to push their data to different analytics tools that support decision-making and, ultimately, their ability to deliver better varieties that meet farmers’ needs.

Finally, Star Gao, a breeding informatics specialist for the Genomic and Open-Source Breeding Informatics Initiative (GOBii), showed how users will be able to request phytosanitary, genotypic and quality analysis of samples from their trials through the EBS system. The system will provide an overview of the status of all samples submitted for analysis with different service providers, in addition to the ability to connect with various databases.

“We can do all this because all information in the EBS is treated the same way, from experiment creation through implementation,” said EBS coordinator Tom Hagen in summary.

The EBS advisory group, which includes user representatives from CIMMYT and IRRI breeding teams alongside EiB staff, ended the day by discussing and prioritizing new functions that could be added to the EBS over the next three years.

One-minute science: Carolina Rivera explains wheat physiology

Wheat provides, on average, 20% of the calories and protein for more than 4.5 billion people in 94 developing countries. To feed a growing population, we need both better agronomic practices and to grow wheat varieties that can withstand the effects of climate change and resist various pests and diseases.

Watch CIMMYT Wheat Physiologist Carolina Rivera discuss — in just one minute — choosing and breeding desirable wheat traits with higher tolerance to stresses.

First steps taken to unify breeding software

Participants of the EBS DevOps Hackathon stand for a group photo at CIMMYT's global headquarters in Texcoco, Mexico. (Photo: Eleusis Llanderal Arango/CIMMYT)
Participants of the EBS DevOps Hackathon stand for a group photo at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Eleusis Llanderal Arango/CIMMYT)

From October 21 to November 1, 2019, software developers and administrators from several breeding software projects met at the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico to work on delivering an integrated solution to crop breeders.

Efforts to improve crop breeding for lower- and middle-income countries involves delivering better varieties to farmers faster and for less cost. These efforts rely on a mastery of data and technology throughout the breeding process.

To realize this potential, the CGIAR Excellence in Breeding Platform (EiB) is developing an Enterprise Breeding System (EBS) as a single solution for breeders. EBS will integrate the disparate software projects developed by different institutions over the years. This will free breeders from the onerous task of managing their data through different apps and allow them to rapidly optimize their breeding schemes based on sound data and advanced analytics.

“None of us can do everything,” said Tom Hagen, CIMMYT-EiB breeding software product manager, “so what breeding programs are experiencing is in fact fragmented IT. How do we come together as IT experts to create a system through our collective efforts?”

For the EBS to succeed, it is essential that the system is both low-cost and easy to deploy. “The cost of the operating environment is absolutely key,” said Jens Riis-Jacobson, international systems and IT director at CIMMYT. “We are trying to serve developing country institutions that have very little hard currency to pay for breeding program operations.”

Stacked software

During the hackathon, twelve experts from software projects across CGIAR and public sector institutions used a technology called Docker to automatically stack the latest versions of their applications into a single configuration file. This file can be loaded into any operating environment in less than four minutes — whether it be a laptop, local server or in the cloud. Quickly loading the complete system into a cloud environment means EBS can eventually be available as a one-click, Software-as-a-Service solution. This means that institutions will not need sophisticated IT infrastructure or support staff to maintain the software.

Behind the scenes, different applications are replicated in a single software solution, the Enterprise Breeding System. (Photo: CIMMYT)
Behind the scenes, different applications are replicated in a single software solution, the Enterprise Breeding System. (Photo: CIMMYT)

“If everything goes as planned, the end users won’t know that we exist,” said Peter Selby, coordinator of the Breeding API (BrAPI) project, an online collective working on a common language for breeding applications to communicate with each other. Updates to individual apps will be automatically loaded, tested and pushed out to users.

As well as the benefits to breeders, this automated deployment pipeline should also result in better software. “We have too little time for development because we spend too much time in deployment and testing,” said Riis-Jacobson.

A cross-institution DevOps culture

Though important technical obstacles were overcome, the cultural aspect was perhaps the most significant outcome of the hackathon. The participants found that they shared the same goals, language and were able to define the common operating environment for their apps to work together in.

“It’s really important to keep the collaboration open,” said Roy Petrie, DevOps engineer at the Genomic and Open-Source Breeding Informatics Initiative (GOBii) based at the Boyce Thompson Institute, Cornell University. “Having a communications platform was the first thing.”

In the future, this could mean that teams synchronize their development timeline to consistently release updates with new versions of the EBS, suggested Franjel Consolacion, systems admin at CIMMYT.

“They are the next generation,” remarked Hagen. “This is the first time that this has happened in CGIAR informatics and it validated a key aspect of our strategy: that we can work together to assemble parts of a system and then deploy it as needed to different institutions.”

By early 2020, selected CIMMYT and International Rice Research Institute (IRRI) breeding teams will have access to a “minimal viable implementation” of the EBS, in which they can conduct all basic breeding tasks through a simple user interface. More functionality, breeding programs and crops from other institutions including national agricultural research programs will be added in phases over three years.

New publications: Special collection on wheat genetics and breeding

Global wheat production is currently facing great challenges, from increasing climate variation to occurrence of various pests and diseases. These factors continue to limit wheat production in a number of countries, including China, where in 2018 unseasonably cold temperatures resulted in yield reduction of more than 10% in major wheat growing regions. Around the same time, Fusarium head blight spread from the Yangtze region to the Yellow and Huai Valleys, and northern China experienced a shortage of irrigated water.

In light of these ongoing challenges, international collaboration, as well as the development of new technologies and their integration with existing ones, has a key role to play in supporting sustainable wheat improvement, especially in developing countries. The International Maize and Wheat Improvement Center (CIMMYT) has been collaborating with China on wheat improvement for over 40 years, driving significant progress in a number of areas.

Notably, a standardized protocol for testing Chinese noodle quality has been established, as has a methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew. More than 330 cultivars derived from CIMMYT germplasm have been released in the country and are currently grown over 9% of the Chinese wheat production area, while physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms. The development of climate-resilient cultivars using new technology will be a priority area for future collaboration.

In a special issue of Frontiers of Agricultural Science and Engineering focused on wheat genetics and breeding, CIMMYT researchers present highlights from global progress in wheat genomics, breeding for disease resistance, as well as quality improvement, in a collection of nine review articles and one research article. They emphasize the significance of using new technology for genotyping and phenotyping when developing new cultivars, as well as the importance of global collaboration in responding to ongoing challenges.

In a paper on wheat stem rust, CIMMYT scientists Sridhar Bhavani, David Hodson, Julio Huerta-Espino, Mandeep Randawa and Ravi Singh discuss progress in breeding for resistance to Ug99 and other races of stem rust fungus, complex virulence combinations of which continue to pose a significant threat to global wheat production. The authors detail how effective gene stewardship and new generation breeding materials, complemented by active surveillance and monitoring, have helped to limit major epidemics and increase grain yield potential in key target environments.

In the same issue, an article by Caiyun Lui et al. discusses the application of spectral reflectance indices (SRIs) as proxies to screen for yield potential and heat stress, which is emerging in crop breeding programs. The results of a recent study, which evaluated 287 elite lines, highlight the utility of SRIs as proxies for grain yield. High heritability estimates and the identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

Other papers by CIMMYT researchers discuss the history, activities and impact of the International Winter Wheat Improvement Program, as well as the ongoing work on the genetic improvement of wheat grain quality at CIMMYT.

Find the full collection of articles in Frontiers of Agricultural Science and Engineering, Volume 6, Issue 3, September 2019.

See more recent publications by CIMMYT researchers:

  1. Genetic diversity among tropical provitamin A maize inbred lines and implications for a biofortification program. 2019. Julius Pyton Sserumaga, Makumbi, D., Warburton, M.L., Opiyo, S.O., Asea, G., Muwonge, A., Kasozi, C.L. In: Cereal Research Communications v. 47, no. 1, p. 134-144.
  2. Diversity and conservation priorities of crop wild relatives in Mexico. 2019. Contreras-Toledo, A. R., Cortes-Cruz, M. A., Costich, D.E., Rico-Arce, M. de L., Magos Brehm, J., Maxted, N. In: Plant Genetic Resources: Characterisation and Utilisation v. 17, no. 2, p. 140-150.
  3. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. 2019. Bing Liu, Martre, P., Ewert, F., Porter, J.R., Challinor, A.J., Muller, C., Ruane, A.C., Waha, K., Thorburn, P.J., Aggarwal, P.K., Mukhtar Ahmed, Balkovic, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, M., Eyshi Rezaei, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Yujing Gao, Horan, H., Hoogenboom, G., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.K., Maiorano, A., Minoli, S., Montesino San Martin, M., Soora Naresh Kumar, Nendel, C., O’Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D.,Rotter, R., Semenov, M.A., Stockle, C., Streck, T., Supit, I., Fulu Tao, Van der Velde, M., Wallach, D., Wang, E. |Webber, H., Wolf, J., Liujun Xiao, Zhao Zhang, Zhigan Zhao, Yan Zhu, Asseng, S. In: Global Change Biology v. 25, no. 4, p. 1428-1444.
  4. Marker Assisted Breeding to Develop Multiple Stress Tolerant Varieties for Flood and Drought Prone Areas. 2019. Sandhu, N., Dixit, S., Mallikarjuna Swamy, B.P., Raman, A.K., Kumar, S., Singh, S.P., Yadaw, R.B., Singh, O.N., Reddy, J.N., Anandan, A., Yadav, S., Venkataeshwarllu, C., Henry, A., Verulkar, S., Mandal, N.P., Ram, T., Badri, J., Vikram, P., Arvind Kumar In: Rice v. 12, no. 1, art. 8.
  5. Modeling Genotype × Environment Interaction Using a Factor Analytic Model of On-Farm Wheat Trials in the Yaqui Valley of Mexico. 2019. Vargas-HernĂĄndez, M., Ortiz-Monasterio, I., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Montesinos-Lopez, A., Burgueño, J., Crossa, J. In: Agronomy Journal v. 111, no. 1, p. 1-11.
  6. Does Size Matter? A Critical Review of Meta-analysis in Agronomy. 2019. Krupnik, T.J., Andersson, J.A., Rusinamhodzi, L., Corbeels, M., Shennan, C., Gerard, B. In: Experimental Agriculture v. 55 no. Special issue 2, p. 200-229.
  7. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. 2019. Jat, H.S., Datta, A., Choudhary, M., Yadav, A.K., Choudhary, V., Sharma, P.C., Gathala, M.K., Jat, M.L., McDonald, A. In: Soil and Tillage Research v. 190, p. 128-138.
  8. Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? 2019. Araus, J.L., Serret, M.D., Lopes, M.S. In: Journal of Experimental Botany v. 70, no. 5, p. 1419-1424.
  9. Model-Driven Multidisciplinary Global Research to Meet Future Needs: The Case for “Improving Radiation Use Efficiency to Increase Yield.” 2019. Asseng, S., Martre, P., Ewert, F., Dreccer, M.F., Beres, B.L., Reynolds, M.P., Braun, H.J., Langridge, P., Gouis, J. Le., Salse, J., Baenziger, P.S. In: Crop Science v. 59, p. 1-7.
  10. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Barba‐Escoto, L., Bautista-Hernandez, L.A., Campos‐Guillen, J., Jones, G.H., Bautista‐de Lucio, V.M. In: Microbial Pathogenesis v. 130, p. 232-241.

Breaking Ground: Velu Govindan is mainstreaming zinc to combat hidden hunger

Velu Govindan will always remember his father telling him not to waste his food. “He used to say that rice and wheat are very expensive commodities, which most people could only afford to eat once a week during his youth,” recalls the wheat breeder, who works at the International Maize and Wheat Improvement Center (CIMMYT).

As in many parts of the world, the Green Revolution had a radical impact on agricultural production and diets in southern India, where Govindan’s father grew up, and by the late 1960s all farmers in the area had heard of “the scientist” from the USA. “Borlaug’s influence in India is so great because those new high-yielding varieties fed millions of people — including me.”

But feeding millions was only half the battle.

Today, at least two billion people around the world currently suffer from micronutrient deficiency, characterized by iron-deficiency anemia, lack of vitamin A and zinc deficiency.

Govindan works in collaboration with HarvestPlus to improve nutritional quality in cereals in addition to core traits like yield potential, disease resistance and climate tolerance. His area of focus is South Asia, where wheat is an important staple and many smallholder farmers don’t have access to a diversified diet including fruit, vegetables or animal products which are high in micronutrients like iron and zinc.

“It’s important that people not only have access to food, but also have a healthy diet,” says Govindan. “The idea is to improve major staples like rice, maize and wheat so that people who consume these biofortified varieties get extra benefits, satisfying their daily dietary needs as well as combatting hidden hunger.”

The challenge, he explains, is that breeding for nutritional quality is often done at the expense of yield. But varieties need high yield potential to be successful on the market because farmers in developing countries will not get a premium price simply for having a high micronutrient content in their grain.

Fast evolving wheat diseases are another issue to contend with. “If you release a disease-resistant variety today, in as little as three or four years’ time it will already be susceptible because rust strains keep mutating. It’s a continuous battle, but that’s plant breeding.”

Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)
Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)

Mainstreaming zinc

When it comes to improvement, breeding is only the first part of the process, Govindan explains. “We can do a good job here in the lab, but if our varieties are not being taken up by farmers it’s no use.”

Govindan and his team work in collaboration with a number of public and private sector organizations to promote new varieties, partnering with national agricultural research systems and advanced research institutes to reach farmers in India, Nepal and Pakistan. As a result, additional high-zinc varieties have been successfully marketed and distributed across South Asia, as well as new biofortified lines which are currently being tested in sub-Saharan Africa for potential release and cultivation by farmers.

Their efforts paid off with the development and release of more than half dozen competitive high-zinc varieties including Zinc-Shakthi, whose grain holds 40% more zinc than conventional varieties and yields well, has good resistance to rust diseases, and matures a week earlier than other popular varieties, allowing farmers to increase their cropping intensity. To date, these biofortified high-zinc wheat varieties have reached nearly a million households in target regions of South Asia and are expected to spread more widely in coming years.

The next step will be to support the mainstreaming of zinc, so that it becomes an integral part of breeding programs as opposed to an optional addition. “Hopefully in ten years’ time, most of the wheat we eat will have those extra benefits.”

There may be a long way to go, but Govindan remains optimistic about the task ahead.

Velu Govindan examines wheat in the field.
Velu Govindan examines wheat in the field.

Born into a farming family, he has fond memories of a childhood spent helping his father in the fields, with afternoons and school holidays dedicated to growing rice, cotton and a number of other crops on the family plot.

The region has undergone significant changes since then, and farmers now contend with both rising temperatures and unpredictable rainfall. It was a motivation to help poor farmers adapt to climate change and improve food production that led Govindan into plant breeding.

He has spent nearly ten years working on CIMMYT’s Spring Wheat Program and still feels honored to be part of a program with such a significant legacy. “Norman Borlaug, Sanjay Rajaram and my supervisor Ravi Singh — these people are legendary,” he explains. “So luckily we’re not starting from scratch. These people made life easy, and we just need to keep moving towards achieving continuous genetic gains for improved food and nutrition security.”

Smallholder farmers’ multi-front strategy combats rapidly evolving wheat rust in Ethiopia

 

Ethiopian wheat planting. (Photo: CIMMYT)

New research shows that smallholder farmers in Ethiopia used various coping mechanisms apart from fungicides in response to the recent wheat rust epidemics in the country. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR) call for continuous support to research and extension programs to develop and disseminate improved wheat varieties with resistant traits to old and newly emerging rust races.

Rising wheat yields cannot catch up rising demand

Wheat is the fourth largest food crop in Ethiopia cultivated by smallholders, after teff, maize and sorghum. Ethiopia is the largest wheat producer in sub-Saharan Africa and average farm yields have more than doubled in the past two decades, reaching 2.74 tons per hectare on average in 2017/18. Farmers who use improved wheat varieties together with recommended agronomic practices recorded 4 to 6 tons per hectare in high-potential wheat growing areas such as the Arsi and Bale zones. Yet the country remains a net importer because demand for wheat is rapidly rising.

The Ethiopian government has targeted wheat self-sufficiency by 2023 and the country has huge production potential due to its various favorable agroecologies for wheat production.

However, one major challenge to boosting wheat production and yields is farmers’ vulnerability to rapidly evolving wheat diseases like wheat rusts.

The Ethiopian highlands have long been known as hot spots for stem and yellow wheat rusts caused by the fungus Puccinia spp., which can spread easily under favorable climatic conditions. Such threats may grow with a changing climate.

Recurrent outbreaks of the two rusts destroyed significant areas of popular wheat varieties. In 2010, a yellow rust epidemic severely affected the popular Kubsa variety. In 2013/14, farmers in the Arsi and Bale zones saw a new stem rust race destroy entire fields of the bread wheat Digalu variety.

In response to the 2010 yellow rust outbreak, the government and non-government organizations, seed enterprises and other development supporters increased the supply of yellow rust resistant varieties like Kakaba and Danda’a.

Fungicide is not the only solution for wheat smallholder farmers

Two household panel surveys during the 2009/10 main cropping season, before the yellow rust epidemic, and during the 2013/14 cropping season analyzed farmers’ exposure to wheat rusts and their coping mechanisms. From the survey, 44% of the wheat farming families reported yellow rust in their fields during the 2010/11 epidemic.

Household data analysis looked at the correlation between household characteristics, their coping strategies against wheat rust and farm yields. The study revealed there was a 29 to 41% yield advantage by increasing wheat area of the new, resistant varieties even under normal seasons with minimum rust occurrence in the field. Continuous varietal development in responding to emerging new rust races and supporting the deployment of newly released rust resistant varieties could help smallholders cope against the disease and maintain improved yields in the rust prone environments of Ethiopia.

The case study showed that apart from using fungicides, increasing wheat area under yellow rust resistant varieties, increasing diversity of wheat varieties grown, or a combination of these strategies were the main coping mechanisms farmers had taken to prevent new rust damages. Large-scale replacement of highly susceptible varieties by new rust resistant varieties was observed after the 2010/11 epidemic.

The most significant wheat grain yield increases were observed for farmers who increased both area under resistant varieties and number of wheat varieties grown per season.

The additional yield gain thanks to the large-scale adoption of yellow rust resistant varieties observed after the 2010/11 epidemic makes a very strong case to further strengthen wheat research and extension investments, so that more Ethiopian farmers have access to improved wheat varieties resistant to old and newly emerging rust races.

Read the full study on PLOS ONE:
https://doi.org/10.1371/journal.pone.0219327

Collaborative product profiling captures farmers’ demand for greater impact

The International Maize and Wheat Improvement Center (CIMMYT) organized its first ever Maize Product Profile-based Breeding and Varietal Turnover workshop for eastern Africa in Nairobi, on August  29 and 30, 2019. The workshop, funded by USAID, was attended by maize breeders from national research institutes in Kenya, Uganda, Tanzania, Rwanda, Ethiopia and South Sudan, and by several partner seed companies including Seedco, Kenya Seeds, Western Seeds, Naseco and Meru Agro.

Participants from CIMMYT, EiB, NARs and seed companies attending the Product Profile workshop held in Nairobi on August 29-30, 2019. (Photo: CIMMYT/Joshua Masinde)

A product profile is defined as a list of “must-have” maize characteristics or traits that are the unique selling points for the target beneficiaries who are looking for these qualities. The breeders also consider additional traits in their breeding strategy, “value-added” or desirable traits that could be future unique selling points.

“A product profile is not a secret sauce” nor a checkbox to tick, explained Georges Kotch, a renowned expert in the seed industry and lead for Module 1 of the Excellence in Breeding (EiB) platform on product profiling. A product profile is a blueprint to help maize breeding programs ensure their new varieties released respond to a true need with a clear comparative advantage for seed companies and ultimately for maize farmers. This demand-driven process “starts with the end in mind” by understanding what the customers want. The end goal is to replace leading old varieties on the market with better ones that will improve farmers’ livelihoods, for example, with greater climate resilience and productivity.

Steering the breeding program through “healthy tensions”

Breeders may have had the tendency to focus on optimum yield for a certain agroecology, yet their priority traits may not reflect exactly the market or what farmers want. In addition to good yield, drought or disease resistance, grain color, taste, nutritional value, and appearance of plants and cobs are important in farmers’ choice of seed. Socio-economic research tools like participatory varietal selection (PVS) or willingness-to-pay experiments help us weigh the importance of each trait to trigger adoption.

Boiled and roasted maize tasting during a farmer participatory varietal selection exercise in Embu, Kenya in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: CIMMYT/S. PALMAS)

There may be tensions between farmers’ needs, what suits seed companies like the seed reproducibility ratio, and what is possible and cost-effective from a breeder’s perspective. CIMMYT does not only look through the lens of economic return. The social impact new varieties could have is also considered, for example developing provitamin A or quality protein maize (QPM) as a solution to combat malnutrition even if there is not a major demand from private seed companies in Africa for nutritious maize.

Qualities valued by some actors may be overlooked by others. For example, some maize varieties have leafy ears with deceptively small cobs, which may protect the grain against pests but could be rejected by farmers.

It is important to have a wide array of expertise from breeding, market research and socio-economic analysis so that the different trait choices are weighed according to different lenses and a clear strategy for varietal turnover is defined.

High performing hybrids may not be enough for large-scale adoption

In southern Africa, climate experts warn that farmers could face drought every three years. CIMMYT has rightly prioritized drought tolerance (DT) over the last decade under the Stress Tolerant Maize for Africa initiative. Recently developed DT maize hybrids often outperform the popular varieties on the market, yet the varietal turnover has been slow in some regions. Farmers’ perceptions of what is a good maize may influence the success or rejection of a new variety. The risk for farmers and seed companies to try out a new variety is an important factor in adoption as well.

An appropriate seed marketing strategy is key, often seen only as the responsibility of private seed companies, but should be considered by public research as well.

CIMMYT has been selecting maize that can withstand drought during the critical phase just before and during the flowering stage, when the silks of the future cobs form. Even if rains stop at this stage, farmers growing DT maize will harvest some decent grain. If a long dry spell occurs just after planting, the crop will fail regardless of drought-tolerant breeding efforts. Farmers may then reject DT maize after such failure if the messaging is not clear.

Product profiling is a collaborative process, not an imposing one

Redefining the breeding strategy through product profiling is not set in stone. Kotch recommends annual review as a vehicle for constant improvement. B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE) explained that the product profiles could vary among various partners, as each partner looks at their own comparative advantage to reach success.

It is important to have everyone from the maize seed value chain on board to succeed. Regina Tende, maize breeder and entomologist at the Kenya Agricultural & Livestock Research Organization (KALRO), warned that regulatory bodies who review and authorize new varieties to reach the market must be integrated in the discussion “as their interest, primarily yield, may not be the final requirement for the target market.”

Seed systems specialists are also crucial to operationalize a successful breeding and delivery strategy, to address the different scaling bottlenecks and identify “the market changer.”

According to Kotch, CGIAR and national research organizations should avoid developing products too similar to the popular varieties on the market. Adoption occurs when something very different, for example new resistance to the devastating maize lethal necrosis, gives an innovation edge to seed companies. In Ethiopia, the replacement of an old popular variety BH660 by climate resilient BH661 was successful for various reasons including superior hybrid seed production with grey leaf spot resistance built in the seed parent population.

This demand-driven, multi-lens approach of product profiling including breeding, gender, socio-economic and policy dimensions will help to ensure that new varieties are more likely to be picked by farmers and partner seed companies, and increase the impact of CIMMYT’s Global Maize Program.

Warmer night temperatures reduce wheat yields in Mexico, scientists say

As many regions worldwide baked under some of the most persistent heatwaves on record, scientists at a major conference in Canada shared data on the impact of spiraling temperatures on wheat.

In the Sonora desert in northwestern Mexico, nighttime temperatures varied 4.4 degrees Celsius between 1981 and 2018, research from the International Maize and Wheat Improvement Center (CIMMYT) shows. Across the world in Siberia, nighttime temperatures rose 2 degrees Celsius between 1988 and 2015, according to Vladimir Shamanin, a professor at Russia’s Omsk State Agrarian University who conducts research with the Kazakhstan-Siberia Network on Spring Wheat Improvement.

“Although field trials across some of the hottest wheat growing environments worldwide have demonstrated that yield losses are in general associated with an increase in average temperatures, minimum temperatures at night — not maximum temperatures — are actually determining the yield loss,” said Gemma Molero, the wheat physiologist at CIMMYT who conducted the research in Sonora, in collaboration with colleague Ivan Ortiz-Monasterio.

“Of the water taken up by the roots, 95% is lost from leaves via transpiration and from this, an average of 12% of the water is lost during the night. One focus of genetic improvement for yield and water-use efficiency for the plant should be to identify traits for adaptation to higher night temperatures,” Molero said, adding that nocturnal transpiration may lead to reductions of up to 50% of available soil moisture in some regions.

Wheat fields at CIMMYT's experimental station near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at CIMMYT’s experimental station near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

Climate challenge

The Intergovernmental Panel on Climate Change (IPCC) reported in October that temperatures may become an average of 1.5 degrees Celsius warmer in the next 11 years. A new IPCC analysis on climate change and land use due for release this week, urges a shift toward reducing meat in diets to help reduce agriculture-related emissions from livestock. Diets could be built around coarse grains, pulses, nuts and seeds instead.

Scientists attending the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province of Saskatchewan, agreed that a major challenge is to develop more nutritious wheat varieties that can produce bigger yields in hotter temperatures.

CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

As a staple crop, wheat provides 20% of all human calories consumed worldwide. It is the main source of protein for 2.5 billion people in the Global South. Crop system modeler Senthold Asseng, a professor at the University of Florida and a member of the International Wheat Yield Partnership, was involved in an extensive study  in China, India, France, Russia and the United States, which demonstrated that for each degree Celsius in temperature increase, yields decline by 6%, putting food security at risk.

Wheat yields in South Asia could be cut in half due to chronically high temperatures, Molero said. Research conducted by the University of New South Wales, published in Environmental Research Letters also demonstrates that changes in climate accounted for 20 to 49% of yield fluctuations in various crops, including spring wheat. Hot and cold temperature extremes, drought and heavy precipitation accounted for 18 to 4% of the variations.

At CIMMYT, wheat breeders advocate a comprehensive approach that combines conventional, physiological and molecular breeding techniques, as well as good crop management practices that can ameliorate heat shocks. New breeding technologies are making use of wheat landraces and wild grass relatives to add stress adaptive traits into modern wheat – innovative approaches that have led to new heat tolerant varieties being grown by farmers in warmer regions of Pakistan, for example.

More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)
More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)

Collaborative effort

Matthew Reynolds, a distinguished scientist at CIMMYT, is joint founder of the Heat and Drought Wheat Improvement Consortium (HeDWIC), a coalition of hundreds of scientists and stakeholders from over 30 countries.

“HeDWIC is a pre-breeding program that aims to deliver genetically diverse advanced lines through use of shared germplasm and other technologies,” Reynolds said in Saskatoon. “It’s a knowledge-sharing and training mechanism, and a platform to deliver proofs of concept related to new technologies for adapting wheat to a range of heat and drought stress profiles.”

Aims include reaching agreement across borders and institutions on the most promising research areas to achieve climate resilience, arranging trait research into a rational framework, facilitating translational research and developing a bioinformatics cyber-infrastructure, he said, adding that attracting multi-year funding for international collaborations remains a challenge.

Nitrogen traits

Another area of climate research at CIMMYT involves the development of an affordable alternative to the use of nitrogen fertilizers to reduce planet-warming greenhouse gas emissions. In certain plants, a trait known as biological nitrification inhibition (BNI) allows them to suppress the loss of nitrogen from the soil, improving the efficiency of nitrogen uptake and use by themselves and other plants.

CIMMYT's director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)
CIMMYT’s director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)

Scientists with the BNI research consortium, which includes Japan’s International Research Center for Agricultural Sciences (JIRCAS), propose transferring the BNI trait from those plants to critical food and feed crops, such as wheat, sorghum and Brachiaria range grasses.

“Every year, nearly a fifth of the world’s fertilizer is used to grow wheat, yet the crop only uses about 30% of the nitrogen applied, in terms of biomass and harvested grains,” said Victor Kommerell, program manager for the multi-partner CGIAR Research Programs (CRP) on Wheat and Maize led by the International Maize and Wheat Improvement Center.

“BNI has the potential to turn wheat into a highly nitrogen-efficient crop: farmers could save money on fertilizers, and nitrous oxide emissions from wheat farming could be reduced by 30%.”

Excluding changes in land use such as deforestation, annual greenhouse gas emissions from agriculture each year are equivalent to 11% of all emissions from human activities. About 70% of nitrogen applied to crops in fertilizers is either washed away or becomes nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, according to Guntur Subbarao, a principal scientist with JIRCAS.

Hans-Joachim Braun,
Director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, speaks at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

Although ruminant livestock are responsible for generating roughly half of all agricultural production emissions, BNI offers potential for reducing overall emissions, said Tim Searchinger, senior fellow at the World Resources Institute and technical director of a new report titled “Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050.”

To exploit this roots-based characteristic, breeders would have to breed this trait into plants, said Searchinger, who presented key findings of the report in Saskatoon, adding that governments and research agencies should increase research funding.

Other climate change mitigation efforts must include revitalizing degraded soils, which affect about a quarter of the planet’s cropland, to help boost crop yields. Conservation agriculture techniques involve retaining crop residues on fields instead of burning and clearing. Direct seeding into soil-with-residue and agroforestry also can play a key role.

New manual provides quantitative approach to drought stress phenotyping

A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)
A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)

Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.

The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.

A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)
A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)

Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.

Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.

Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)
Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)

“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”

The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.

Read the manual:
Pervez H. Zaidi, 2019. Management of drought stress in field phenotyping. CIMMYT, Mexico.

The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.

Ethiopian farmers weatherproof their livelihoods

Many maize farmers in sub-Saharan Africa grow old varieties that do not cope well under drought conditions. In the Oromia region of Ethiopia, farmer Sequare Regassa is improving her family’s life by growing the newer drought-tolerant maize variety BH661. This hybrid was developed by the Ethiopian Institute of Agricultural Research (EIAR), using CIMMYT’s drought-tolerant inbred lines and one of EIAR’s lines. It was then officially released in 2011 by the EIAR as part of the Drought Tolerant Maize for Africa (DTMA) project, funded by the Bill & Melinda Gates Foundation and continued under the Stress Tolerant Maize for Africa (STMA) initiative.

“Getting a good maize harvest every year, even when it does not rain much, is important for my family’s welfare,” said Regassa, a widow and mother of four, while feeding her granddaughter with white injera, a flat spongy bread made of white grain maize.

Since her husband died, Regassa has been the only breadwinner. Her children have grown up and established their own families, but the whole extended family makes a living from their eight-hectare farm in Guba Sayo district.

Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa (wearing green) and her family stand for a group photo at their farm. (Photo: Simret Yasabu/CIMMYT)

On the two hectares Regassa cultivates on her own, she rotates maize with pepper, sweet potato and anchote, a local tuber similar to cassava. Like many farming families in the region, she grows maize mainly for household food consumption, prepared as bread, soup, porridge and snacks.

Maize represents a third of cereals grown in Ethiopia. It is cheaper than wheat or teff — a traditional millet grain — and in poor households it can be mixed with teff to make the national staple, injera.

In April, as Regassa was preparing the land for the next cropping season, she wondered if rains would be good this year, as the rainy season was coming later than usual.

In this situation, choice of maize variety is crucial.

She used to plant a late-maturing hybrid released more than 25 years ago, BH660, the most popular variety in the early 2000s. However, this variety was not selected for drought tolerance. Ethiopian farmers face increasing drought risks which severely impact crop production, like the 2015 El Nino dry spell, leading to food insecurity and grain price volatility.

Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa sorts maize grain. (Photo: Simret Yasabu/CIMMYT)

Laborious development for fast-track adoption

Under the DTMA project, maize breeders from CIMMYT and the Ethiopian Institute for Agricultural Research (EIAR) developed promising drought-tolerant hybrids which perform well under drought and normal conditions. After a series of evaluations, BH661 emerged as the best candidate with 10% better on-farm grain yield, higher biomass production, shorter maturity and 34% reduction in lodging, compared to BH660.

The resulting BH661 variety was released in 2011 for commercial cultivation in the mid-altitude sub-humid and transition highlands.

The year after, as farmers experienced drought, the Ethiopian extension service organized BH661 on-farm demonstrations, while breeders from CIMMYT and EIAR organized participatory varietal selection trials. Farmers were impressed by the outstanding performances of BH661 during these demos and trials and asked for seeds right away.

Seed companies had to quickly scale up certified seed production of BH661. The STMA project team assisted local seed companies in this process, through trainings and varietal trials. Companies decided to replace the old hybrid, BH660.

Comparison of the amount of certified seed production of BH660 (blue) and BH661 (red) from 2012 to 2018. (Graph: Ertiro B.T. et al. 2019)
Comparison of the amount of certified seed production of BH660 (blue) and BH661 (red) from 2012 to 2018. (Source: Ertiro B.T. et al. 2019)

“In addition to drought tolerance, BH661 is more resistant to important maize diseases like Turcicum leaf blight and grey leaf spot,” explained Dagne Wegary, a maize breeder at CIMMYT. “For seed companies, there is no change in the way the hybrid is produced compared to BH660, but seed production of BH661 is much more cost-effective.”

EIAR’s Bako National Maize Research Center supplied breeder seeds to several certified seed producers: Amhara Seed Enterprise (ASE), Bako Agricultural Research Center (BARC), Ethiopian Seed Enterprise (ESE), Oromia Seed Enterprise (OSE) and South Seed Enterprise (SSE). Certified seeds were then distributed through seed companies, agricultural offices and non-governmental organizations, with the technical and extension support of research centers.

Sequare Regassa stands next to her fields holding a wooden farming tool. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa stands next to her fields holding a wooden farming tool. (Photo: Simret Yasabu/CIMMYT)

From drought risk to clean water

After witnessing the performance of BH661 in a neighbor’s field, Regassa asked advice from her local extension officer and decided to use it. She is now able to produce between 11-12 tons per hectare. She said her family life has changed forever since she started planting BH661.

With higher maize grain harvest, she is now able to better feed her chickens, sheep and cattle. She also sells some surplus at the local market and uses the income for her family’s needs.

Sequare Regassa feeds her granddaughter with maize injera. (Photo: Simret Yasabu/CIMMYT)
Sequare Regassa feeds her granddaughter with maize injera. (Photo: Simret Yasabu/CIMMYT)

“If farmers follow the recommended fertilizer application and other farming practices, BH661 performs much better than the old BH660 variety,” explained Regassa. “If we experience a drought, it may be not that bad thanks to BH661’s drought tolerance.”

Regassa buys her improved seeds from the Bako Research Station, as well as from farmers’ cooperative unions. These cooperatives access seeds from seed companies and sell to farmers in their respective districts. “Many around me are interested in growing BH661. Sometimes we may get less seeds than requested as the demand exceeds the supply,” Regassa said.

She observed that maize prices have increased in recent years. A 100 kg bag of maize that used to sell for 200–400 Ethiopian birr (about $7–14) now sells for 600–700 Ethiopian birr (about $20–23). With the increased farmers’ wealth in her village, families were able to pay collectively for the installation of a communal water point to get easy access to clean water.

“Like women’s role in society, no one can forget the role maize has in our community. It feeds us, it feeds our animals, and cobs are used as fuel. A successful maize harvest every year is a boon for our village,” Regassa concluded.

Experimental stations in Mexico improve global agriculture

 

The International Maize and Wheat Improvement Center (CIMMYT) operates five agricultural experiment stations in Mexico. Strategically located across the country to take advantage of different growing conditions — spanning arid northern plains to sub-tropical and temperate climatic zones — the stations offer unique and well-managed testing conditions for a variety of biotic and abiotic stresses.

Heat and drought tolerance in wheat is the focus of study at Ciudad ObregĂłn, while the humid, cool conditions at Toluca are ideal for studying wheat resistance to foliar diseases. The tropical and sub-tropical settings of Agua FrĂ­a and TlaltizapĂĄn respectively are suited to maize field trials, while at El BatĂĄn researchers carry out a wide variety of maize and wheat trials.

A new video highlights the important and valuable contribution of the five experimental stations in Mexico to CIMMYT’s goal of developing maize and wheat that can cope with demanding environments around the world, helping smallholder farmers in Africa, Asia and Latin America adapt to challenges like climate change, emerging pests and disease, and malnutrition.

Featuring aerial cinematography and interviews with each station’s manager, the video takes viewers on a journey to each experimental station to highlight the research and management practices specific to each location.

In addition to their role in breeding maize and wheat varieties, CIMMYT’s experimental stations host educational events throughout the year that train the next generation of farmers, policymakers and crop scientists. They also provide the canvas on which CIMMYT scientists develop and test farming practices and technologies to help farmers grow more with less.

Some of the stations also hold historical significance. Ciudad ObregĂłn and Toluca are two of the sites where Norman Borlaug set up his shuttle breeding program that provided the foundations of the Green Revolution. It was also in Toluca, while at a trial plot alongside six young scientists from four developing nations, where Borlaug first received news of his 1970 Nobel Peace Prize award.

Modern wheat breeding benefits high- and low-input farmers, study shows

Farmer Gashu Lema’s son harvests improved variety “Kubsa” wheat, Gadulla village, Mojo, Ethiopia. (Photo: P. Lowe/CIMMYT/P. Lowe

A recent article in the journal Nature Plants validates the work of wheat breeders who produce yield-boosting varieties for farmers across a range of incomes and environments.

Based on a rigorous large-scale study spanning five decades of wheat breeding progress under cropping systems with low, medium and high fertilizer and chemical plant protection usage, the authors conclude that modern wheat breeding practices aimed at high-input farming systems have promoted genetic gains and yield stability across a wide range of environments and management conditions.

In other words, wheat breeding benefits not only large-scale and high-input farmers but also resource-poor, smallholder farmers who do not use large amounts of fertilizer, fungicide, and other inputs.

This finding underscores the efficiency of a centralized breeding effort to improve livelihoods across the globe – the philosophy behind the breeding programs of the International Maize and Wheat Improvement Center (CIMMYT) over the past 50 years.

It also contradicts a commonly held belief that breeding for intensive systems is detrimental to performance under more marginal growing environments, and refutes an argument by Green Revolution critics that breeding should be targeted to resource-poor farmers.

In a commentary published in the same Nature Plants issue, two CIMMYT scientists — Hans Braun, director of CIMMYT’s global wheat program and the CGIAR Research Program on Wheat, and Matthew Reynolds, CIMMYT wheat physiologist — note the significance of the study.

“Given that wheat is the most widely grown crop in the world, sown annually on around 220 million ha and providing approximately 20% of human calories and protein, the social and economic implications are large,“ they state.

Among other implications:

  • The study found that modern breeding has reduced groups of genes (haplotypes) with negative or neutral effects – a finding which will help breeders combine positive haplotypes in the future, including for hybrid breeding.
  • The study demonstrates the benefits of breeding for overall yield potential, which — given that wheat is grown over a wider range of environments, altitudes and latitudes than any other crop, with widely ranging agronomic inputs – has significant cost-saving implications.

Braun and Reynolds acknowledge that the longstanding beliefs challenged by this study have a range of influences, from concern about rural livelihoods, to the role of corporate agribusiness and the capacity of Earth’s natural resources to sustain 10 billion people.

While they welcome the conclusions as a validation of their work, they warn against seeing the study as “a rubber stamp for all things ‘high-input’” and encourage openness to new ideas as the need arises.

“If the climate worsens, as it seems destined to, we must certainly be open to new ways of doing business in crop improvement, while having the common sense to embrace proven technologies,” they conclude.