Skip to main content

Tag: Breaking Ground

Breaking Ground: Tom Hagen brings IT expertise to crop breeding

Postcard_Tom HagenFrom an early age, Tom Hagen has enjoyed watching plants grow and solving complex problems. Now, as the enterprise breeding system manager at the International Maize and Wheat Improvement Center (CIMMYT), Hagen is combining his expertise in crop breeding and IT to help researchers and farmers be more successful.

“You could say I’m a hybrid scientific consultant – IT system architect,” said Hagen. “I will work with breeding teams to appropriately design software and then manage its development and deployment to facilitate breeding operations at CIMMYT and the International Rice Research Institute.”

The software will help breeders more effectively choose seed varieties, design field trials, collect data and analyze their outcomes. It is intended to assist farmers and extension agents as well.

“It will be able to give them advice about the appropriate seeds to use based on their specific environment and economic situation,” said Hagen. “It can also recommend ways to plant and manage their crop for better yields and higher income.”

Hagen’s interest in using computer programing to analyze large sets of biological data emerged shortly after obtaining a doctorate in plant genetics from the University of Georgia. It was the early 1990s, and bioinformatics was a new frontier. Hagen founded and managed the university’s Center for Scientific Computing and Visualization, and helped create the Bioinformatics Graduate Program.

In 1999, Hagen decided to leave the world of academia for the private sector.

“Universities are about inventing things, not applying them,” he said. “It is important to base your practice on theory, but at the end of the day, I personally think you need to apply it because otherwise – well, what is the point of it all?”

Hagen joined DuPont Pioneer, a large U.S. producer of hybrid seeds, where he and a team of designers created different technologies for breeders. Specifically, they worked on technologies that would help breeders develop a line of drought-resistant maize.

“By being in that group, I was both a scientist trying to invent and validate these methods while also designing and building the IT for that,” said Hagen.

During his last two years at DuPont Pioneer, Hagen was the architect of all analytics software. He also conducted research on crop growth modeling for predicting genotype-environment interactions for maize hybrids. This information has helped breeders, extension agents and farmers choose appropriate seed varieties for their specific environmental conditions.

Hagen joined the CGIAR Excellence in Breeding Platform (EiB) in January 2018. Led by CIMMYT, EiB aims to modernize breeding programs, specifically targeting the developing world for greater impact on food and nutrition security, climate change adaptation and development.

“I’m excited to be part of the work that’s starting to ramp up here at CIMMYT and the other CGIAR centers,” said Hagen. “I’m here to learn and engage, and do whatever I can to help others learn.”

Funding for the Excellent in Breeding Platform comes from the CGIAR, the Bill & Melinda Gates Foundation, national governments, development banks and other public and private agencies. Contributors include CGIAR system centers, the Biosciences eastern and central Africa- International Livestock Research Institute Hub, Cornell University, Diversity Arrays Technology, DuPont Pioneer, the Integrated Breeding Platform, Monsanto and Queensland University.

CIMMYTNEWSlayer1

Breaking Ground: Wei Xiong helps farmers and policymakers make better decisions

Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.

Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.

“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”

Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.

“We call the project drinking security,” added Xiong.

Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.

“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.

Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.

“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”

But in China, Xiong explained, agriculture still falls under government control.

“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”

The team will use their simulation models to recommend policies that benefit farmers and the environment.

Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.

After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.

Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.

Breaking Ground: Lorena Gonzalez fast-forwards action on hunger using technology

LorenaIntrigued by the unique relationship our food crops have to their geographical environment, Lorena Gonzalez dedicated her passion for geomatic technology to collect site-specific farm data that is revolutionizing the way researchers and farmers tackle hunger.

Working with the International Maize and Wheat Improvement Center (CIMMYT) as a research assistant, Gonzalez is part of a seismic shift in agriculture, replacing time-consuming manual data collection with technology.

Instead of walking the fields taking measurements by hand, data is collected from a distance through remote sensing. Using cameras on board manned and unmanned aerial vehicles, as well as on ground sensors, Gonzalez gathers information such as plant height, canopy temperature and relative biomass, and evaluates plant health and soil spatial variability in minutes rather than weeks.

Collaborating with farmers and colleagues from maize and wheat breeding programs Gonzalez uses Geographical Information Systems (GIS) to organize and analyze data and patterns related to specific farm locations, making it easier to relate information to growers’ specific needs.

“It is important to make sure that data is properly geo-referenced, this way we know exactly how each crop is impacted by the matrix of factors in its environment,” said Gonzalez. “Collecting crop management and field data such as fertilization rates, irrigations schemes or soil properties provides us with information to understand and improve plant growth.”

The tailored information is used to improve farmers’ decision-making, allowing for more precise agriculture to create sustainable farming systems that produce more food with fewer resources, she said.

Gonzalez’ love for all things data saw her delve into the world of geospatial science studying her bachelor in Geomatics Engineering in the Mexican state of San Luis Potosi. Her passion for helping farmers achieve food security led her to apply for a job at CIMMYT. Since working with the Sustainable Intensification Program she has developed skills to collect and visualize agricultural data in meaningful ways to inform different stakeholders.

“Farmers, researchers and politicians can make better decisions when we streamline field data using available technology. The path of data from field to farm decision-makers can be streamlined using the available technology creatively and collaboratively, if we dare to build the appropriate systems.”

A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe
A UAV is launched to collect data from a field in CIMMYT’s experiment station in Ciudad Obregón, Mexico. Photo: CIMMYT/ Peter Lowe

With climate change already affecting crop production, GIS becomes an increasingly important tool farmers can use to adapt and maintain crop yields, Gonzalez said. According to PNAS, each degree Celsius increase in global mean temperature is estimated to reduce the average global yields of wheat and maize by up to seven percent. These crops are key to the survival of humanity, providing a major portion of our caloric intake.

Remote sensing and precision agriculture plays a fundamental role in the ongoing challenge to reduce and cope with the effects of climate change and maximize land efficiency. Using quality data presented in useful ways helps farmers improve decision making, she added.

Gonzalez believes providing open access to geospatial decision support tools will allow smallholder famers to gain the information needed to make site-specific decisions on the exact quantity, location and timely application of resources needed to optimize food production.

If the world is to eliminate world hunger and malnutrition by 2030 as set out in the UN Sustainable Development Goals, smallholder farmers – who produce 80 percent of the world’s food – must benefit from access to remote sensing and precision agriculture, she said. Nine out of ten of the world’s 570 million farms are managed by families, making the family farm the predominant form of agriculture, and consequently a potentially crucial agent of change in achieving sustainable food security and in eradicating hunger in the future, according to UN reports.

Currently, Gonzalez is collecting data for an innovative private-public partnership, Mexico COMPASS, to help Mexican smallholder farmers increase wheat and sugar cane production by identifying factors that cause the yield gap between crop potential and actual performance.

The project aims to improve crop productivity and smallholder farmer incomes while facilitating rural community economic development. The data collected by Gonzalez in Mexico’s Yaqui Valley and in the state of Tabasco contributes to a system that combines earth observation satellite data with captured farm data to create a site-specific decision support tool for farmers. The project will help farmers to make better use of natural resources while monitoring crop health.

Improving smallholder farmer capacity and ability to make informed farming decisions is key to ending hunger and improving livelihoods, said Gonzalez.

Gonzalez’s work with CIMMYT’s Sustainable Intensification Program on the Mexico COMPASS project is funded by the UK Space Agency and has as partners: Rezatec, The University of Nottingham, Booker Tate and Colegio de Postgraduados (COLPOS).

https://staging.cimmyt.org/cimmytnews-subscription/

Breaking Ground: Terry Molnar uses native maize varieties to find novel traits for breeding

TM BGIncreasingly erratic weather, poor soil health, and resource shortages brought on by climate change are challenging the ability of farmers in developing countries to harvest a surplus to sell or even to grow enough to feed their households. A healthy crop can mean the difference between poverty and prosperity, between hunger and food security.

Terry Molnar, a scientist at the International Maize and Wheat Improvement Center (CIMMYT), is helping farmers face these challenges by using the natural diversity of plants to unlock desirable genetic traits inside food crops.

Working at CIMMYT as a Maize Phenotyping and Breeding Specialist, Molnar studies the traits found in different maize varieties found in the CIMMYT seed collections that can be used to strengthen crops and produce healthy food and better livelihoods.

Growing up in New Mexico, in the United States of America, he had a unique opportunity to work with a conservation group preserving seed from Native American and Hispanic communities of northern New Mexico and southern Colorado.

“Seeing all the diversity there was in the maize, beans, chilies really inspired me to go into genetics and breeding as a career,” Molnar said. Following that inspiration, he earned his bachelor degree at Colorado State University and continued his Masters and doctoral studies at North Carolina State University with a focus on plant breeding.

At CIMMYT, he studies native maize varieties called landraces to identify useful traits such as resistance to heat and drought, which can be used to breed new varieties that help farmers produce more food despite mounting challenges.

The high level of native maize diversity is due to its varied geography and culture in Latin America where it originated. As farmers selected the best maize for their specific environments and uses, it diverged into distinct races. At present, there are over 300 recorded unique races of maize in Latin America alone.

Molnar evaluates the landraces varieties in the field for a large set of characteristics, called the phenotype. Additionally, the landraces have been characterized genetically, called the genotype. Using the phenotype and genotype, Molnar can start to unravel the complexity of important traits such as drought and identify sources of resistance.

“Our projects are trait-targeted, so the first step is to make educated guesses as to which of the landraces might be good for that trait. There are over 25,000 maize landraces varieties in the CIMMYT Maize Germplasm Bank and we don’t have the infrastructure or money to test them all.”

“We try to cast a wide net and evaluate as many landraces as we are able in the field under the conditions of interest. After this initial evaluation, I keep the best ones and start the breeding process,” Molnar said.

This involves crossing the landrace to elite maize lines that already have desirable traits like high yield, to develop new lines. The final step is to create hybrids from these new lines and evaluate them in yield trials. After several years of testing, anything that is better than the original lines for the trait of interest will be released to breeders and research scientists.

Climate change predictions suggest that in the coming decades, heat and drought will greatly increase in many important maize growing areas of the world. Molnar works to find tolerance traits for drought and heat within landrace maize plants. As well as becoming a growing problem in the future, drought and heat already affect farmers in any given year, he said.

As part of this work, Molnar also looks for landrace varieties with natural resistance to two prevalent maize diseases, tar spot complex (TSC) and maize lethal necrosis (MLN). TSC is an important disease in the southern half of Mexico, Central America and northern South America, and can decrease yields by 50 percent when it gets into fields early in a growing cycle. Most of the farmers in the affected areas are too poor to afford fungicides, so resistance built into varieties is very important. MLN is a large problem in eastern Africa.

“Like TSC, when MLN gets into fields early in the cycle the results can be devastating, with up to 100 percent potential yield loss,” said Molnar. “MLN is spread by insect vectors, and similar to the situation in Latin America, many farmers in east Africa are too poor or don’t have access to insecticides.”

The last trait Molnar looks for is pigmentation, specifically blue and red kernel color. This is part of an effort to develop new end-use markets in Mexico. Pigments in maize are due to increased concentrations of anthocyanin, an antioxidant, which has been connected to decreased cancer risk. Blue and red maize can be used for specialty food products or for industrial use such as the extraction of natural colors for use in other food products. In both cases, the pigmented maize commands a higher price for the farmer and gives them access to new markets.

Molnar finds great satisfaction in his work, both from the difference he makes in farmers’ lives, and from the process of finding the traits in the first place.

“I enjoy being out in the field, looking at maize, meeting and talking to farmers and working with my collaborators,” Molnar said. “I’m fascinated by the incredible variety that exists in maize and its ability to grow almost everywhere under most environmental conditions. Before the Europeans came, maize was already growing from Canada to Chile and from sea level to over 3000 meters in altitude and from the humid tropics to bone-dry desert. It’s an incredibly adaptable species.”

He is motivated by the passion to promote the rich variety of traits found in native maize varieties.

“I’m driven by the doubt of others. A lot of maize breeders working at the private seed companies don’t believe it is possible to derive anything commercially useful out of a landrace since modern hybrid maize has been bred for so long and is now so elite. I would like to prove them wrong,” he said.

CIMMYTNEWSlayer1

Breaking ground: Mike Olsen uses new technology to improve farmer’s yields

MO Postcard 01 MarchEL BATAN, Mexico (CIMMYT) — Global challenges to agriculture such as climate change, crop diseases and pests mean that the International Maize and Wheat Improvement Center (CIMMYT) is constantly working to develop new, improved, resistant varieties for farmers.

However, crop breeding is expensive, time-consuming work, meaning that it takes several years for farmers to get seed solutions to the challenges they are facing today.

Mike Olsen, upstream research coordinator for CIMMYT maize program, works with scientists to use new technologies to increase breeding program efficiency and genetic gain — developing improved maize varieties with the traits smallholder farmers’ need, such as disease resistance or drought tolerance, using less time and resources than ever before.

“Our whole team is trying to improve genetic gain for various traits, and to deliver more genetic gain with fewer resources, through the application of phenotyping innovation, genomics and molecular markers for crop improvement,” Olsen said. “Our work at CIMMYT assists our breeding teams to be more effective in developing improved products for farmers.”

Originally from the United States, Olsen grew up on a small farm in Wisconsin and would go on to study plant breeding and genetics at the University of Minnesota. “During my undergrad years I had the chance to visit South Africa and saw rural poverty for the first time. At the time, I was taking classes in plant biology and genetics and I was inspired by the idea of using agricultural improvement as a method for poverty eradication—it’s a big part of why I went into plant breeding,” he said. “As a graduate student, I became very interested in the mission of CIMMYT. I was studying at Norman Borlaug’s alma mater — working in Borlaug Hall, in fact — which inspired me to pursue a career at a CGIAR center. CIMMYT was a perfect fit that allowed me to do something I’ve wanted to do since I was 19 years old.”

The farmers he has met around the world inspire Olsen to come into work every day. “Knowing that the outcome of our work is providing income and food security to millions of vulnerable people is what’s so exciting about what we do. Being able to serve as a conduit for bringing advanced technology for crop improvement for resource poor farmers and consumers is incredible,” he said.

Beyond the day-to-day activities of conference calls, travel and airports, the big picture work of what Olsen does is to lead a global team of talented scientists, help with grant writing and project oversight, with a focus on breeding program optimization. “I have been very involved with the Genomics and Open Source Breeding informatics initiative (GOBii), which helps breeding programs efficiently use genetic information, and I’m currently working on a collaboration with DuPont Pioneer on seed production in Africa to deliver higher quality seed to smallholder farmers,” Olsen said. “What I most enjoy about my work is the people. I have to be honest, coming to CIMMYT I was moving out of a hands-on science role into working with people, and the collaborative nature of this job has been really energizing for me. I’ve had the opportunity to mentor some of our talented young scientists into greater leadership roles, and it has been really exciting seeing their professional growth. It’s the CIMMYT mission that gets us all out of bed in the morning, but I really enjoy the people I work and collaborate with.”

Breaking Ground: Good data management key in fight against food insecurity, says Carolina Rivera

BGRivieraOver the next 50 years, the world’s population is set to be more than 9 billion. To feed this amount of people food production will need to more than double.

Doing this will require us to grow food faster than ever before, a global task which will be even more challenging if we don’t first improve the way we collect and share information, according to Carolina Rivera, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and data coordinator with the International Wheat Yield Partnership (IWYP).

Demand for wheat by 2050 is predicted to increase by 70 percent from today’s levels due to population growth and dietary changes, but the challenges to wheat production are stark and growing. The crop is at risk from new and more aggressive pests and diseases, diminishing water resources, limited available land and unstable weather conditions related to climate change.

“The data tells us that we won’t meet future demand unless we’re able to significantly increase genetic gains,” says Rivera. Current annual genetic yield gains of cereals range from 0.5 to 1 percent, meaning that genetic improvements made to crops by scientists are at best resulting in 1 percent higher yields than the previous year, notwithstanding the possibility of improvements due to crop management which are known to be much harder for resource-poor farmers to implement.

Since Rivera started as an IWYP data coordinator, she’s helped release a new instance of the public database called “Germinate,” which hosts phenotypic, genotypic and other data on wheat collected by CIMMYT staff, IWYP project members, and partners around the world. She seeks to deploy new technologies to capture data and develop better systems to standardize, collect, compile and curate field data gathered by members of her CIMMYT research team and their partners.

“Three years ago, around 80 percent of CIMMYT’s wheat physiology field data in Mexico were collected manually,” said Rivera. “But now, the use of tablets for data collection, improved protocols for data processing, among other tools allow us to have real-time quality control. By standardizing our results and facilitating data curation and analysis, we help scientists make faster, more informed decisions.”

Rivera has a unique perspective in crop data management because she applies her on-the-ground knowledge of wheat research to adopt and adapt new technologies and systems that meet the needs of scientists. As a wheat physiologist, she has identified new traits associated with the optimization of plant morphology aiming to boost grain number and yield.

“Data management can seem like an afterthought to the research, but having more controlled and optimized workflows will become crucial for breeding programs as data volumes increase,” says Rivera. “Achieving high-quality data management is a challenge – like with any change in technology, it requires a huge shift in the way people do their job and tools they use.”

Despite this, more than 2 billion genotypic data from CIMMYT have been made available in the Germinate and Dataverse platforms, and Rivera believes that data sharing will eventually become part and parcel to the work wheat researchers conduct.

Before starting her current position at CIMMYT, Rivera received her doctorate in crop science from the University of Nottingham. Ultimately, she believes that the adoption of better data management practices across research institutions will soon become a cornerstone in the ability to create “ideal” wheat plants that produce more grains, feeding more people.

The International Wheat Yield Partnership (IWYP) is a long-term global collaboration with funding from public and private research organizations that seeks to increase the genetic yield potential of wheat by 50 percent in 20 years. Find a full list of funders here.

 

Breaking Ground: Leonard Rusinamhodzi on innovating farming systems for climate change

TwitterBGLernardFood security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the region by 2025, said Leonard Rusinamhodzi, a systems agronomist at the International Maize and Wheat Improvement Center.

Erratic rainfall and increasing temperatures are already causing crops to fail, threatening African farmers’ ability to ensure household food security, he said. Africa is the region most vulnerable to climate variability and change, according to the UN Intergovernmental Panel on Climate Change.

Small-scale family farmers, who provide the majority of food production in Africa, are set to be among the worst affected. Rusinamhodzi’s work includes educating African farmers about the impacts of climate change and working with them to tailor sustainable agriculture solutions to increase their food production in the face of increasingly variable weather.

The world’s population is projected to reach 9.8 billion by 2050, with 2.1 billion people set to live in sub-Saharan Africa alone. The UN Food and Agriculture Organization estimates farmers will need to increase production by at least 70 percent to meet demand. However, climate change is bringing numerous risks to traditional farming systems challenging the ability to increase production, said Rusinamhodzi.

Graphic created by Gerardo Mejia. Data sourced form the UN Intergovernmental Panel on Climate Change.
Graphic created by Gerardo Mejia. Data sourced from the UN Intergovernmental Panel on Climate Change.

Rusinamhodzi believes increasing farmers’ awareness of climate risks and working with them to implement sustainable solutions is key to ensuring they can buffer climate shocks, such as drought and erratic rainfall.

“The onset of rainfall is starting late and the seasonal dry spells or outright droughts are becoming commonplace,” said Rusinamhodzi. “Farmers need more knowledge and resources on altering planting dates and densities, crop varieties and species, fertilizer regimes and crop rotations to sustainably intensify food production.”

Growing up in Zimbabwe – a country that is now experiencing the impacts of climate change first hand – Rusinamhodzi understands the importance of small-scale agriculture and the damage erratic weather can have on household food security.

He studied soil science and agronomy and began his career as a research associate at the International Center for Tropical Agriculture in Zimbabwe learning how to use conservation agriculture as a sustainable entry point to increase food production.

Conservation agriculture is based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It improves soil function and quality, which can improve resilience to climate variability.

It is a sustainable intensification practice, which is aimed at enhancing the productivity of labor, land and capital. Sustainable intensification practices offer the potential to simultaneously address a number of pressing development objectives, unlocking agriculture’s potential to adapt farming systems to climate change and sustainable manage land, soil, nutrient and water resources, while improving food and nutrition.

Tailoring sustainable agriculture to farmers

Smallholder farming systems in Africa are diverse in character and content, although maize is usually the major crop. Within each system, farmers are also diverse in terms of resources and production processes. Biophysically, conditions – such as soil and rainfall – change significantly within short distances.

Given the varying circumstances, conservation agriculture cannot be promoted as rigid or one-size fits all solution as defined by the three principles, said Rusinamhodzi.

The systems agronomist studied for his doctoral at Wageningen University with a special focus on targeting appropriate crop intensification options to selected farming systems in southern Africa. Now, with CIMMYT he works with African farming communities to adapt conservation agriculture to farmers’ specific circumstances to boost their food production.

Rusinamhodzi’s focus in the region is to design cropping systems around maize-legume intercropping and conservation agriculture. Intercropping has the added advantage of producing two crops from the same piece of land in a single season; different species such as maize and legumes can increase facilitation and help overcome the negative effects of prolonged dry spells and poor soil quality.

Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT
Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT

“The key is to understand the farmers, their resources including the biophysical circumstances and their production systems, and assist in adapting conservation agriculture to local needs,” he said.

Working with CIMMYT’s Sustainable Intensification Program, Rusinamhodzi seeks to understand production constraints and opportunities for increased productivity starting with locally available resources.

Using crop simulation modeling and experimentation, he estimates how the farming system will perform under different conditions and works to formulate a set of options to help farmers. The options can include agroforestry, intercropping, improved varieties resistant to heat and drought, fertilizers and manures along with the principles of conservation agriculture to obtain the best results.

The models are an innovative way assess the success or trade-off farmers could have when adding new processes to their farming system. However, the application of these tools are still limited due to the large amounts of data needed for calibration and the complexity, he added.

Information gathered is shared with farmers in order to offer researched options on how to sustainably boost their food production under their conditions, Rusinamhodzi said.

“My ultimate goal is to increase farmers’ decision space so that they make choices from an informed position,” he said.

Rusinamhodzi also trains farmers, national governments, non-profit organizations, seed companies and graduate students on the concepts and application of sustainable intensification including advanced analysis to understand system productivity, soil quality, water and nutrient use efficiency and crop pest and disease dynamics.

 

Leonard Rusinamhodzi works with the SIMLESA project funded by the Australian Centre for International Agricultural Research and the CGIAR MAIZE program.

 

 

Breaking Ground: Clare Stirling sees no silver bullets to control agriculture’s emissions

ClareStirling_Postcard

There are no easy fixes nor can business as usual continue, if humankind is to reduce the climate footprint of global agriculture while intensifying farming to meet rising food demands, according to an international scientist who has studied agriculture and climate interactions for nearly three decades.

“Climate change is a threat multiplier, intensifying the challenges of population growth, food insecurity, poverty, and malnutrition,” said Clare Stirling, a scientist in the sustainable intensification program of the International Maize and Wheat Improvement Center (CIMMYT). “With almost 60% of global food production coming from rainfed agriculture and more than 650 million people dependent on rainfed farming in Africa alone, our food system is already highly vulnerable to changing climates.”

Stirling, who is CIMMYT’s liaison with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), believes that agriculture—including smallholder agriculture—can play a key role in meeting greenhouse gas emission targets, but only with combined and coordinated efforts that cross institutional and disciplinary boundaries.

CIMMYT contributes through a systems approach to developing and promoting climate smart technologies—including drought tolerant maize and wheat varieties, conservation agriculture, and precision nutrient and water management—as well as research on climate services, index-based insurance for farmers whose crops are damaged by bad weather, and data and models for greenhouse gas emissions in India and Mexico.

“Take the case of India, the world’s second-largest food producer,” Stirling explained. “Mitigation options for crops, of which rice-wheat systems are a major component, include improved water management in rice, more precise use of nitrogen fertilizer, preventing the burning of crop residues and promoting zero or reduced tillage, depending on local conditions and practices. With the right policies and training for farmers, these options could spread quickly to reduce emissions by as much as 130 Megatons of CO2e per year from the crop sector alone. The big challenge is achieving large-scale adoption for significant mitigation to occur.”

Science needed for local mitigation targets

Born in Malawi and having spent her early childhood in Zimbabwe, young Stirling also lived a year with her parents and siblings in a house trailer on a farm in Devon, United Kingdom. “Most of my childhood and teen years were spent living in villages, riding horses, and working on farms during school holidays. Out of this came a desire to work in agriculture and overseas.”

Stirling obtained a bachelor’s degree in plant science and a doctor’s degree in environmental crop physiology at Sutton Bonnington, University of Nottingham, U.K., performing fieldwork for the latter at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderbad, India.

As a Ph.D. student at Nottingham, she also joined a research group under the late Professor John Monteith that was quantifying relationships among crop growth, radiation, and water use. The resulting equations underpin many of today’s crop simulation models. “My research since has focused on environmental interactions and crop growth, so climate change became an important part of this, starting with an M.Sc. course on the topic that I set up in Essex University in the 1990s.”

Among the intractable challenges Stirling sees is soil degradation. “Unless this is addressed, it will be impossible to sustainably intensify or build climate resilience into food systems,” she explained. “We must manage limited organic matter and fertilisers better and more efficiently, to achieve healthier soils.”

She is also concerned that the climate science to support national and local climate change adaptation planning is much less certain than that which informs long-term global scale targets. “CIMMYT has an invaluable role with its global and strategic research mandate to develop technologies that will raise productivity and resource use efficiency in future, warmer climates,” Stirling asserted.

“Local climate predictions are likely to remain uncertain and adapting to current climate variability may not be enough for long-term adaptation in many places, with the surprises that may be in store,” Stirling added.

“International organizations such as CIMMYT need to offer stress-tolerant, high-yielding germplasm and sustainable management systems, as well as harnessing big data and digitization, to transform adaptation to deal with future, more extreme climates. Finally, future farmers will need to get the most out of good conditions and good years because, the way things are headed, there may be little hope for coping in bad years.”

Read about research by Stirling and colleagues:

Click here to read “Tek B. Sapkota, Jeetendra P. Aryal, Arun Khatri-Chhetri, Paresh B. Shirsath, Ponraj Arumugam, and Clare M. Stirling. 2017. Identifying high-yield low-emission pathways for the cereal production in South Asia. Mitig Adapt Strateg Glob Change DOI 10.1007/s11027-017-9752-1.

Breaking Ground: Francelino Rodrigues on high-tech farming

EL BATAN, Mexico (CIMMYT) — When Francelino Rodrigues started at the International Maize and Wheat Improvement Center (CIMMYT) in 2013, the majority of the maize and wheat trials were still being carried out by walking through the field and taking measurements manually.

Through a collaborative work initiative with colleagues from maize and wheat breeding programs, and with support from senior scientists, Rodrigues brought a whole new world of digital mapping and proximal high-resolution soil sensing to the center’s trials thanks to his background in precision agriculture.

Precision agriculture makes use of technologies and farmers’ knowledge to determine the quantity, location and time resources need to be applied to grow crops. The information gained allows farmers to farm more sustainably; using less while maintaining and improving yields.

“I first discovered precision agriculture during an agricultural engineering undergraduate in Brazil,” explained Rodrigues. “I was fascinated by the idea of joining technology and agriculture, so I ended up going on to complete a master’s and a doctorate in precision agriculture applying it to coffee, sugarcane, and cereals crops.”

After completing his doctorate with an internship at the Commonwealth Scientific and Industrial Research Organization (CSIRO), an Australian government agency for scientific research, Rodrigues realized the importance of agricultural research for development and took on his post-doctoral position at CIMMYT within the biometrics team in remote sensing and precision agriculture.

“Remote sensing can provide information at different scales and for a range of applications, from crop management to high-throughput phenotyping and landscape assessment,” said Rodrigues, whose research focuses on the analysis and interpretation of spatial and temporal agricultural data sets built up by the use of proximal and remote sensing technologies, then seeing how it can be applied across CIMMYT’s work.

Preparing for radiometric calibration for Multispectral flight over maize Tar Spot Complex disease screening; CIMMYT’s station, Agua Fria, Mexico. April 2016 Photo: CIMMYT archives.
Preparing for radiometric calibration for a multispectral flight over maize Tar Spot Complex disease screening; CIMMYT’s station, Agua Fria, Mexico. Photo: CIMMYT archives.

Remote sensing devices make it possible to observe the dynamics from single plants up to entire landscapes and continents as they change over time by capturing radiation from across the electromagnetic spectrum.

“Precision agriculture and remote sensing technologies are used by CIMMYT to develop tools and practices to help farmers manage their crops more efficiently, to speed up the breeding process by rapidly assessing plant traits and to better characterize agricultural landscapes as a  whole,” he said.

According to Rodrigues, one of the greatest challenges is making precision agriculture accessible to smallholder farmers who don’t have the means to access new and expensive technology.  He is currently working on a public-private project using remote sensing data assimilation and crop modeling to build an online platform that farmers can use freely in their fields to make crop management decisions.

“Since I arrived at CIMMYT I have been exposed to a global network of world-class scientists,” said Rodrigues. “It encourages me to pursue my passions and allowed me to do what I love; good science that improves lives.”

Rodrigues is excited about the long-term impact of CIMMYT’s research and positive about the future. “I love to work with a team of scientists from different disciplines and see that knowledge and results we generate contribute to a wider agenda,” he said.

Breaking Ground: Scientist L.M. Suresh uses new technology to fight maize lethal necrosis disease in eastern Africa

TwitterBGLMEL BATAN, Mexico (CIMMYT) – Maize lethal necrosis (MLN) disease is putting maize production at risk in eastern Africa, escalating food insecurity in the region.

First reported in Kenya in 2011, it has subsequently spread rapidly to neighboring countries and has now been confirmed in six eastern African countries, including the Democratic Republic of Congo, Ethiopia, Rwanda, Tanzania and Uganda.

The disease, caused by a combination of the maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), causes irreversible damage that kills maize plants before they can grow and yield grain. If a maize field is infected early in the cropping cycle, total yield losses may occur.

Scientist L.M. Suresh of the International Maize and Wheat Improvement Center (CIMMYT) plays a central role in efforts to keep the disease in check. He contributes significantly to the screening of maize germplasm against MLN/MCMV, and to the identification of maize hybrids with tolerance/resistance to the disease.

In 2013, CIMMYT and the Kenya Agricultural and Livestock Research Organization established an MLN screening facility in Naivasha, Kenya, northwest of the capital Nairobi. The center serves as a centralized platform for screening maize germplasm under artificial inoculation from CIMMYT as well as public and private sector partners.

Suresh joined CIMMYT in 2015 as maize pathologist for sub-Saharan Africa. He is also manager of the MLN screening facility. As almost all of the commercial maize varieties currently grown in eastern Africa are susceptible to MLN, it is crucial to identify and develop germplasm with tolerance/resistance to the disease.

His work involves identifying sources of resistance to MLN and its component viruses MCMV and SCMV, and he works closely with other scientists on the genetic basis of MLN resistance. In addition, he contributes to the identification of elite maize hybrids that offer tolerance/resistance to MLN.

The use of advanced phenotyping technology makes it possible to quickly make physical observations of the plants on a large scale without painstaking manual scoring.

Another major component of Suresh’s work focuses on epidemiological factors related to MLN disease transmission, particularly seed transmission of MLN-causing viruses.

While focusing on MLN, he also works on other foliar – or leaf – diseases that are a threat to maize. As manager of the MLN screening facility, Suresh is responsible for the screening and indexing of about 84,000 rows of maize trials each year in three to four planting cycles at the Naivasha facility.

As of 2016, nearly 100,000 germplasm entries have been screened against MLN. To date, nine first generation MLN-tolerant elite maize hybrids have been released in East Africa. Several second-generation, CIMMYT-derived, MLN-resistant hybrids are currently being tested under national performance trials in Kenya, Tanzania and Uganda.

Born in Madasuru-Lingadahalli, a rural village in southern India, Suresh grew up on a farm where he worked in the fields during school holidays helping with weeding, picking areca nuts and harvesting.

In the 1970s and 1980s, his father was recognized by the State Department of Agriculture as a “progressive farmer” for undertaking various innovative approaches to increase rice paddy yields. However, the family continued to face several challenges, including low yielding varieties, diseases, pests, water scarcity and volatile prices.

To try and overcome some of these hardships, Suresh decided to further his education in agriculture.

“I believe that a deeper knowledge of science might offer alternatives, and that we should explore these options to help smallholder farmers like my father get better yields without increasing costs,” Suresh said. “My family always supported me to pursue higher education in the field of agriculture.”

Suresh earned undergraduate and master’s degrees at the University of Agricultural Sciences in Bangalore. During that time, Professor and emeritus scientist Varagur Ganesan Malathi from the Indian Agricultural Research Institute was his mentor and guide, also supervising him while he completed his Ph.D. at Kuvempu University in Karnataka.

Before joining CIMMYT, Suresh worked for 19 years at seed companies, including 14 years for Monsanto in India, where he led a team of plant health scientists focusing on diseases in vegetables. Additionally, he supported teams working on maize and cotton to harmonize various disease screening protocols.

“Working in agriculture gives me the best opportunity to contribute to efforts to help smallholder farmers improve their livelihoods,” Suresh said. “CIMMYT is a place full of scientific rigor and experts who work collaboratively with partners and thus bring impact. A major disease like MLN brings researchers from various organizations and institutions from different parts of the world together to accelerate efforts to not only understand the disease and establish effective surveillance, but also to engage stakeholders to commercially scale up disease-resistant hybrids developed by CIMMYT.”

The MLN web information portal, to which Suresh contributes, provides comprehensive information on various initiatives to tackle the MLN challenge. This website and information management system was developed with the objective of providing a one-stop resource for all the relevant information on MLN to interested stakeholders.

Breaking Ground: Dagne Wegary at a busy intersection on the maize value chain

TwitterBGDagneLike many scientists at the International Maize and Wheat Improvement Center (CIMMYT) who grew up in smallholder farm households, Dagne Wegary draws inspiration from recollections of adversity and has found in science a way to make things better.

“I saw how my community struggled with traditional crop and livestock husbandry and, at an early age, started to wonder if there was a science or technology that might ease those hurdles,” Wegary said, referring to his childhood in a village in Wollega, a western Ethiopian province bordering South Sudan.

“I chose to study and work in agriculture,” Wegary explains. “Even though the farming system in my home village has not changed significantly, I am happy that the community is now among Ethiopia’s top maize producers and users of improved seed and other agricultural inputs.”

As a maize seed system specialist, Wegary works at the nexus between breeding science and actual delivery of improved seed to farmers. He interacts regularly with diverse experts, including CIMMYT and Ethiopia’s breeders and members of the national ministries of agriculture, the Ethiopia Agricultural Transformation Agency (ATA), non-governmental organizations including Sasakawa Global-2000 and World Vision, and especially public, private or community-based seed producers.

Quality seed is farmers’ principal means to improve productivity and secure food, according to Wegary, who calls it “the carrier of complementary production technologies, which in combination with improved agronomy can significantly increase crop yields.”

“I am most happy with Ethiopia’s increased maize productivity and self-sufficiency, which is due partly to the use of improved technologies to which we all contribute,” he said, noting that maize grain yields in Ethiopia had more than doubled since the 1990s, reaching 3.7 tons per hectare in 2016, a level second only to that of South Africa, in sub-Saharan Africa.

According to Wegary, these improvements are the result of strong government support for maize research and development, along with the strong partnership between CIMMYT and the national program that has led to the release of high-yielding, stress tolerant and nutritionally-enriched maize varieties. He said that farmers’ have also increased their use of improved technologies and that public, private and community-based companies now market seed.

“Supplying seed used to be highly-centralized, but farmers’ main sources of seed now are cooperatives that buy from seed companies or companies that market directly to farmers” Wegary explained. “Many companies have their own stockists and dealers who directly interact with farmers.”

Before joining CIMMYT, as a scientist with the Ethiopian Institute of Agricultural Research (EIAR), Wegary helped to implement a number of CIMMYT-led projects. “These allowed me to know CIMMYT very well and sparked my interest in joining the Center and working with its high-caliber and exemplary scientists.”

A plant breeder by training with a doctoral degree in breeding from the University of the Free State, South Africa, soon after joining CIMMYT Wegary began to contribute to projects to develop and disseminate seed of improved maize varieties with high levels of drought tolerance and enhanced protein quality.

He has been involved since the early 2000s in promoting quality protein maize (QPM). The grain of QPM features enhanced levels of lysine and tryptophan, amino acids that are essential for humans and certain farm animals. Wegary took part in a CIMMYT project that supported the release of five new QPM varieties.

“Many companies are now producing and marketing QPM in Ethiopia,” Wegary said. A 2009 study in the science journal Food Policy found that eating QPM instead of conventional maize resulted in 12 and 9 percent increases in growth rates for weight and height, respectively, in infants and young children with mild-to-moderate undernutrition and where maize constituted the major staple food.

Wegary believes sub-Saharan Africa’s biggest challenges include climate change-induced heat and drought, natural resource depletion, and pest and disease outbreaks, coupled with increasing populations. In combination these factors are significantly reducing food security and the availability of resources.

“I want to be a key player in the battle towards the realization of food and nutritional security, as well as the economic well-being of poor farmers, through sustainable and more productive maize farming systems.”

Breaking Ground: Mainassara Zaman-Allah uses remote sensing to expedite phenotyping

TwitterBGMZMEXICO CITY (CIMMYT) – Remote sensing technology is on track to make crop breeding faster and more efficient, ensuring smallholder farmers get the improved maize varieties they need.

Field phenotyping – the comprehensive physical assessment of plants for desired traits – is an integral part of the crop breeding process but can create a costly and time-consuming bottleneck, according to Mainassara Zaman-Allah, abiotic stress phenotyping specialist at the International Maize and Wheat Improvement Center (CIMMYT).

Now, technological advances such as proximal or aerial sensing allow scientists to quickly collect information from plants to develop improved varieties.

“Previously, we used to measure maize height with a stick, and manually capture the data” he said. “Now we use proximal sensing—a laser distance meter connected to your phone or tablet that automatically captures data —to measure plant height 2 to 3 times faster for half of the labor. We also use digital ear imaging to analyze maize ear and kernel attributes including grain yields  without having to shell the cobs, saving time and money on labor. This will be helpful particularly to most of our partners who do not own the machinery required for shelling after harvest”

Zaman-Allah also works with aerial sensing, using unmanned aerial vehicles equipped with sensors to fly over crop fields and collect images that are later processed to extract crop phenotypic data. “Aerial phenotyping platforms enable us to collect data from 1,000 plots in 10 minutes or less, a task that might take eight hours to do manually,” he said.

This means that developing improved maize varieties with tolerance to heat and drought, as well as devastating diseases such as maize lethal necrosis (MLN), could become faster and more cost-effective than ever before. Application of aerial and proximal sensing technology for high-throughput phenotyping, in which large amounts of data are processed simultaneously, provides high-resolution measurements for research plots that can enable the rapid identification of stress tolerant varieties, speeding up the breeding process.

The time and money saved by using these technologies allow researchers to develop and deploy improved varieties more quickly to the smallholder farmers that need them most, which is especially important as climate change begins to change growing environments faster than traditional varieties can adapt.

For Zaman-Allah, this interest in improving agriculture for all is “in the blood,” he said. While growing up in Niger, his family had to move to a different city every three years due to his father’s job. “Everywhere we moved; my father made sure that we rented or bought a small farm, where I would be involved in crop production every year during the long vacations over the rainy season. That was a wonderful experience as I learned a lot regarding crop production, drought and soil fertility management.”

He would take this first-hand experience in agriculture to the next level while earning undergraduate and postgraduate degrees at the University of Carthage in Tunisia and conducting research for his Ph.D. in plant eco-physiology at the French National Institute for Agricultural Research (INRA) through a grant from the French Agency for International Cooperation.

Zaman-Allah joined CIMMYT in late 2012 as a scientist with a specialization in heat and stress resilient maize, based in Harare, Zimbabwe. He has been working as an abiotic stress phenotyping specialist since late 2015, and is considered a pioneer in remote sensing work in CIMMYT maize breeding. In addition to his work as a scientist, he also writes codes for the programs used in proximal sensing.

“As part of my current job, I develop, test and validate low-cost and high-throughput field-based phenotyping tools and methods for different desired traits in crops, including drought, heat and low-nitrogen stress,” he said.

“My team is working to provide opportunities toward next-generation phenotyping that is more compatible with maize breeders needs and that will significantly minimize selection cost while maximizing selection efficiency, accelerating the process to deliver maize varieties with better genetic traits to farmers.”

Zaman-Allah’s commitment to food security extends beyond his job. On his own time, he shares knowledge gained at CIMMYT to inform his contacts at universities and national agricultural research centers in Niger and help increase his home country’s capacity to produce healthy crops.

“Maize and wheat are not usually grown in Niger due to heat, drought and low soil fertility, but due to recent advances in CIMMYT technologies and improved varieties, they are now a possibility,” he said. “People were doubtful at first, but when improved varieties from CIMMYT Mexico and CIMMYT-Zimbabwe were planted side by side with locally released varieties, there was no comparison—the CIMMYT varieties performed far better.”

Working at CIMMYT has given Zaman-Allah a unique opportunity to help farmers while also working with a top-notch international team.

“I really enjoy the teamwork, the innovation and the challenge to make a difference,” he said. “It’s immensely satisfying to be able to contribute in helping smallholder farmers through my work. Whenever I take vacation, I always go back to the village in Niger where my family is from, and I love to talk with local farmers about the latest agricultural technologies that could help them.”

Breaking Ground: More data on gender roles key for a food secure world, says Anya Umantseva

Breaking Ground is a regular series featuring staff at CIMMYT

TwitterBGAnyaEL BATAN, Mexico (CIMMYT) – Social inequality, including gender discrimination, hinders the potential for economic development, a key focus of the agriculture for development community.

Women in developing countries make up more than 40 percent of waged farmworkers, a percentage that is even higher if unwaged farm work is included, according to the U.N. Food and Agriculture Organization. Despite their significant representation in the sector, women often experience acute poverty due to unequal access to seeds, fertilizer, land and other agricultural necessities.

The challenges are great, but the aim of achieving gender equality and empowering all women and girls everywhere by 2030 is entrenched in the international development framework by the U.N. Sustainable Development Goals (SDGs).

Spurred on by the SDGs, gender has become a key agricultural research and policy focus for the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR system research programs in recent years.

“Despite improvement, there are still several opportunities which could significantly decrease inequality between men and women,” said CIMMYT gender researcher Anya Umantseva. “Little data exists on gender roles in rural communities and most importantly, a systematic integration of social components like gender into scientific, data-based research could really help expand outcomes and impacts to more women as well as men.

“Women in rural communities often face very strict gender norms,” said Umantseva, referring to local women’s and men’s expected roles and behaviors. “What we’re trying to do is see how these norms influence the way men and women adopt agricultural innovations, and how adoption of different innovations affects gender norms across different communities.”

Umantseva is one of many researchers working on GENNOVATE – a global comparative research initiative, which addresses the question of how gender norms influence men, women and youth to adopt innovation in agriculture and natural resource management.

Gender norms include restricted access to land and financial resources, or even the social taboo of walking alone as a woman, can make it difficult to have equal access to agricultural trainings and other farming inputs, she explained.

Umantseva grew up in Yurga, Russia during the country’s economic transition to capitalism after the fall of the Soviet Union. “Witnessing the abrupt change of political-economic regimes, and the impact it had on society, shaped my interest in social sciences and anthropology,” she said. “I decided that I wanted to study how social norms and culture are historically constructed.”

“Gender in agricultural research for development is not an isolated topic; it is deeply intertwined with social inclusion of disadvantaged groups in general,” Umantseva said. “Gender is not just about men and women, but who these men and women are. Through GENNOVATE we want to go deep into their stories, their socio-economic status, religion, position in the family and more.”

Around 8,000 rural study participants of different ages and socioeconomic backgrounds reflected on gender norms and how these social rules affect their ability to access, adapt and benefit from innovations in agricultural and natural resource management.

“GENNOVATE is the first attempt of this scale  providing this type of gender-based data for agricultural research for development initiatives,” said Umantseva. “But most importantly, we want to convince the research for development community  of the important opportunities, that insights from this kind of data, can bring. It might not always be easy to integrate gender into research, and may require us to do certain things a little differently, but it is necessary if we want to have inclusive development impact.”

Along with other researchers, Umantseva is analyzing GENNOVATE data to produce a series of reports, journal articles and other products so researchers and project managers can begin incorporating GENNOVATE’s findings into their work.

“Right now we’re looking at men and women who have successfully adopted agricultural innovations and what factors their success might have in common, and how men and women differ in adoption. We hope to produce a paper on these findings sometime this year,” said Umantseva.

Umantseva received her bachelor’s degree in linguistics and translation from Russia’s Tomsk State University. She then went on to pursue a master’s at the Catholic University of Leuven in Belgium, where she studied minority policies, ethnic relations and gender norms.

Before she joined CIMMYT in 2016, she worked at the United Nations Office on Drugs and Crime, focusing on human trafficking and migration.  She currently lives in Mexico City and is based at CIMMYT’s Headquarters in El Batan, outside Mexico City.

Breaking Ground: AbduRahman Beshir is revitalizing Pakistan’s maize sector

TwitterBGAbduBreaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – In Pakistan, maize is the third most important cereal crop after wheat and rice and it is the first in productivity among all the cereals. However, Pakistan imports about 90 percent of the hybrid seeds used to produce the crop, costing the country as much as $60 million annually. Furthermore, the genetic diversity of the currently available maize varieties is not diverse enough to adapt to the varied agro ecologies of Pakistan.

To address these issues, AbduRahman Beshir, maize improvement and seed systems specialist with the International Maize and Wheat Improvement Center (CIMMYT), and his team, working under the U.S. Agency for International Development (USAID)-funded Agricultural Innovation Program (AIP) for Pakistan, are developing climate-resilient, biofortified and biotic stress-tolerant maize to enhance the maize seed sector.

“Pakistan can be considered as a new frontier for CIMMYT’s maize impacts,” Beshir said. “Except for some limited maize activities in the early 1980s, there were no coordinated research activities in the past 32 years. I am glad to revitalize and breathe new life into Pakistan’s maize sector.”

Almost half of children under age 5 are reportedly malnourished, Beshir said, adding that protein, vitamin A, and other micronutrient deficiencies in Pakistan are rampant, while the mortality rate is among the highest in South Asia.

Beshir’s work targets these underprivileged groups and in the foreseeable future, he hopes to see nutritional benefits improve significantly.

Throughout his life, Beshir has witnessed how small scale farmers are often unable to fulfill their basic needs as they struggle to get fair market prices for produce, in part due to middlemen and a lack of information in the market.

He grew up in Ethiopia, a country where agriculture is the mainstay of the economy, accounting for 80 percent of employment, according to UNDP.  The livelihoods of Beshir’s grandparents and most of his relatives were dependent on agriculture, but his parents switched to a sideline business selling agricultural and food related products.

“I was brought up observing my parents’ entrepreneurial skills and efforts, but they wanted their children to pursue a career in science,” Beshir said, explaining how his parents encouraged him to attend university. “My father used to call me ‘doctor’ when I was a fourth grade pupil to inspire me in my education.”

Earning an undergraduate degree in agriculture and plant sciences was a life changing experience for Beshir, serving as an eye opener to the dire need for educated agricultural professionals to transform the livelihoods of rural farmers.

“Since then, I developed a passion on how to increase profits for rural farmers through technology promotion and targeted intervention.”

Beshir earned a Ph.D. in plant breeding from the University of the Free State, Bloemfontein, in South Africa, and was awarded a gold medal for his research project highlighting the severity of malnutrition in parts of sub-Saharan Africa and the ways quality protein maize seeks to address the issue.

Before joining CIMMYT in 2013, Beshir was the national partner in Ethiopia for a CIMMYT-led project on quality protein maize development and drought-tolerant maize for Africa.

“My involvement in these projects gave me a good grasp of how CIMMYT’s impact-oriented interventions practically change the life of farmers and brought a maize revolution in my country, in partnership with local institutions,” he said.

His current work in Pakistan mainly involves extensive testing of various maize products sourced from CIMMYT breeding hubs in Colombia, Mexico, Zimbabwe and the International Institute of Tropical Agriculture (IITA). Since 2014, more than 2,200 maize entries have been tested through the project.

Test samples consist of biofortified maize, as well as maize varieties that can tolerate major biotic and abiotic stresses, and they have been evaluated on more than 300 different sites in Pakistan. Such large scale testing is unprecedented in the history of maize in Pakistan.

Beshir’s led efforts resulted in the allocation of 49 market ready maize products (hybrids and OPVs) to partners in less than three years, a process that would otherwise have taken eight to 10 years to develop even a single product. The allocation of the new maize products has also given partners access to CIMMYT’s parental lines and breeder seeds, so that they can continue to lead sustainable seed businesses even after the project ends.

“Our intervention is the first program in Pakistan to introduce and identify biofortified maize, including pro-vitamin A, quality protein maize, and zinc-enriched hybrids/open pollinated varieties suitable for Pakistan,” Beshir said, adding that the research also led to the inauguration of the first maize stem borer mass rearing facility in Pakistan.

The facility will help national programs develop maize germplasm tolerant to maize stem borer attacks.

“As imported hybrid seeds are simply unaffordable to millions of small scale maize farmers, our research will enable local companies to provide affordable options to farmers,” he said.

Breaking Ground: Crop simulation models help Balwinder Singh predict future challenges

TwitterBGBalwinder3Breaking Ground is a regular series featuring staff at CIMMYT

EL BATAN, Mexico (CIMMYT) – Balwinder Singh uses crop simulation models to help smallholder farmers in South Asia prepare for future climates and unexpected challenges.

Despite improvements in agricultural technology in the past few decades, crop yield gaps persist globally. As climate patterns change, farmers are at risk of crop loss and reduced yields due to unforeseen weather events such as drought, heat or extreme rains.

Singh, a cropping system simulation modeler at the International Maize and Wheat Improvement Center (CIMMYT) based in New Delhi, India, uses crop simulation models—software that can estimate crop yield as a function of weather conditions, soil conditions, and choice of crop management practices—to develop future climate predictions that can help farmers reduce risk, overcome labor and resource constraints, intensify productivity and boost profitability.

“Using future climate data, simulation modelling allows researchers to develop hypotheses about future agricultural systems,” said Singh. “This can help predict and proactively mitigate potentially catastrophic scenarios from challenges such as shrinking natural resources, climate change and the increasing cost of agricultural production.”

A specific focus is on how to best quantify, map and diagnose the causes of the gap between potential yields and actual yields achieved by cereal farmers in the Indo-Gangetic Plain. “My research combines field experimentation, participatory engagement, and cropping systems modelling and spatial data to identify promising technologies for increasing crop productivity and appropriate geographical areas for out scaling,” he said.

For example, Singh and a team of scientists have used simulation tools to find out why wheat productivity is low in the Eastern Gangetic Plains, for example, late sowing, suboptimal crop mangement and terminal heat stress. This process identified various potential techniques to raise wheat productivity, such as early sowing, zero tillage, or short duration rice varieties to facilitate early harvest and field vacation. Geospatial data and tools were used to identify the potential target zones for deployment of these promising technologies.

“The research is helping farmers increase agricultural productivity and to manage climate-related crop production risk and increase the use of agricultural decision support systems,” Singh said. “My research towards improving cereal production systems in South Asia contributes to the knowledge, process understanding and modelling tools needed to underpin recommendations for more productive and sustainable production systems.”

Growing up in rural India in a farming family, Singh viewed firsthand the uncertainty that smallholder farmers can face.

“I was brought up and studied in northwestern India – the region where the green revolution occurred known as the food basket of India,” Singh said.

“I grew up playing in wheat and cotton fields, watching the sowing, growing and harvesting of crops, so an interest in agricultural science came naturally to me and I have never regretted choosing agriculture as a career.”

While studying for his bachelor’s and master’s degrees in agronomy at Punjab Agricultural University (PAU) in Ludhiana, India, a chance encounter helped shape his career.

“Dr. Norman Borlaug came to PAU in 2005 and he happened to visit my field experiment on bed planting wheat. I had a very inspiring conversation with him which made me decide to pursue a career in agricultural research and work for the farming community.”

Singh went on to earn a Ph.D. from Charles Sturt University in Australia through the John Allwright Fellowship funded by the Australian Center for International Agriculture Research (ACIAR). He started work for CIMMYT in 2013 as associate scientist based in New Delhi working with the Cereal Systems Initiative for South Asia (CSISA) project, which aims to improve food security and the livelihoods of more than 8 million farmers in South Asia by 2020.

Since 2014, Singh has led the CIMMYT participation in the  Agricultural Model Intercomparison and Improvement Project (AgMIP) as part of the Indo-Gangetic Basin team, conducting integrated assessments of the effects of climate change on global and regional food production and security, analyzing adaptation and mitigation measures.

Apart from collaborating with CIMMYT colleagues and other advanced research institutes from across the world to build weather and soil databases or working on simulation models, Singh enjoys interacting with farmers in their own fields and collecting data for crop simulation models to generate useable information for research and extension.

He also holds training sessions to aid in developing the capacity of CIMMYT’s national agricultural partners in system simulation modelling to create awareness of the proper use of simulation tools for research and extension.

“The most rewarding aspect of my work is to see my simulation results working in farmers’ fields,” Singh said. “There’s a proverb that says: ‘When a person is full they have a thousand wishes, but a hungry person has only one.’ There is no nobler task than that of being able to feed people. Some of us are not even aware of how many people are starving every day,” he said.

“It gives me great satisfaction to be a part of CIMMYT, an organization that works beyond political boundaries to safeguard future food security, improve livelihoods and carry on the legacy of Dr. Borlaug who fed billions.”